Mathematical Theorems

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Theorems Appendix A Mathematical Theorems The mathematical theorems needed in order to derive the governing model equations are defined in this appendix. A.1 Transport Theorem for a Single Phase Region The transport theorem is employed deriving the conservation equations in continuum mechanics. The mathematical statement is sometimes attributed to, or named in honor of, the German Mathematician Gottfried Wilhelm Leibnitz (1646–1716) and the British fluid dynamics engineer Osborne Reynolds (1842–1912) due to their work and con- tributions related to the theorem. Hence it follows that the transport theorem, or alternate forms of the theorem, may be named the Leibnitz theorem in mathematics and Reynolds transport theorem in mechanics. In a customary interpretation the Reynolds transport theorem provides the link between the system and control volume representations, while the Leibnitz’s theorem is a three dimensional version of the integral rule for differentiation of an integral. There are several notations used for the transport theorem and there are numerous forms and corollaries. A.1.1 Leibnitz’s Rule The Leibnitz’s integral rule gives a formula for differentiation of an integral whose limits are functions of the differential variable [7, 8, 22, 23, 45, 55, 79, 94, 99]. The formula is also known as differentiation under the integral sign. H. A. Jakobsen, Chemical Reactor Modeling, DOI: 10.1007/978-3-319-05092-8, 1361 © Springer International Publishing Switzerland 2014 1362 Appendix A: Mathematical Theorems b(t) b(t) d ∂f (t, x) db da f (t, x) dx = dx + f (t, b) − f (t, a) (A.1) dt ∂t dt dt a(t) a(t) The first term on the RHS gives the change in the integral because the function itself is changing with time, the second term accounts for the gain in area as the upper limit is moved in the positive axis direction, and the third term accounts for the loss in area as the lower limit is moved. The formal derivation of the Leibnitz’s rule can be found elsewhere [8, 45]. A.1.2 Leibnitz Theorem A three dimensional extension of the Leibnitz rule for differentiating an integral is relevant for the derivation of the governing transport equations.1 In the material (Lagrangian) representation of continuum mechanics a represen- tative particle of the continuum occupies a point in the initial configuration of the continuum at time t = 0 and has the position vector ξ = (ξ1, ξ2, ξ3).Inthisξ-space the coordinates are called the material coordinates. In the Eulerian representation the particle position vector in r-space is defined by r = (r1, r2, r3). The coordinates r1, r2, r3 which gives the current position of the particle are called the spatial coordi- nates. Let ψ(r, t) be any scalar, vector or tensor function of time and position and V(t) a material volume. We may then define a variable Ψ(t) as the volume integral [2]: Ψ(t) = (ρψ) dv (A.2) V(t) It is desired to find an expression for differentiating the integral Ψ(t) with time: DΨ(t) D = (ρψ)(r, t) dv (A.3) Dt Dt V(t) The integral is over the material volume V(t) that is a function of t, hence we cannot take the differentiation through the integration sign. However, if the integration were with respect to a volume in the material ξ- coordinates it would be possible to interchange the differentiation and integration, since D/Dt is defined as differentiation with respect to time keeping ξ constant. A transformation of the volume from r-space to ξ-space allows us to do the desired 1 The theory has been outlined by Truesdell and Toupin [98] (p. 347), Aris [2] (p. 84), Malvern [62] (p. 210), Slattery [87] (p. 17), Slattery [89] (p. 21), Bird et al. [7] (p. 732), Fan and Zhu [40] (p. 167), Kundu [55] (p. 75), Delhaye and Achard [22] (p. 9), Delhaye [23] (p. 42), Bouré and Delhaye [12] (pp. 1–37), Whitaker [99], Donea and Huerta [27] (Sects.1.3–1.4), Donea et al. [28], and Collado [20]. Appendix A: Mathematical Theorems 1363 operation. The position vector in r-space, r = (r1, r2, r3), is transformed as r = r(ξ, t) in ξ-space. If the coordinate system is changed from r-space to ξ-space, the volume element changes according to: ∂(r1, r2, r3) dv = dξ1dξ2ξ3 = Jdv0 (A.4) ∂(ξ1, ξ2, ξ3) in which dξ1dξ2ξ3 denotes the material volume dv0 about a given point ξ at the initial instant. The Jacobian determinant of transformation between the material and fixed coor- dinate systems, is defined by: ∂(r , r , r ) dv J = 1 2 3 = (A.5) ∂(ξ1, ξ2, ξ3) dv0 The quantity J may be