The Role of the Mite Orthogalumna Terebrantis in the Biological Control Programme for Water Hyacinth, Eichhornia Crassipes, in South Africa

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Mite Orthogalumna Terebrantis in the Biological Control Programme for Water Hyacinth, Eichhornia Crassipes, in South Africa The role of the mite Orthogalumna terebrantis in the biological control programme for water hyacinth, Eichhornia crassipes, in South Africa A thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY of Rhodes University by DANICA MARLIN December 2010 Abstract Water hyacinth (Eichhornia crassipes) is an aquatic macrophyte originating from the Amazon basin. Due to its beautiful appearance it has been introduced into numerous countries across the world as an ornamental pond plant. It was introduced into South Africa in the early 1900s and has since reached pest proportions in many of the country’s fresh water bodies, causing significant economic and ecological losses. It is now considered to be the worst aquatic weed in South Africa. Efforts to control the spread of the weed began in the early 1970s and there have been some successes. Biological control has been used widely as an alternative to mechanical and chemical controls because it is cost-effective, self-sustaining and environmentally friendly. To date, six biological control agents have been introduced onto water hyacinth in South Africa. However, due to factors such as cold winter temperatures and interference from chemical control, the agent populations are occasionally knocked-down and thus the impact of biological control on the weed population is variable. In addition, many South African water systems are highly eutrophic, and in these systems the plant growth may be accelerated to such an extent that the negative impact of the agents’ herbivory is mitigated. One of the agents established on the weed is the galumnid mite Orthogalumna terebrantis, which originates from Uruguay. In South Africa, the mite was initially discovered on two water hyacinth infestations in the Mpumalanga Province in 1989 and it is now established at 17 sites across the country. Many biological control researchers believe that the mite is a good biological control agent but, prior to this thesis, little quantitative data existed to confirm the belief. Thus, this thesis is a post-release evaluation of O. terebrantis in which various aspects of the mite-plant relationship were investigated to determine the efficacy of the mite and thus better understand the role of the mite in the biological control programme of water hyacinth in South Africa. From laboratory experiments, in which mite densities were lower than densities occurring in the field, it was found that water hyacinth growth is largely unaffected by mite herbivory, except possibly at very high mite densities. When grown in high nutrient conditions the growth of the plant is so great that any affect the mite has is nullified. ii Plant growth is thus more affected by nutrients than by mite herbivory. However, mite feeding was also influenced by water nutrient levels and mite herbivory was greatest on plants grown in high nutrient conditions. The presence of the mite had a positive effect on the performance of the mirid Eccritotarsus catarinensis, such that the interactions of the two agents together had a greater negative impact on the plant’s growth than the individual agents had alone. Furthermore, water hyacinth physiological parameters, such as the plant’s photosynthetic ability, were negatively impacted by the mite, even at the very low mite densities used in the study. Plant growth rate is dependent on photosynthetic ability i.e. the rate of photosynthesis, and thus a decrease in the plant’s photosynthetic ability will eventually be translated into decreased plant growth rates which would ultimately result in the overall reduction of water hyacinth populations. In addition, temperature tolerance studies showed that the mite was tolerant of low temperatures. The mite already occurs at some of the coldest sites in South Africa. Therefore, the mite should be able to establish at all of the water hyacinth infestations in the country, but because it is a poor disperser it is unlikely to establish at new sites without human intervention. It is suggested that the mite be used as an additional biological control agent at sites where it does not yet occur, specifically at cold sites where some of the other, less cold-tolerant, agents have failed to establish. Finally, conditions of where, how many and how often the mite should be distributed to water hyacinth infestation in South Africa are discussed. iii TABLE OF CONTENTS Abstract…………………………………………………………………………………… ii List of figures…………………………………………………………………………….. viii List of tables……………………………………………………………………………… xvii Acknowledgements…………………………………………………………………...... xx Chapter 1: General Introduction…………………………………………………...... 