Investigation of Intergenic Regions of Mycoplasma Hyopneumoniae and Development of Statistical Methods for Analyzing Small-Scale RT-Qpcr Assays Stuart W

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Intergenic Regions of Mycoplasma Hyopneumoniae and Development of Statistical Methods for Analyzing Small-Scale RT-Qpcr Assays Stuart W Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Investigation of intergenic regions of Mycoplasma hyopneumoniae and development of statistical methods for analyzing small-scale RT-qPCR assays Stuart W. Gardner Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Statistics and Probability Commons Recommended Citation Gardner, Stuart W., "Investigation of intergenic regions of Mycoplasma hyopneumoniae and development of statistical methods for analyzing small-scale RT-qPCR assays" (2010). Graduate Theses and Dissertations. 11238. https://lib.dr.iastate.edu/etd/11238 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Investigation of intergenic regions of Mycoplasma hyopneumoniae and development of statistical methods for analyzing small-scale RT-qPCR assays by Stuart W. Gardner A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Microbiology; Statistics Program of Study Committee: F. Chris Minion, Co-major Professor Max D. Morris, Co-major Professor Daniel S. Nettleton Dan J. Nordman Qijing Zhang Iowa State University Ames, Iowa 2010 ii TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES v LIST OF ABBREVIATIONS vi ABSTRACT viii CHAPTER 1. GENERAL INTRODUCTION Introduction 1 Dissertation Organization 1 Summary with Goals and Hypothesis 2 References 2 CHAPTER 2. LITERATURE REVIEW Mycoplasmas 3 Mycoplasma hyopneumoniae 4 Promoter Structure in Bacteria 5 Transcriptional Control in Mycoplasmas 12 Quantitative Real-Time Reverse Transcriptase PCR 21 Microarray 33 Top-Down and Bottom-Up Methods of Analysis 47 Delta Method 49 References 52 CHAPTER 3. DETECTION AND QUANTIFICATION OF INTERGENIC TRANSCRIPTION IN MYCOPLASMA HYOPNEUMONIAE Summary 66 Introduction 66 Methods 69 Results 75 Discussion 81 Acknowledgements 84 References 85 Supplemental Data 89 Supplemental File: Example Calculation of a Relative Quantity Index b/m 94 CHAPTER 4. STATISTICAL METHODS TO ANALYZE SMALL-SCALE RT- qPCR EXPERIMENTS AND TO COMPARE RELATIVE QUANTITIES ACROSS MULTIPLE TARGET SEQUENCES Abstract 99 Background 100 iii Methods 102 Results 111 Discussion 124 Authors’ Contributions 127 Acknowledgements 127 References 127 Supplemental Data 130 Additional file 1: Demonstration of Equivalence of Fold Change Calculations 130 Additional file 2: Details on the Analysis of the Design I Assays 135 Additional file 3: Details on the Analysis of the Design II Assays 141 CHAPTER 5. DISCUSSION General Discussion 148 Recommendations for Future Research 150 References 152 APPENDIX A. MICROARRAY EXPERIEMENTS AND SCRIPT FOR ANALYSIS High vs Low Adherent Variants 155 High vs Low Passage in M. hyopneumoniae Strain 232 166 Hydrogen Peroxide Stress in M. hyopneumoniae Strain 232 174 In vitro vs in vivo Grown M. hyopneumoniae Strain 232 177 Norepinephrine Stress in M. hyopneumoniae Strain 232 181 Comparative Hybridization Analysis of M. hyopneumoniae Field Isolates 189 References 219 APPENDIX B. CUSTOM R FUNCTIONS bh.fdr.R 222 compress.R 222 cum.mean.R 223 log.0.R 223 msn.R 224 normalize.R 225 plot.gene.R 225 q.value.R 226 slide.comp.R 227 ACKNOWLEDGMENTS 228 iv LIST OF FIGURES Figure 3.1. qRT-PCR analysis of IG regions of M. hyopneumoniae 77 Figure 3.2. Transcriptional analysis of IG regions flanking dnaK following heat shock 80 Figure 3.S1. Histogram of IG region size 89 Figure 3.S2. Reference gene amplification plot for standard curve dilution series 95 Figure 3.S3. Graph raw data 96 Figure 3.S4. Standard curve for reference gene 97 Figure 4.1. 96-well plate layout for Design I assay 104 Figure 4.2. 96-well plate layout for Design II assay 105 Figure 4.3. Fold change from both assay designs 113 Figure 4.4. Design I relative quantities 114 Figure 4.5. Design II relative quantities 116 Figure 4.6. Fold change of Design I vs Design II 118 Figure 4.7. Within treatment relative quantity of Design I versus Design II 119 Figure 4.8. Standard error ratios for fold change estimates 120 Figure 4.9. Design I relative quantity standard errors 121 Figure 4.10. Design II relative quantity standard errors 122 Figure 4.11. Within SE calculation method comparison of designs 123 Figure A.1. Scatter plot of genetic variation of field isolates 192 Figure A.2. Permutation test of hot spots showing variation