thought of as the ratio of an elementary material volume to its initial volume. The differentiation of the integral Ψ(t) with respect to time can then be proven: DΨ D D = (ρψ)(r, t) dv = (ρψ)(r(ξ, t), t) Jdv0 Dt Dt Dt V0 V(t) D(ρψ) DJ = J + (ρψ) dv Dt Dt 0 V0 D(ρψ) = + (ρψ)(∇·v) Jdv Dt 0 (A.6) V0 D(ρψ) = + (ρψ)(∇·v) dv Dt V(t) ∂(ρψ) = +∇·((ρψ)v) dv ∂t V(t) in which we have adopted, without proof, the following Lemma2: DJ = J(∇·v) (A.7) Dt Applying the divergence theorem (A.19) to the second integral on the RHS of (A.6) we get a particular three dimensional form of the Leibnitz theorem: DΨ D ∂(ρψ) = (ρψ)(r, t) dv = dv + (ρψ)v · n da (A.8) Dt Dt ∂t V(t) V(t) A(t) 2 The proofs of the transport theorem are given by Slattery [90]. 1364 Appendix A: Mathematical Theorems where A(t) is the surface of V(t), and v represents the velocity of the control surface with respect to the coordinate reference frame. This kinematical transport theorem is due to Reynolds [78]. For this reason it is sometimes referred to as the Reynolds theorem. The given theorem can be extended to a general case considering an arbitrary geo- metric volume with a closed surface moving with an arbitrary velocity vS. Truesdell and Toupin [98] (p. 347) presented the corollary that the above relation remains valid if we replace the derivatives with respect to time while following material particles, D/Dt, by derivatives with respect to time while following fictitious system particles d/dt, and the velocity vector for a material particle v by the velocity vector for a fictitious system particle vS. Let us thus consider a geometric volume VS(t), not necessarily a material volume, which is moving in space and bounded by a closed surface AS(t). At a given point belonging to this surface, n is the unit normal vector outwardly directed. The speed of the displacement of the surface at that point is denoted by vS · n. The generalized Leibnitz theorem enables the time derivative of the volume integral to be transformed into the sum of a volume integral and a surface integral [12, 23, 55]: d ∂(ρψ) (ρψ)(r, t) dv = dv + (ρψ)v · n da (A.9) dt ∂t S VS(t) VS(t) AS(t) in which vS is the velocity of the points on the control volume surface with respect to the coordinate reference frame. Slattery [90] named this mathematical statement the generalized transport theorem. This kinematical transport theorem was asserted, not proven, by Reynolds [78]. Comparing (A.8) and (A.9) we note that to make these relations coincide the total time derivative must be specified equal to the substantial time derivative. In this way the substantial derivative may be considered a special kind of the total time derivative [7, 79], and thus the Reynolds transport theorem is a special kind of the Leibnitz theorem. In the case that the integral boundaries are fixed, the surface integral vanishes because the surface velocity is zero [22, 23, 38, 55]: d ∂f fdv = dv (A.10) dt ∂t V V A.1.3 Reynolds Theorem In fluid mechanics the laws governing the fluid motion are expressed using both system concepts in which we consider a given mass of the fluid, and control volume concepts in which we consider a given volume [45, 69, 96, 100]. Basically the Appendix A: Mathematical Theorems 1365 physical laws are defined for a system, thus we need a mathematical link between control volume and system concepts to convert the governing equations to apply to a specific region rather than to individual masses. The Reynolds transport theorem is precisely the analytical tool required to transform the laws from one representation to the other. Let Ψsys(t) be an extensive property of the system at time t, ψ(r, t) is the cor- responding intensive property. If Vsys(t) denotes a system material volume at time t, CV a control volume, and CS the control volume surface, the extensive system property can be defined by: Ψsys(t) = ρψ dv (A.11) Vsys(t) The corresponding extensive control volume property is defined by: ΨCV (t) = ρψ dv (A.12) CV The system is defined by the fluid mass within the control volume at the initial time t. The values of the analogous extensive properties of the system and the fluid within control volume are thus equal at this time, Ψsys(t0) = ΨCV (t0). A short time later a portion of the system fluid may have exited from the control volume and some of the surrounding fluid may have entered the control volume. Then we seek to determine how the rate of change of Ψsys within the system is related to the rate of change of ΨCV within the control volume at any instant.