1 1.1. Invasive alien plants……………………………………………………….. 1 1.2. Biological control of aquatic plants………………………………………. 3 1.2.1. Globally……………………………………………………………………… 3 1.2.2. South Africa…………………………………………………………………. 4 1.3. Water hyacinth: Eichhornia crassipes …………………………………... 5 1.3.1. History and distribution…………………………………………………….. 5 1.3.2. Biology……………………………………………………………………….. 7 1.3.3. Impact on the environment………………………………………………… 8 1.3.4. Utilisation……………………………………………………………………. 9 1.3.5. Biological control of water hyacinth in South Africa…………………….. 10 1.4. Mites (Acari) as agents for pest reduction………………………………. 12 1.5. Orthogalumna terebrantis ………………………………………………... 15 1.5.1. Introduction………………………………………………………………….. 15 1.5.2. History and distribution…………………………………………………….. 16 1.5.3. Biology……………………………………………………………………….. 16 1.5.4. Feeding damage and effect on water hyacinth………………………….. 18 1.5.5. Natural enemies of Orthogalumna terebrantis………………………...... 19 1.5.6. Present status of Orthogalumna terebrantis in South Africa…………... 20 1.6. Aims of thesis………………………………………………………………. 21 Chapter 2: The impact of herbivory by different densities of Orthogalumna terebrantis on water hyacinth growth parameters and leaf chlorophyll content………………………………………………………. 23 2.1. Introduction…………………………………………………………………. 23 2.2. Materials and methods……………………………………………………. 26 2.2.1. Experimental set-up………………………………………………………... 26 iv 2.2.2. Leaf chlorophyll determination……………………………………………. 27 2.2.3. Feeding damage determination…………………………………………… 29 2.2.4. Statistical analyses…………………………………………………………. 29 2.3. Results……………………………………………………………………… 30 2.3.1. Plant growth parameters…………………………………………………... 31 2.3.2. Leaf chlorophyll content……………………………………………………. 39 2.3.3. Mite damage to the leaf surface area…………………………………….. 42 2.3.4. Effect of mite herbivory on the plant growth parameters………………. 47 2.3.5. Summary of results………………………………………………………… 48 2.4. Discussion………………………………………………………………...... 49 2.4.1. Effect of mite herbivory on the plant growth parameters………………. 49 2.4.2. Effect of mite herbivory on the leaf chlorophyll content………………… 53 2.4.3. Effect of mite herbivory on the leaf surface area damaged……………. 54 2.5. Conclusion………………………………………………………………..... 55 Chapter 3: The impact of nutrients and herbivory by Orthogalumna terebrantis on water hyacinth growth parameters and leaf chlorophyll content………………………………………………………. 57 3.1. Introduction…………………………………………………………………. 57 3.2. Materials and methods……………………………………………………. 61 3.2.1. Experimental set-up………………………………………………………... 61 3.2.2. Feeding damage determination…………………………………………… 63 3.2.3. Leaf chlorophyll content……………………………………………………. 63 3.2.4. Statistical analyses…………………………………………………………. 64 3.3. Results……………………………………………………………………… 65 3.3.1. Effect of nutrients on the plant growth parameters……………………... 65 3.3.2. Effect of mite herbivory on the plant growth parameters………………. 72 3.3.3. Effect of nutrients and herbivory on the leaf chlorophyll content……… 74 3.3.4. Effect of nutrients on mite herbivory……………………………………… 75 3.3.5. Effect of nutrients and time on mite development, based on gallery 78 lengths……………………………………………………………………….. 3.4. Discussion………………………………………………………………...... 79 3.5. Conclusion………………………………………………………………..... 82 Chapter 4: Interactions of three biological control agents of water hyacinth and their impact on the plant…………………………………………... 84 4.1. Introduction…………………………………………………………………. 84 4.2. Materials and methods……………………………………………………. 89 4.2.1. Pilot studies…………………………………………………………………. 89 4.2.2. Interaction study……………………………………………………………. 92 4.3. Results……………………………………………………………………… 95 4.3.1. Pilot studies…………………………………………………………………. 95 4.3.2. Interaction study……………………………………………………………. 104 4.4. Discussion………………………………………………………………...... 112 4.5. Conclusion………………………………………………………………..... 122 v Chapter 5: Photosynthetic performance of water hyacinth as affected by Orthogalumna terebrantis herbivory…………………………………. 124 5.1. Introduction…………………………………………………………………. 124 5.2. Materials and methods……………………………………………………. 131 5.2.1. Experimental set-up………………………………………………………... 