around the M. hyopneumoniae genome 194 v LIST OF TABLES Table 2.1. Possible outcomes for m null hypothesis tests 46 Table 3.1. Primers used for qRT-PCR analysis 72 Table 3.S1. The 343 IG regions of 50 bp or more 90 Table 3.S2. Data from amplification plot of reference gene 96 Table 3.S3. Averaged duplicate Cq values from reference gene 97 Table 3.S4. Reference gene Cq values for individual samples 98 Table 3.S5. Cq values for target sequence ig-070/071 PS1 98 Table 4.1. Primer sets for RT-qPCR assays 103 Table 4.2. Parameter estimates, efficiency calculations, and model fit statistics for Design I assays 113 Table 4.3. Parameter estimates, efficiency calculations, and model fit statistics for Design II assays 115 Table 4.4. Summary table of the RT-qPCR assay results and model fitting 117 Table A.1. Most significant differentially expressed genes in high vs low adherent variants 157 vi LIST OF ABBREVIATIONS ANOVA – analysis of variance b – intercept in the model Cq = mx + b BALF – bronchial alveolar lavage fluid bp – base pair BU_AS – bottom-up all separate statistics BU_C – bottom-up combined statistics C - control cDNA – complementary DNA CDS – coding sequence CI – confidence interval CP – crossing point Cq - Quantification cycle, threshold fluorescence value CRISPR – clustered regularly interspaced short palindromic repeats Ct – crossing threshold D – dye df – degrees of freedom DNA - Deoxyribonucleic acid dsDNA – double stranded DNA FC – fold change FDR – false discovery rate FWER – family wise error rate G – gene gDNA – genomic DNA GFP – green fluorescent protein HS – heat shock IG – intergenic region ISU – Iowa State University lowess – locally weighted linear regression m – slope in the model Cq = mx + b Mbp – million bp mRNA – messenger RNA ncRNA – small non-coding RNA nm - nanometers nt – nucleotide vii ORF – open reading frame p1 – plate 1 p2 – plate 2 PCR – polymerase chain reaction PS – primer set qPCR – relative quantitative PCR qRT-PCR – quantitative real-time-PCR R2 – coefficient of determination REML – restricted maximum likelihood Rep – replicate RG – Reference Gene R-M – restriction modification RNA - Ribonucleic acid RNAP – RNA polymerase rRNA – ribosomal RNA RT – reverse transcriptase RT-qPCR – relative quantitative reverse transcription PCR S – slide SD – Shine-Delgarno SE – standard error(s) SEM – standard error of the mean sRNA – small non-coding RNA T – treatment/treated TBD – to be determined TD – top-down statistics TF – Transcription Factor TFBS – Transcription Factor-binding Site tRNA – transfer RNA TU – Transcriptional Units UTR – Untranslated Region UV – ultraviolet viii ABSTRACT The intergenic region (IG) transcriptional activity of Mycoplasma hyopneumoniae strain 232 was studied via two-color microarrays and quantitative real-time polymerase chain reactions (RT-qPCR). Two types of microarrays were constructed, one consisting of PCR products and the other of synthesized oligonucleotides. The PCR-array consisted of 994 PCR products (probes) which covers 98% (683/698) of the total open reading frames (ORFs) of strain 232, five structural ribosomal RNA probes, and 159 IG probes for 112 of 215 IG regions greater than 124 bp. The oligonucleotide-array consisted of 528 oligonucleotide probes ranging in size between 50 and 60 bp, and was designed for IG regions for which PCR products were not constructed or the length of the region (50-124 bp). Transcriptional signals were identified in 93.6% (321/343) of the IG regions larger than 49 bp. From these IG regions with transcriptional activity, five large (>500 bp) IG regions and the region upstream of dnaK were chosen for further analysis by RT-qPCR. A novel method to compare the relative quantity estimates of several different targets was developed for the RT-qPCR assays, and various methods were investigated to obtain error estimates of the fold change and relative quantity by applying top-down or bottom-up statistical approaches for two different experimental designs. The results from these assays indicate that no single transcriptional start site can account for transcriptional activity within IG regions. Transcription can end abruptly at the end of an ORF, but this does not seem to occur at high frequency. Rather, transcription continues past the end of the ORF, with RNA polymerase gradually releasing the template. Transcription can also be initiated within IG regions in the absence of accepted promoter-like sequences. Also, when conducting small scale RT-qPCR studies, the error in estimation of amplification efficiency should not be ignored in determining statistically significant differences. An assay design which uses serial dilutions of each individual sample to determine the amplification efficiency of a target sequence is favored over an assay design which uses the Stock I methodology to evaluate target sequence amplification efficiencies. In summary, methods to analyze the transcriptional activity of M. hyopneumoniae have been developed and the results have shown that IG regions are transcriptionally active and under some regulatory control. 