Recommended publications
  • General Relativity Fall 2018 Lecture 10: Integration, Einstein-Hilbert Action
    General Relativity Fall 2018 Lecture 10: Integration, Einstein-Hilbert action Yacine Ali-Ha¨ımoud (Dated: October 3, 2018) σ σ HW comment: T µν antisym in µν does NOT imply that Tµν is antisym in µν. Volume element { Consider a LICS with primed coordinates. The 4-volume element is dV = d4x0 = 0 0 0 0 dx0 dx1 dx2 dx3 . If we change coordinates, we have 0 ! @xµ d4x0 = det d4x: (1) µ @x Now, the metric components change as 0 0 0 0 @xµ @xν @xµ @xν g = g 0 0 = η 0 0 ; (2) µν @xµ @xν µ ν @xµ @xν µ ν since the metric components are ηµ0ν0 in the LICS. Seing this as a matrix operation and taking the determinant, we find 0 !2 @xµ det(g ) = − det : (3) µν @xµ Hence, we find that the 4-volume element is q 4 p 4 p 4 dV = − det(gµν )d x ≡ −g d x ≡ jgj d x: (4) The integral of a scalar function f is well defined: given any coordinate system (even if only defined locally): Z Z f dV = f pjgj d4x: (5) We can only define the integral of a scalar function. The integral of a vector or tensor field is mean- ingless in curved spacetime. Think of the integral as a sum. To sum vectors, you need them to belong to the same vector space. There is no common vector space in curved spacetime. Only in flat spacetime can we define such integrals. First parallel-transport the vector field to a single point of spacetime (it doesn't matter which one).
    [Show full text]
  • On the Spectrum of Volume Integral Operators in Acoustic Scattering M Costabel
    On the Spectrum of Volume Integral Operators in Acoustic Scattering M Costabel To cite this version: M Costabel. On the Spectrum of Volume Integral Operators in Acoustic Scattering. C. Constanda, A. Kirsch. Integral Methods in Science and Engineering, Birkhäuser, pp.119-127, 2015, 978-3-319- 16726-8. 10.1007/978-3-319-16727-5_11. hal-01098834v2 HAL Id: hal-01098834 https://hal.archives-ouvertes.fr/hal-01098834v2 Submitted on 20 Apr 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 On the Spectrum of Volume Integral Operators in Acoustic Scattering M. Costabel IRMAR, Université de Rennes 1, France; [email protected] 1.1 Volume Integral Equations in Acoustic Scattering Volume integral equations have been used as a theoretical tool in scattering theory for a long time. A classical application is an existence proof for the scattering problem based on the theory of Fredholm integral equations. This approach is described for acoustic and electromagnetic scattering in the books by Colton and Kress [CoKr83, CoKr98] where volume integral equations ap- pear under the name “Lippmann-Schwinger equations”. In electromagnetic scattering by penetrable objects, the volume integral equation (VIE) method has also been used for numerical computations.