131 5.2.2. Feeding intensity measurements…………………………………………. 132 5.2.3. Photosynthetic gas exchange…………………………………………...... 132 5.2.4. Chlorophyll-a fluorescence………………………………………………… 133 5.2.4.1. The JIP-test…………………………………………………….. … 133 5.2.5. Leaf chlorophyll content and biomass……………………………………. 134 5.2.6. Statistical analyses…………………………………………………………. 136 5.3. Results………………………………………………………………………….. 136 5.3.1. Photosynthetic gas exchange…………………………………………...... 136 5.3.2. Chlorophyll-a fluorescence………………………………………………… 139 5.3.3. Leaf chlorophyll content and biomass……………………………………. 143 5.4. Discussion……………………………………………………………………… 144 5.5. Conclusion……………………………………………………………………... 149 Chapter 6: Thermal tolerance of Orthogalumna terebrantis and the effect of temperature on its establishment in South Africa…………………. 150
Recommended publications
  • Mapping Prosopis Glandulosa (Mesquite) Invasion in the Arid Environment of South Africa Using Remote Sensing Techniques
    Mapping Prosopis glandulosa (mesquite) invasion in the arid environment of South Africa using remote sensing techniques NYASHA FLORENCE MURERIWA 0604748V Supervisor: Dr Elhadi Adam A dissertation submitted to the School of Geography, Archaeology and Environmental Studies, Faculty of Science, University of the Witwatersrand in fulfilment of the academic requirements for the degree of Master of Science in Environmental Sciences March 2016 Johannesburg South Africa Abstract Decades after the first introduction of the Prosopis spp. (mesquite) to South Africa in the late 1800s for its benefits, the invasive nature of the species became apparent as its spread in regions of South Africa resulting in devastating effects to biodiversity, ecosystems and the socio- economic wellbeing of affected regions. Various control and management practices that include biological, physical, chemical and integrated methods have been tested with minimal success as compared to the rapid spread of the species. From previous studies, it has been noted that one of the reasons for the low success rates in mesquite control and management is a lack of sufficient information on the species invasion dynamic in relation to its very similar co-existing species. In order to bridge this gap in knowledge, vegetation species mapping techniques that use remote sensing methods need to be tested for the monitoring, detection and mapping of the species spread. Unlike traditional field survey methods, remote sensing techniques are better at monitoring vegetation as they can cover very large areas and are time-effective and cost- effective. Thus, the aim of this research was to examine the possibility of mapping and spectrally discriminating Prosopis glandulosa from its native co-existing species in semi-arid parts of South Africa using remote sensing methods.
    [Show full text]
  • A Case Study on the Potential of the Multipurpose Prosopis Tree
    23 Underutilised crops for famine and poverty alleviation: a case study on the potential of the multipurpose Prosopis tree N.M. Pasiecznik, S.K. Choge, A.B. Rosenfeld and P.J.C. Harris In its native Latin America, the Prosopis tree (also known as Mesquite) has multiple uses as a fuel wood, timber, charcoal, animal fodder and human food. It is also highly drought-resistant, growing under conditions where little else will survive. For this reason, it has been introduced as a pioneer species into the drylands of Africa and Asia over the last two centuries as a means of reclaiming desert lands. However, the knowledge of its uses was not transferred with it, and left in an unmanaged state it has developed into a highly invasive species, where it encroaches on farm land as an impenetrable, thorny thicket. Attempts to eradicate it are proving costly and largely unsuccessful. In 2006, the problem of Prosopis was hitting the headlines on an almost weekly basis in Kenya. Yet amidst calls for its eradication, a pioneering team from the Kenya Forestry Research Institute (KEFRI) and HDRA’s International Programme set out to demonstrate its positive uses. Through a pilot training and capacity building programme in two villages in Baringo District, people living with this tree learned for the first time how to manage and use it to their benefit, both for food security and income generation. Results showed that the pods, milled to flour, would provide a crucial, nutritious food supplement in these famine-prone desert margins. The pods were also used or sold as animal fodder, with the first international order coming from South Africa by the end of the year.