1 CHAPTER 1. GENERAL INTRODUCTION Introduction The subject of this study is RNA transcription in the microorganism Mycoplasma hyopneumoniae. This highly contagious and chronic disease causing bacteria is associated with respiratory disease and reduced productivity in swine (2). Pathogenesis is known to occur through the adherence of the organism to the cilia of the respiratory epithelia in the swine lung, however little else is known about the pathogenic mechanisms (1).
Recommended publications
  • The Mysterious Orphans of Mycoplasmataceae
    The mysterious orphans of Mycoplasmataceae Tatiana V. Tatarinova1,2*, Inna Lysnyansky3, Yuri V. Nikolsky4,5,6, and Alexander Bolshoy7* 1 Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, 90027, California, USA 2 Spatial Science Institute, University of Southern California, Los Angeles, 90089, California, USA 3 Mycoplasma Unit, Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, POB 12, Beit Dagan, 50250, Israel 4 School of Systems Biology, George Mason University, 10900 University Blvd, MSN 5B3, Manassas, VA 20110, USA 5 Biomedical Cluster, Skolkovo Foundation, 4 Lugovaya str., Skolkovo Innovation Centre, Mozhajskij region, Moscow, 143026, Russian Federation 6 Vavilov Institute of General Genetics, Moscow, Russian Federation 7 Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Israel 1,2 [email protected] 3 [email protected] 4-6 [email protected] 7 [email protected] 1 Abstract Background: The length of a protein sequence is largely determined by its function, i.e. each functional group is associated with an optimal size. However, comparative genomics revealed that proteins’ length may be affected by additional factors. In 2002 it was shown that in bacterium Escherichia coli and the archaeon Archaeoglobus fulgidus, protein sequences with no homologs are, on average, shorter than those with homologs [1]. Most experts now agree that the length distributions are distinctly different between protein sequences with and without homologs in bacterial and archaeal genomes. In this study, we examine this postulate by a comprehensive analysis of all annotated prokaryotic genomes and focusing on certain exceptions.
    [Show full text]
  • Role of Protein Phosphorylation in Mycoplasma Pneumoniae
    Pathogenicity of a minimal organism: Role of protein phosphorylation in Mycoplasma pneumoniae Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen vorgelegt von Sebastian Schmidl aus Bad Hersfeld Göttingen 2010 Mitglieder des Betreuungsausschusses: Referent: Prof. Dr. Jörg Stülke Koreferent: PD Dr. Michael Hoppert Tag der mündlichen Prüfung: 02.11.2010 “Everything should be made as simple as possible, but not simpler.” (Albert Einstein) Danksagung Zunächst möchte ich mich bei Prof. Dr. Jörg Stülke für die Ermöglichung dieser Doktorarbeit bedanken. Nicht zuletzt durch seine freundliche und engagierte Betreuung hat mir die Zeit viel Freude bereitet. Des Weiteren hat er mir alle Freiheiten zur Verwirklichung meiner eigenen Ideen gelassen, was ich sehr zu schätzen weiß. Für die Übernahme des Korreferates danke ich PD Dr. Michael Hoppert sowie Prof. Dr. Heinz Neumann, PD Dr. Boris Görke, PD Dr. Rolf Daniel und Prof. Dr. Botho Bowien für das Mitwirken im Thesis-Komitee. Der Studienstiftung des deutschen Volkes gilt ein besonderer Dank für die finanzielle Unterstützung dieser Arbeit, durch die es mir unter anderem auch möglich war, an Tagungen in fernen Ländern teilzunehmen. Prof. Dr. Michael Hecker und der Gruppe von Dr. Dörte Becher (Universität Greifswald) danke ich für die freundliche Zusammenarbeit bei der Durchführung von zahlreichen Proteomics-Experimenten. Ein ganz besonderer Dank geht dabei an Katrin Gronau, die mich in die Feinheiten der 2D-Gelelektrophorese eingeführt hat. Außerdem möchte ich mich bei Andreas Otto für die zahlreichen Proteinidentifikationen in den letzten Monaten bedanken. Nicht zu vergessen ist auch meine zweite Außenstelle an der Universität in Barcelona. Dr. Maria Lluch-Senar und Dr.
