Machine learning for streaming data: state of the art, challenges, and opportunities Heitor Murilo Gomes Jesse Read Albert Bifet Department of Computer LIX, Ecole´ Polytechnique Department of Computer Science, University of Waikato Palaiseau, France Science, University of Waikato LTCI, Tel´ ecom´ ParisTech jesse.read@ LTCI, Tel´ ecom´ ParisTech Hamilton, New Zealand polytechnique.edu Hamilton, New Zealand
[email protected] [email protected] Jean Paul Barddal Joao˜ Gama PPGIA, Pontifical Catholic LIAAD, INESC TEC University of Parana University of Porto Curitiba, Brazil Porto, Portugal jean.barddal@
[email protected] ppgia.pucpr.br ABSTRACT eral works on supervised learning [19], especially classifica- tion, mostly focused on addressing the problem of changes Incremental learning, online learning, and data stream learn- to the underlying data distribution over time, i.e., concept ing are terms commonly associated with learning algorithms drifts [119]. In general, these works focus on one specific that update their models given a continuous influx of data challenge: develop methods that maintain an accurate de- without performing multiple passes over data. Several works cision model with the ability to learn and forget concepts have been devoted to this area, either directly or indirectly incrementally. as characteristics of big data processing, i.e., Velocity and Volume. Given the current industry needs, there are many The focus given to supervised learning has shifted towards challenges to be addressed before existing methods can be ef- other tasks in the past few years, mostly to accommodate ficiently applied to real-world problems. In this work, we fo- more general requirements of real-world problems.