    [Show full text]
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • Biology of the Bruchidae +6178
    Ann. Rev. Entomol 1979. 24:449-73 Copyright @ 1979 by Annual Reviews Inc. All rights reserved BIOLOGY OF THE BRUCHIDAE +6178 B. J. Southgate Biology Department, Pest Infestation Control Laboratory, Ministry of Agriculture, Fisheries, and Food, Slough SL3 7HJ, Berks, England INTRODUCTION Species of Bruchidae breed in every continent except Antarctica. The larg­ est number of species live in the tropical regions of Asia, Africa, and Central and South America. Many species have obvious economic importance because they breed on grain legumes and consume valuable proteins that would otherwise be eaten by man. Other species, however, destroy seeds of an immense number of leguminous trees and shrubs, which, though they have no obvious economic value, stem the advance of the deserts into the marginal cultivated areas of the world. When this ecosystem is mismanaged by practices such as over­ grazing, then any organism that restricts the normal regeneration of seed­ lings will, in the long run, affect agriculture adversely. This has been demonstrated recently in some African and Middle Eastern semiarid zones (65). The present interest in the management of arid areas and in the introduc­ Annu. Rev. Entomol. 1979.24:449-473. Downloaded from www.annualreviews.org Access provided by Copyright Clearance Center on 11/01/20. For personal use only. tion of alternative tree species to provide timber, fodder, or shade has stimulated a detailed study of the ecology of some leguminous trees and shrubs that has revealed some deleterious effects of bruchid beetles on the seeds of these plants (42, 43, 59). It has also emphasized the inadequacy of our knowledge of the taxonomy and biology of these beetles.
    [Show full text]
  • Ludwigia Grandiflora (Large-Flower Primrose-Willow) ERSS
    Large-flower Primrose-willow (Ludwigia grandiflora) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, May 2012 Revised, March 2018 Web Version, 2/1/2019 Photo: O. Pichard. Licensed under Creative Commons (CC-BY-SA-3.0). Available: https://commons.wikimedia.org/wiki/File:Ludwigia_grandiflora_saint-mathurin-sur- loire_49_10082007_4.JPG. (March 2018). 1 Native Range and Status in the United States Native Range From CABI (2018): “L. grandiflora is native to the Americas, ranging from the Rio La Plata in Argentina north to the south/southeastern USA. In the USA, its range is primarily along the Atlantic coast and through the Gulf Coastal Plain (southeastern New York through Florida, westward to Texas) (McGregor et al., 1996).” From NatureServe Explorer (2018): “Global range includes two disjunct areas, one in southern Brazil, Bolivia, northeastern Argentina, Uruguay, and Paraguay (also locally in Guatemala), and the second (with relevance here) in the southeastern United States coastal plains of southern South Carolina, Georgia, northern Florida, and Louisiana, west to central Texas; and once in southwest Missouri (Zardini et al., 1991; Crow and Hellquist, 2000a).” “There is some uncertainty over the native range of Ludwigia grandiflora.” The USDA Natural Resources Conservation Service (2018) website reports all occurrences in the contiguous United States are introductions. Status in the United States From NatureServe Explorer (2018): “This species has expanded rapidly in the past in the United States beyond its original early invasion into the Pacific Northwest and the American southeast. It is now found in more than 20 states with recent expansion continuing, though not as rapidly because a significant portion of its potential range has already been filled.