    [Show full text]
  • Vector Calculus and Multiple Integrals Rob Fender, HT 2018
    Vector Calculus and Multiple Integrals Rob Fender, HT 2018 COURSE SYNOPSIS, RECOMMENDED BOOKS Course syllabus (on which exams are based): Double integrals and their evaluation by repeated integration in Cartesian, plane polar and other specified coordinate systems. Jacobians. Line, surface and volume integrals, evaluation by change of variables (Cartesian, plane polar, spherical polar coordinates and cylindrical coordinates only unless the transformation to be used is specified). Integrals around closed curves and exact differentials. Scalar and vector fields. The operations of grad, div and curl and understanding and use of identities involving these. The statements of the theorems of Gauss and Stokes with simple applications. Conservative fields. Recommended Books: Mathematical Methods for Physics and Engineering (Riley, Hobson and Bence) This book is lazily referred to as “Riley” throughout these notes (sorry, Drs H and B) You will all have this book, and it covers all of the maths of this course. However it is rather terse at times and you will benefit from looking at one or both of these: Introduction to Electrodynamics (Griffiths) You will buy this next year if you haven’t already, and the chapter on vector calculus is very clear Div grad curl and all that (Schey) A nice discussion of the subject, although topics are ordered differently to most courses NB: the latest version of this book uses the opposite convention to polar coordinates to this course (and indeed most of physics), but older versions can often be found in libraries 1 Week One A review of vectors, rotation of coordinate systems, vector vs scalar fields, integrals in more than one variable, first steps in vector differentiation, the Frenet-Serret coordinate system Lecture 1 Vectors A vector has direction and magnitude and is written in these notes in bold e.g.
    [Show full text]
  • An Introduction to Fluid Mechanics: Supplemental Web Appendices
    An Introduction to Fluid Mechanics: Supplemental Web Appendices Faith A. Morrison Professor of Chemical Engineering Michigan Technological University November 5, 2013 2 c 2013 Faith A. Morrison, all rights reserved. Appendix C Supplemental Mathematics Appendix C.1 Multidimensional Derivatives In section 1.3.1.1 we reviewed the basics of the derivative of single-variable functions. The same concepts may be applied to multivariable functions, leading to the definition of the partial derivative. Consider the multivariable function f(x, y). An example of such a function would be elevations above sea level of a geographic region or the concentration of a chemical on a flat surface. To quantify how this function changes with position, we consider two nearby points, f(x, y) and f(x + ∆x, y + ∆y) (Figure C.1). We will also refer to these two points as f x,y (f evaluated at the point (x, y)) and f . | |x+∆x,y+∆y In a two-dimensional function, the “rate of change” is a more complex concept than in a one-dimensional function. For a one-dimensional function, the rate of change of the function f with respect to the variable x was identified with the change in f divided by the change in x, quantified in the derivative, df/dx (see Figure 1.26). For a two-dimensional function, when speaking of the rate of change, we must also specify the direction in which we are interested. For example, if the function we are considering is elevation and we are standing near the edge of a cliff, the rate of change of the elevation in the direction over the cliff is steep, while the rate of change of the elevation in the opposite direction is much more gradual.