    [Show full text]
  • Genomic Islands in Mycoplasmas
    G C A T T A C G G C A T genes Review Genomic Islands in Mycoplasmas Christine Citti * , Eric Baranowski * , Emilie Dordet-Frisoni, Marion Faucher and Laurent-Xavier Nouvel Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; [email protected] (E.D.-F.); [email protected] (M.F.); [email protected] (L.-X.N.) * Correspondence: [email protected] (C.C.); [email protected] (E.B.) Received: 30 June 2020; Accepted: 20 July 2020; Published: 22 July 2020 Abstract: Bacteria of the Mycoplasma genus are characterized by the lack of a cell-wall, the use of UGA as tryptophan codon instead of a universal stop, and their simplified metabolic pathways. Most of these features are due to the small-size and limited-content of their genomes (580–1840 Kbp; 482–2050 CDS). Yet, the Mycoplasma genus encompasses over 200 species living in close contact with a wide range of animal hosts and man. These include pathogens, pathobionts, or commensals that have retained the full capacity to synthesize DNA, RNA, and all proteins required to sustain a parasitic life-style, with most being able to grow under laboratory conditions without host cells. Over the last 10 years, comparative genome analyses of multiple species and strains unveiled some of the dynamics of mycoplasma genomes. This review summarizes our current knowledge of genomic islands (GIs) found in mycoplasmas, with a focus on pathogenicity islands, integrative and conjugative elements (ICEs), and prophages. Here, we discuss how GIs contribute to the dynamics of mycoplasma genomes and how they participate in the evolution of these minimal organisms.
    [Show full text]
  • Genetic Profiling of Mycoplasma Hyopneumoniae Melissa L
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2005 Genetic profiling of Mycoplasma hyopneumoniae Melissa L. Madsen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Microbiology Commons, Molecular Biology Commons, and the Veterinary Medicine Commons Recommended Citation Madsen, Melissa L., "Genetic profiling of Mycoplasma hyopneumoniae " (2005). Retrospective Theses and Dissertations. 1793. https://lib.dr.iastate.edu/rtd/1793 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. ® UMI Genetic profiling of Mycoplasma hyopneumoniae by Melissa L. Madsen A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Molecular, Cellular and Developmental Biology Program of Study Committee: F. Chris Minion, Major Professor Daniel S. Nettleton Gregory J. Phillips Eileen L. Thacker Eve Wurtele Iowa State University Ames, Iowa 2005 UMI Number: 3200480 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Comparative Analyses of Whole-Genome Protein Sequences
    www.nature.com/scientificreports OPEN Comparative analyses of whole- genome protein sequences from multiple organisms Received: 7 June 2017 Makio Yokono 1,2, Soichirou Satoh3 & Ayumi Tanaka1 Accepted: 16 April 2018 Phylogenies based on entire genomes are a powerful tool for reconstructing the Tree of Life. Several Published: xx xx xxxx methods have been proposed, most of which employ an alignment-free strategy. Average sequence similarity methods are diferent than most other whole-genome methods, because they are based on local alignments. However, previous average similarity methods fail to reconstruct a correct phylogeny when compared against other whole-genome trees. In this study, we developed a novel average sequence similarity method. Our method correctly reconstructs the phylogenetic tree of in silico evolved E. coli proteomes. We applied the method to reconstruct a whole-proteome phylogeny of 1,087 species from all three domains of life, Bacteria, Archaea, and Eucarya. Our tree was automatically reconstructed without any human decisions, such as the selection of organisms. The tree exhibits a concentric circle-like structure, indicating that all the organisms have similar total branch lengths from their common ancestor. Branching patterns of the members of each phylum of Bacteria and Archaea are largely consistent with previous reports. The topologies are largely consistent with those reconstructed by other methods. These results strongly suggest that this approach has sufcient taxonomic resolution and reliability to infer phylogeny, from phylum to strain, of a wide range of organisms. Te reconstruction of phylogenetic trees is a powerful tool for understanding organismal evolutionary processes. Molecular phylogenetic analysis using ribosomal RNA (rRNA) clarifed the phylogenetic relationship of the three domains, bacterial, archaeal, and eukaryotic1.