    [Show full text]
  • Folivory and Disease Occurrence on Ludwigia Hexapetala in Guntersville Reservoir, Alabama
    J. Aquat. Plant Manage. 55: 19–25 Folivory and disease occurrence on Ludwigia hexapetala in Guntersville Reservoir, Alabama NATHAN E. HARMS, JUDY F. SHEARER, AND MICHAEL J. GRODOWITZ* ABSTRACT southeastern United States, with disjunct populations in California and Oregon (Grewell et al. 2016). Invasive We report leaf feeding, disease occurrence, and associ- populations also exist outside the United States in France, ated indigenous herbivore/fungal pathogen communities Belgium, Italy, Spain, Greece, the United Kingdom, and The on the introduced wetland species Ludwigia hexapetala at Netherlands (Dandelot et al. 2005, Thouvenot et al. 2013). Guntersville Reservoir, AL. Plant populations were sam- Closely related Ludwigia are difficult to distinguish mor- pled on three dates from May to September 2014. A phologically, and conflicting diagnostic characters have complex of indigenous herbivore and fungal taxa, mostly been presented by various authors (Nesom and Kartesz known from other Ludwigia spp., resulted in peak feeding 2000). Ludwigia hexapetala is decaploid (2n ¼ 80; Zardini et al. and disease occurrence on 88% and 92% of sampled 1991), a characteristic that may contribute to relative leaves, respectively. Herbivore damage declined over the invasiveness over other Ludwigia spp. (Pandit et al. 2011, growing season from 78 to 21% of sampled leaves, and Grewell et al. 2016). disease symptom occurrence increased from 0 to 80%. Management of L. hexapetala in the United States is a Total leaf damage (percent leaf area) from both herbivory concern as the number and distribution of infestations and disease was determined by software image analyses of increase. Ludwigia hexapetala causes economic damage floating and aerial leaves and reached 14% total reduction through disruption of flood control, irrigation water in photosynthetic tissues by September 2014.
    [Show full text]
  • Host Plant Resistance: Concept and Significance
    HOST PLANT RESISTANCE: CONCEPT AND SIGNIFICANCE Dr. Muhammad Salim M.Sc. (Hons.)PPR(UAE); M.Sc. ENT (UPLB/IRRI, Philippines & Ph.D. ENT (UPLB/IRRI, Philippines Ex-CSO/ Sr. Director, Plant Sciences Division (PARC) Islamabad HIGHER EDUCATION COMMISSION ISLAMABAD 1 CONTENTS ABOUT THE AUTHOR……………………………………………………………...…..i FOREWORD…………………………………………………………………..……...…iii PREFACE………………………………………………………….............................vii CHAPTER-1 INTRODUCTION.……….………………………………………...…….1 1.1. PLANT –INSECT INTERACTIONS CONCEPT…… ……………………...1 1.1.1. Defence Strategies of Plants………………………………………..1 1.1.2. Insect Strategies to Counter Plant Defence……………………….2 1.2. HISTORY OF HOST PLANT RESISTANCE DEVELOPMENT…………..4 1.3. DEFINITIONS…………………………………………………………….……7 1.4. FUNCTIONAL CATEGORIES………………………………………………..8 1.5. ADVANTAGES…………………………………………………………………9 1.6. LIMITATIONS…………………………………………………………………10 1.7. HOST PLANT RESISTANCE PROGRAMME IMPLEMENTATION…....12 1.7.1. Scientific Manpower………………………………………………..12 1.7.2. Scientific Knowledge……………………………………………….12 1.7.3. Availability of Insect Culture……………………………………….12 1.7.4. Genetic Resources………………………………………………....13 1.7.5. Genetic Aspects of Resistance…………………………………...13 1.7.6. Selection of Breeding Methods……………………………………13 1.8. REFERENCES……………………………………………………………….14 CHAPTER-2 MECHANISM OF HOST PLANT RESISTANCE ………………....25 2.1. ECOLOGICAL RESISTANCE………………………………………………25 2.1.1. Host Evasion/Escape/ Phenological Asynchrony……………….25 2.1.2. Induced Resistance………………………………………….……..27 2 2.2. EVOLUTIONARY RESISTANCE…………………………………………..28 2.2.1. Sympatric Resistance………………………………………….…..28 2.2.2. Allopatric Resistance……………………………………………....28 2.3. TROPHIC LEVEL RESISTANCE…………………………………………..29 2.3.1. Intrinsic Resistance………………………………………………...29 2.3.2. Extrinsic Resistance………………………………………………..29 2.4. MECHANISM BASED ON INHERITANCE OF RESISTANCE………….30 2.5. MECHANISM BASED ON CROP STAGE………………………..……….30 2.6. MECHANISM BASED ON SCREENING CONDITIONS………………...30 2.7. MECHANISM BASED ON BIOTYPE REACTION………………………..31 2.8. MECHANISM BASED ON POPULATION………………………..……….33 2.9.