    [Show full text]
  • Lecture 33 Classical Integration Theorems in the Plane
    Lecture 33 Classical Integration Theorems in the Plane In this section, we present two very important results on integration over closed curves in the plane, namely, Green’s Theorem and the Divergence Theorem, as a prelude to their important counterparts in R3 involving surface integrals. Green’s Theorem in the Plane (Relevant section from Stewart, Calculus, Early Transcendentals, Sixth Edition: 16.4) 2 1 Let F(x,y) = F1(x,y) i + F2(x,y) j be a vector field in R . Let C be a simple closed (piecewise C ) curve in R2 that encloses a simply connected (i.e., “no holes”) region D ⊂ R. Also assume that the ∂F ∂F partial derivatives 2 and 1 exist at all points (x,y) ∈ D. Then, ∂x ∂y ∂F ∂F F · dr = 2 − 1 dA, (1) IC Z ZD ∂x ∂y where the line integration is performed over C in a counterclockwise direction, with D lying to the left of the path. Note: 1. The integral on the left is a line integral – the circulation of the vector field F over the closed curve C. 2. The integral on the right is a double integral over the region D enclosed by C. Special case: If ∂F ∂F 2 = 1 , (2) ∂x ∂y for all points (x,y) ∈ D, then the integrand in the double integral of Eq. (1) is zero, implying that the circulation integral F · dr is zero. IC We’ve seen this situation before: Recall that the above equality condition for the partial derivatives is the condition for F to be conservative.
    [Show full text]
  • Math 132 Exam 1 Solutions
    Math 132, Exam 1, Fall 2017 Solutions You may have a single 3x5 notecard (two-sided) with any notes you like. Otherwise you should have only your pencils/pens and eraser. No calculators are allowed. No consultation with any other person or source of information (physical or electronic) is allowed during the exam. All electronic devices should be turned off. Part I of the exam contains questions 1-14 (multiple choice questions, 5 points each) and true/false questions 15-19 (1 point each). Your answers in Part I should be recorded on the “scantron” card that is provided. If you need to make a change on your answer card, be sure your original answer is completely erased. If your card is damaged, ask one of the proctors for a replacement card. Only the answers marked on the card will be scored. Part II has 3 “written response” questions worth a total of 25 points. Your answers should be written on the pages of the exam booklet. Please write clearly so the grader can read them. When a calculation or explanation is required, your work should include enough detail to make clear how you arrived at your answer. A correct numeric answer with sufficient supporting work may not receive full credit. Part I 1. Suppose that If and , what is ? A) B) C) D) E) F) G) H) I) J) so So and therefore 2. What are all the value(s) of that make the following equation true? A) B) C) D) E) F) G) H) I) J) all values of make the equation true For any , 3.
    [Show full text]
  • Introduction to Theoretical Methods Example
    Differentiation of integrals and Leibniz rule • We are interested in solving problems of the type d Z v(x) f (x; t)dt dx u(x) • Notice in addition to the limits depending on x, the function f (x; t) also depends on x • First lets take the case where the limits are constants (u(x) = b and v(x) = a) • In most instances we can take the derivative inside the integral (as a partial derivative) d Z b Z b @f (x; t) f (x; t)dt = dt dx a a @x Patrick K. Schelling Introduction to Theoretical Methods Example R 1 n −kt2 • Find 0 t e dt for n odd • First solve for n = 1, 1 Z 2 I = te−kt dt 0 • Use u = kt2 and du = 2ktdt, so 1 1 Z 2 1 Z 1 I = te−kt dt = e−udu = 0 2k 0 2k dI R 1 3 −kt2 1 • Next notice dk = 0 −t e dt = − 2k2 • We can take successive derivatives with respect to k, so we find Z 1 2n+1 −kt2 n! t e dt = n+1 0 2k Patrick K. Schelling Introduction to Theoretical Methods Another example... the even n case R 1 n −kt2 • The even n case can be done of 0 t e dt • Take for I in this case (writing in terms of x instead of t) 1 Z 2 I = e−kx dx −∞ • We can write for I 2, 1 1 Z Z 2 2 I 2 = e−k(x +y )dxdy −∞ −∞ • Make a change of variables to polar coordinates, x = r cos θ, y = r sin θ, and x2 + y 2 = r 2 • The dxdy in the integrand becomes rdrdθ (we will explore this more carefully in the next chapter) Patrick K.