    [Show full text]
  • 1 Supplementary Material a Major Clade of Prokaryotes with Ancient
    Supplementary Material A major clade of prokaryotes with ancient adaptations to life on land Fabia U. Battistuzzi and S. Blair Hedges Data assembly and phylogenetic analyses Protein data set: Amino acid sequences of 25 protein-coding genes (“proteins”) were concatenated in an alignment of 18,586 amino acid sites and 283 species. These proteins included: 15 ribosomal proteins (RPL1, 2, 3, 5, 6, 11, 13, 16; RPS2, 3, 4, 5, 7, 9, 11), four genes (RNA polymerase alpha, beta, and gamma subunits, Transcription antitermination factor NusG) from the functional category of Transcription, three proteins (Elongation factor G, Elongation factor Tu, Translation initiation factor IF2) of the Translation, Ribosomal Structure and Biogenesis functional category, one protein (DNA polymerase III, beta subunit) of the DNA Replication, Recombination and repair category, one protein (Preprotein translocase SecY) of the Cell Motility and Secretion category, and one protein (O-sialoglycoprotein endopeptidase) of the Posttranslational Modification, Protein Turnover, Chaperones category, as annotated in the Cluster of Orthologous Groups (COG) (Tatusov et al. 2001). After removal of multiple strains of the same species, GBlocks 0.91b (Castresana 2000) was applied to each protein in the concatenation to delete poorly aligned sites (i.e., sites with gaps in more than 50% of the species and conserved in less than 50% of the species) with the following parameters: minimum number of sequences for a conserved position: 110, minimum number of sequences for a flank position: 110, maximum number of contiguous non-conserved positions: 32000, allowed gap positions: with half. The signal-to-noise ratio was determined by altering the “minimum length of a block” parameter.
    [Show full text]
  • Effectors of Mycoplasmal Virulence 1 2 Virulence Effectors of Pathogenic Mycoplasmas 3 4 Meghan A. May1 And
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2018 doi:10.20944/preprints201809.0533.v1 1 Running title: Effectors of mycoplasmal virulence 2 3 Virulence Effectors of Pathogenic Mycoplasmas 4 5 Meghan A. May1 and Daniel R. Brown2 6 7 1Department of Biomedical Sciences, College of Osteopathic Medicine, University of New 8 England, Biddeford ME, USA; 2Department of Infectious Diseases and Immunology, College 9 of Veterinary Medicine, University of Florida, Gainesville FL, USA 10 11 Corresponding author: 12 Daniel R. Brown 13 Department of Infectious Diseases and Immunology, College of Veterinary Medicine, 14 University of Florida, Gainesville FL, USA 15 Tel: +1 352 294 4004 16 Email: [email protected] 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2018 doi:10.20944/preprints201809.0533.v1 17 Abstract 18 Members of the genus Mycoplasma and related organisms impose a substantial burden of 19 infectious diseases on humans and animals, but the last comprehensive review of 20 mycoplasmal pathogenicity was published 20 years ago. Post-genomic analyses have now 21 begun to support the discovery and detailed molecular biological characterization of a 22 number of specific mycoplasmal virulence factors. This review covers three categories of 23 defined mycoplasmal virulence effectors: 1) specific macromolecules including the 24 superantigen MAM, the ADP-ribosylating CARDS toxin, sialidase, cytotoxic nucleases, cell- 25 activating diacylated lipopeptides, and phosphocholine-containing glycoglycerolipids; 2) 26 the small molecule effectors hydrogen peroxide, hydrogen sulfide, and ammonia; and 3) 27 several putative mycoplasmal orthologs of virulence effectors documented in other 28 bacteria.