    [Show full text]
  • Butterflies of North America
    Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS
    [Show full text]
  • Insect Interactions in a Biological Control Context Using Water Hyacinth
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) “Is more, less?” Insect – insect interactions in a biological control context using water hyacinth as a model A thesis submitted in fulfillment of the requirements for the degree of MASTER OF SCIENCE of Rhodes University By Philip Sebastian Richard Weyl December 2011 Abstract Interactions between insects have been shown to be important regulators of population abundances and dynamics as well as drivers of spatial segregation and distribution. These are important aspects of the ecology of insects used in biological control and may have implications for the overall success of a particular programme. In the history of biological control there has been a tendency to release a suite of agents against a weed, which in some cases has increased the level of success, while in others little change has been observed. In most of these cases the implications of increasing the level of complexity of the system is not taken into account and there is little research on the effect of releasing another agent into the system. A brief meta-analysis was done on all the biological control programmes initiated in South Africa. Emphasis was placed on multi-species releases and the effects that overlapping niches were having on the number of agents responsible for the success of a programme. Where overlapping niches were present among agents released the number of agents responsible for success was lower than the number established. Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach in South Africa has more arthropod agents released against it than anywhere else in the world, yet control has been variable.
    [Show full text]
  • Field Guidecontrol of Weeds
    US Department of Agriculture FOR THE BIOLOGICALFIELD GUIDECONTROL OF WEEDS IN THE NORTHWEST Rachel Winston, Carol Bell Randall, Rosemarie De Clerck-Floate, Alec McClay, Jennifer Andreas and Mark Schwarzländer Forest Health Technology FHTET-2014-08 Enterprise Team May 2014 he Forest Health Technology Enterprise Team (FHTET) was created in T1995 by the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photos: Aphthona nigriscutis (R. Richard, USDA APHIS), Mecinus spp. (Bob Richard, USDA APHIS PPQ), Chrysolina hypericic quadrigemina, Eustenopus villosus (Laura Parsons & Mark Schwarzländer, University of Idaho), Cyphocleonus achates (Jennifer Andreas, Washington State University Extension) The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326- W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader.
    [Show full text]
  • General News
    Biocontrol News and Information 27(1), 1N–26N pestscience.com General News The Dilemma of Prosopis: Is There a Rose The last article, from South Africa, evaluates the Between the Thorns? status of Prosopis in that country and the conflicts of interest it has created. It addresses many of the The genus Prosopis contains species with outstand- questions raised in the articles above, discussing ingly useful qualities: they grow in arid and semi- from South Africa’s position of experience the limita- arid zones and give high yields where little else will tions of and possibilities for both utilization and grow. They produce high-quality wood for fuel and control, including biological control – also consid- timber, seeds with varied uses as human and animal ering in this context its obligations as part of the food, and other non-wood products. Species from the African continental community. New World have been introduced into Africa, Asia and Australia over the last 200 years. In some coun- These articles are followed by a tribute to Daniel tries, however, introduced Prosopis has become a Gandolfo, who died in January 2006. He worked on highly invasive weed, covering large tracts of land many weed projects for different cooperators, but his with impenetrable thorny thickets and rendering it inputs into Prosopis biocontrol research will be with unusable. It can even be invasive in its area of origin us forever as a result of the fact that David Kissinger in the New World. As affected countries devote named the seed-feeding weevil on which Daniel worked (see South African article, below) Coelo- increasing amounts of time and money to controlling cephalapion gandolfoi.
    [Show full text]
  • Viewed My Progress Throughout This Study
    INFORMATION TO USERS This reproduction was made from a copy o f a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “ target” for pages apparently lacking from the document photographed is “ Missing Pagets)” . If it was possible to obtain the missing page(s) or section, they are spliced in to the film along w ith adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete co ntin u ity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “ sectioning” the material has been followed. It is customary to begin film in g at the upper left hand corner o f a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again -beginning below the first row and continuing on until complete.
    [Show full text]