    [Show full text]
  • Chapter 3: Mathematics of the Poisson Equations
    3 Mathematics of the Poisson Equation 3.1 Green functions and the Poisson equation (a) The Dirichlet Green function satisfies the Poisson equation with delta-function charge 2 3 − r GD(r; ro) = δ (r − ro) (3.1) and vanishes on the boundary. It is the potential at r due to a point charge (with unit charge) at ro in the presence of grounded (Φ = 0) boundaries The simplest free space green function is just the point charge solution 1 Go = (3.2) 4πjr − roj In two dimensions the Green function is −1 G = log jr − r j (3.3) o 2π o which is the potential from a line of charge with charge density λ = 1 (b) With Dirichlet boundary conditions the Laplacian operator is self-adjoint. The dirichlet Green function is symmetric GD(r; r0) = GD(r0; r). This is known as the Green Reciprocity Theorem, and appears in many clever ways. The intuitive way to understand this is that for grounded boundary b.c. −∇2 is a real self adjoint 2 3 operator (i.e. a real symmetric matrix). Now −∇ GD(r; r0) = δ (r − r0), so in a functional sense 2 GD(r; r0) is the inverse matrix of −∇ . The inverse of a real symmetric matrix is also real and sym- metric. If the Laplace equation with Dirichlet b.c. is discretized for numerical work, these statements become explicitly rigorous. (c) The Poisson equation or the boundary value problem of the Laplace equation can be solved once the Dirichlet Green function is known. Z Z 3 Φ(r) = d xo GD(r; ro)ρ(ro) − dSo no · rro GD(r; ro)Φ(ro) (3.4) V @V where no is the outward directed normal.
    [Show full text]
  • Applications of the Hodge Decomposition to Biological Structure and Function Modeling
    Applications of the Hodge Decomposition to Biological Structure and Function Modeling Andrew Gillette joint work with Chandrajit Bajaj and John Luecke Department of Mathematics, Institute of Computational Engineering and Sciences University of Texas at Austin, Austin, Texas 78712, USA http://www.math.utexas.edu/users/agillette university-logo Computational Visualization Center , I C E S ( DepartmentThe University of Mathematics, of Texas atInstitute Austin of Computational EngineeringDec2008 and Sciences 1/32 University Introduction Molecular dynamics are governed by electrostatic forces of attraction and repulsion. These forces are described as the solutions of a PDE over the molecular surfaces. Molecular surfaces may have complicated topological features affecting the solution. The Hodge Decomposition relates topological properties of the surface to solution spaces of PDEs over the surface. ∼ (space of forms) = (solutions to ∆u = f 6≡ 0) ⊕ (non-trivial deRham classes)university-logo Computational Visualization Center , I C E S ( DepartmentThe University of Mathematics, of Texas atInstitute Austin of Computational EngineeringDec2008 and Sciences 2/32 University Outline 1 The Hodge Decomposition for smooth differential forms 2 The Hodge Decomposition for discrete differential forms 3 Applications of the Hodge Decomposition to biological modeling university-logo Computational Visualization Center , I C E S ( DepartmentThe University of Mathematics, of Texas atInstitute Austin of Computational EngineeringDec2008 and Sciences 3/32 University Outline 1 The Hodge Decomposition for smooth differential forms 2 The Hodge Decomposition for discrete differential forms 3 Applications of the Hodge Decomposition to biological modeling university-logo Computational Visualization Center , I C E S ( DepartmentThe University of Mathematics, of Texas atInstitute Austin of Computational EngineeringDec2008 and Sciences 4/32 University Differential Forms Let Ω denote a smooth n-manifold and Tx (Ω) the tangent space of Ω at x.