    [Show full text]
  • Microbiome Species Average Counts (Normalized) Veillonella Parvula
    Table S2. Bacteria and virus detected with RN OLP Microbiome Species Average Counts (normalized) Veillonella parvula 3435527.229 Rothia mucilaginosa 1810713.571 Haemophilus parainfluenzae 844236.8342 Fusobacterium nucleatum 825289.7789 Neisseria meningitidis 626843.5897 Achromobacter xylosoxidans 415495.0883 Atopobium parvulum 205918.2297 Campylobacter concisus 159293.9124 Leptotrichia buccalis 123966.9359 Megasphaera elsdenii 87368.48455 Prevotella melaninogenica 82285.23784 Selenomonas sputigena 77508.6755 Haemophilus influenzae 76896.39289 Porphyromonas gingivalis 75766.09645 Rothia dentocariosa 64620.85367 Candidatus Saccharimonas aalborgensis 61728.68147 Aggregatibacter aphrophilus 54899.61834 Prevotella intermedia 37434.48581 Tannerella forsythia 36640.47285 Streptococcus parasanguinis 34865.49274 Selenomonas ruminantium 32825.83925 Streptococcus pneumoniae 23422.9219 Pseudogulbenkiania sp. NH8B 23371.8297 Neisseria lactamica 21815.23198 Streptococcus constellatus 20678.39506 Streptococcus pyogenes 20154.71044 Dichelobacter nodosus 19653.086 Prevotella sp. oral taxon 299 19244.10773 Capnocytophaga ochracea 18866.69759 [Eubacterium] eligens 17926.74096 Streptococcus mitis 17758.73348 Campylobacter curvus 17565.59393 Taylorella equigenitalis 15652.75392 Candidatus Saccharibacteria bacterium RAAC3_TM7_1 15478.8893 Streptococcus oligofermentans 15445.0097 Ruminiclostridium thermocellum 15128.26924 Kocuria rhizophila 14534.55059 [Clostridium] saccharolyticum 13834.76647 Mobiluncus curtisii 12226.83711 Porphyromonas asaccharolytica 11934.89197
    [Show full text]
  • New Insights on the Biology of Swine Respiratory Tract Mycoplasmas From
    Siqueira et al. BMC Genomics 2013, 14:175 http://www.biomedcentral.com/1471-2164/14/175 RESEARCH ARTICLE Open Access New insights on the biology of swine respiratory tract mycoplasmas from a comparative genome analysis Franciele Maboni Siqueira1,4, Claudia Elizabeth Thompson2, Veridiana Gomes Virginio1,3, Taylor Gonchoroski1, Luciano Reolon1,3, Luiz Gonzaga Almeida2, Marbella Maria da Fonsêca2, Rangel de Souza2, Francisco Prosdocimi6, Irene Silveira Schrank1,3,5, Henrique Bunselmeyer Ferreira1,3,5, Ana Tereza Ribeiro de Vasconcelos2* and Arnaldo Zaha1,3,4,5* Abstract Background: Mycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis live in swine respiratory tracts. M. flocculare, a commensal bacterium, is genetically closely related to M. hyopneumoniae,the causative agent of enzootic porcine pneumonia. M. hyorhinis is also pathogenic, causing polyserositis and arthritis. In this work, we present the genome sequences of M. flocculare and M. hyopneumoniae strain 7422, and we compare these genomes with the genomes of other M. hyoponeumoniae strain and to the a M. hyorhinis genome. These analyses were performed to identify possible characteristics that may help to explain the different behaviors of these species in swine respiratory tracts. Results: The overall genome organization of three species was analyzed, revealing that the ORF clusters (OCs) differ considerably and that inversions and rearrangements are common. Although M. flocculare and M. hyopneumoniae display a high degree of similarity with respect to the gene content, only some genomic regions display considerable synteny. Genes encoding proteins that may be involved in host-cell adhesion in M. hyopneumoniae and M. flocculare display differences in genomic structure and organization. Some genes encoding adhesins of the P97 family are absent in M.
    [Show full text]
  • Swine Conjunctivitis Associated with a Novel Mycoplasma Species Closely Related to Mycoplasma Hyorhinis
    pathogens Article Swine Conjunctivitis Associated with a Novel Mycoplasma Species Closely Related to Mycoplasma hyorhinis Isabel Hennig-Pauka 1 , Christoph Sudendey 2, Sven Kleinschmidt 3 , Werner Ruppitsch 4, Igor Loncaric 5 and Joachim Spergser 5,* 1 Field Station for Epidemiology in Bakum, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; [email protected] 2 Tierärztliche Gemeinschaftspraxis Büren FGS-GmbH, 33142 Büren, Germany; [email protected] 3 Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, 30173 Hannover, Germany; [email protected] 4 Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1096 Vienna, Austria; [email protected] 5 Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] * Correspondence: [email protected] Abstract: Conjunctivitis in swine is a common finding, usually considered to be a secondary symptom of respiratory or viral systemic disease, or a result of irritation by dust or ammonia, or of local infections with Mycoplasma (M.) hyorhinis or chlamydia. In three unrelated swine farms in Germany with a high prevalence of conjunctivitis, a novel mycoplasma species, tentatively named Mycoplasma sp. 1654_15, was isolated from conjunctival swabs taken from affected pigs. Although 16S rRNA gene sequences shared highest nucleotide similarities with M. hyorhinis, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, partial rpoB sequencing, and comparative whole genome analyses indicated the identification of a novel species within genus Mycoplasma. Noticeable differences between Mycoplasma sp. 1654_15 and M.
    [Show full text]
  • Dynamic Evolution of Translation Initiation Mechanisms in Prokaryotes
    Dynamic evolution of translation initiation mechanisms in prokaryotes So Nakagawaa, Yoshihito Niimurab, Kin-ichiro Miurac,1, and Takashi Gojoboria,d,2 aCenter for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima 411-8540, Japan; bDepartment of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; cDepartment of Medical Genome Science, Graduate School of Frontier Science, University of Tokyo, Kashiwa 277-8562, Japan; and dBiomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan Communicated by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, February 23, 2010 (received for review December 7, 2009) It is generally believed that prokaryotic translation is initiated by yotes, translation is generally initiated by a scanning mechanism. the interaction between the Shine-Dalgarno (SD) sequence in the The small (40S) ribosomal subunit, with several initiation factors, 5′ UTR of an mRNA and the anti-SD sequence in the 3′ end of a 16S binds the 7-methyl guanosine cap (11) at the 5′ end of an mRNA. ribosomal RNA. However, there are two exceptional mechanisms, It moves along the mRNA until it encounters an AUG codon which do not require the SD sequence for translation initiation: that is surrounded by a particular sequence such as the Kozak one is mediated by a ribosomal protein S1 (RPS1) and the other sequence (12). Hernández (13) hypothesized that the emergence used leaderless mRNA that lacks its 5′ UTR. To understand the of a nucleus led to the disappearance of the SD interaction and evolutionary changes of the mechanisms of translation initiation, establishment of other mechanisms of translation initiation in we examined how universal the SD sequence is as an effective eukaryotes.
    [Show full text]
  • Understanding the Interaction Between Mycoplasma Bovis and Bovine Respiratory Macrophages
    UNDERSTANDING THE INTERACTION BETWEEN MYCOPLASMA BOVIS AND BOVINE RESPIRATORY MACROPHAGES A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Veterinary Microbiology University of Saskatchewan Saskatoon By TERESIA W. MAINA © Copyright. Teresia. W. Maina, March 2019. All rights reserved. PERMISSION TO USE 1 In presenting this thesis/dissertation in partial fulfillment of the requirements for a Post-graduate 2 degree from the University of Saskatchewan, I agree that the Libraries of this University may 3 make it freely available for inspection. I further agree that permission for copying of this 4 thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by 5 the professor or professors who supervised my thesis/dissertation work or, in their absence, by 6 the Head of the Department or the Dean of the College in which my thesis work was done. It is 7 understood that any copying or publication or use of this thesis/dissertation or parts thereof for 8 financial gain shall not be allowed without my written permission. It is also understood that due 9 recognition shall be given to me and to the University of Saskatchewan in any scholarly use 10 which may be made of any material in my thesis/dissertation. 11 Requests for permission to copy or to make other uses of materials in this thesis/dissertation in 12 whole or part should be addressed to: 13 Head of the Department of Veterinary Microbiology 14 University of Saskatchewan 15 Saskatoon, Saskatchewan S7N 5B4 16 Canada 17 OR 18 Dean 19 College of Graduate and Postdoctoral Studies 20 University of Saskatchewan 21 116 Thorvaldson Building, 110 Science Place 22 Saskatoon, Saskatchewan S7N 5C9 Canada 23 24 i ABSTRACT 25 Mycoplasma bovis is the most pathogenic bovine mycoplasma in Europe and North America.
    [Show full text]