    [Show full text]
  • 5.5 Volumes: Tubes 435
    5.5 volumes: tubes 435 5.5 Volumes: Tubes In Section 5.2, we devised the “disk” method to find the volume swept out when a region is revolved about a line. To find the volume swept out when revolving a region about the x-axis (see margin), we made cuts perpendicular to the x-axis so that each slice was (approximately) a “disk” with volume p (radius)2 · (thickness). Adding the volumes of these slices together yielded a Riemann sum. Taking a limit as the thicknesses of the slices approached 0, we obtained a definite integral representation for the exact volume that had the form: Z b p [ f (x)]2 dx a The disk method, while useful in many circumstances, can be cumber- some if we want to find the volume when a region defined by a curve of the form y = f (x) is revolved about the y-axis or some other vertical Refer to Examples 6(b) and 6(c) from Sec- line. To revolve the region about the y-axis, the disk method requires tion 5.2 to refresh your memory. that we rewrite the original equation y = f (x) as x = g(y). Sometimes y this is easy: if y = 3x then x = 3 . But sometimes it is not easy at all: if y = x + ex, then we cannot solve for x as an elementary function of y. The “Tube” Method Partition the x-axis (as we did in the “disk” method) to cut the region into thin, almost-rectangular vertical “slices.” When we revolve one of these slices about the y-axis (see below), we can approximate the volume of the resulting “tube” by cutting the “wall” of the tube and rolling it out flat: to get a thin, solid rectangular box.
    [Show full text]
  • 2 Grad, Div, Curl
    c F. Waleffe, Math 321, 2006/10/25 15 ! 2 Grad, div, curl Consider a scalar function of a vector variable: f(!r), for instance the pressure p(!r) as a function of position, or the temperature T (!r) at point !r, etc. One way to visualize such functions is to consider isosurfaces or level sets, these are the set of all !r’s for which f(!r) = C0, for some constant C0. In cartesian coordinates !r = x !e + y !ey + z !ez and the scalar function is a function of the three coordinates f(!r) f(x, y, z), hence we can interpret an isosurface f(x, y, z) = C as a single ≡ 0 equation for the 3 unknowns x, y, z. In general, we are free to pick two of those variables, x and y 2 2 2 say, then solve the equation f(x, y, z) = C0 for z. For example, the isosurfaces of f(!r) = x +y +z are determined by the equation f(!r) = C . This is the sphere or radius √C , if C 0. 0 0 0 ≥ 2.1 Geometric definition of the Gradient The value of f(!r) at a point !r0 defines an isosurface f(!r) = f(!r0) through that point !r0. The gradient of f(!r) at !r can be defined geometrically as the vector, denoted ! f(!r ), that 0 ∇ 0 (i) is perpendicular to the isosurface f(!r) = f(!r0) at the point !r0 and points in the direction of increase of f(!r) and (ii) has a magnitude equal to the rate of change of f(!r) with distance from the isosurface.
    [Show full text]
  • Part IA — Vector Calculus
    Part IA | Vector Calculus Based on lectures by B. Allanach Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. 3 Curves in R 3 Parameterised curves and arc length, tangents and normals to curves in R , the radius of curvature. [1] 2 3 Integration in R and R Line integrals. Surface and volume integrals: definitions, examples using Cartesian, cylindrical and spherical coordinates; change of variables. [4] Vector operators Directional derivatives. The gradient of a real-valued function: definition; interpretation as normal to level surfaces; examples including the use of cylindrical, spherical *and general orthogonal curvilinear* coordinates. Divergence, curl and r2 in Cartesian coordinates, examples; formulae for these oper- ators (statement only) in cylindrical, spherical *and general orthogonal curvilinear* coordinates. Solenoidal fields, irrotational fields and conservative fields; scalar potentials. Vector derivative identities. [5] Integration theorems Divergence theorem, Green's theorem, Stokes's theorem, Green's second theorem: statements; informal proofs; examples; application to fluid dynamics, and to electro- magnetism including statement of Maxwell's equations. [5] Laplace's equation 2 3 Laplace's equation in R and R : uniqueness theorem and maximum principle. Solution of Poisson's equation by Gauss's method (for spherical and cylindrical symmetry) and as an integral. [4] 3 Cartesian tensors in R Tensor transformation laws, addition, multiplication, contraction, with emphasis on tensors of second rank. Isotropic second and third rank tensors.
    [Show full text]