Repair of DNA Containing Small Heterologous Sequences by Escherichia Coli: a Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Repair of DNA Containing Small Heterologous Sequences by Escherichia Coli: a Dissertation University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 1991-11-01 Repair of DNA Containing Small Heterologous Sequences by Escherichia Coli: a Dissertation Breck Olland Parker University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Bacteria Commons, and the Genetic Phenomena Commons Repository Citation Parker BO. (1991). Repair of DNA Containing Small Heterologous Sequences by Escherichia Coli: a Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/9f9m-8d07. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/123 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Repair of DNA Containing Small Heterologous Sequences by Escherichia coli. A Dissertation Presented Breck Olland Parker Submitted to the Faculty of the Graduate School of Biomedical Sciences at the University of Massachusetts Medcal School in parial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN MEDICAL SCIENCES PHARMACOLOGY November 1991 Repair of DNA Containing Small Heterologous Sequences by Escherichia coli. A Dissertation By Breck Olland Parker Approved as to style and content by: Larry W. Hardy Chairman of Committee Eric von Hofe Member of Committee Michael R. Volkert Member of Committee Kendall L. Knight Member of Committee Bruce F. Demple Member of Committee Martin G. Marinus Thesis Advisor Thomas B. Miller, Jr. Dean of the Graduate School of Biomedical Sciences Department of Pharmacology November 1991 ii ACKNOWLEDGEMENTS I want to extend my sincere grtitude to my thesis advisor, Marn Marnus, for guiding me through the rigors of gr duate school. I'm especially grateful for his patience and encouragement when times were rough, and for sharng in my excitement and enthu- siasm when things went well. His guidance and frendship over the last five years is greatly appreciated. I am also very grateful to the members of my thesis advisory commttee: Mike Vol- kert, Bob Lahue and Lar Hardy, for their constat encouragement, invaluable advice and infectious enthusiasm for science. Thans Lar, for always providing that different point of view, for always asking the one question that keeps me humble, and for makng me work harder for fear that you ll continue to ask such questions. I extend my gratitude to Neal Brown and the rest of the Pharacology deparment faculty for their support and guidance over the last five years. A special thanks to our deparmental statistician, Bob Lew, for those early morning and weekend philosophical interludes while waiting for the coffee to brew. Finally, my deepest gratitude goes to my famiy. Their steadfast support and encouragement have helped to make this achievement possible. I especially want to than my wife, Linda, who has been my parer in everything over the last seven years, for her love, support and patience, my son, Andrew, who has been a constant source of inspiration and motivation, and my Mom and Dad, who have been a stabilzing influence throughout my life and have always supportd and encouraged me regardless of what I chose to do. S. Thans Fran, for constantly reminding me that there is life outside of science, i.e. Walter s opprobrious legend. Thans for the Bud. For his love of life, love of famly and love of God, I dedcate this thesis to Roland C. Hallen. (Aug. 16, 1907 to July 1 , 1983) Prostate Cancer REPAIR OF DNA CONTAINING SMALL HETEROLOGOUS SEQUENCES BY Escherichia coli. November 1991 Breck Olland Parker B.S., . University of Massachusetts, Amherst Ph.D., Graduate School of Biomedical Sciences at the University of Massachusetts Medcal School Directed by Marn G. Marnus ABSTRACT The Dam-dependent mismatch repai system of Escherichia coli is par of a large network of DNA sureilance and error avoidance systems that identify and repai DNA damage. In this thesis, I have investigated the Dam-dependent mismatch repai system of E. coli and its role in the recognition and repai of DNA substrte molecules containing small inserton/deletion heterologies. This investigation was divided into two pars: the first par utilzed genetic techniques to evaluate the specifcity of repai and the second par utilized biochemical approaches into the recognition of inserton/deletion heterolo- gies. I have developed a sensitive in vivo transformation system to rapidly evaluate the repai of small inserton/deletion heterologies by Dam-dependent mismatch repai. Het- eroduplexes were constrcted, for each state of methylation of d(GA TC) sequences, by anealing single strand DNA to the linearzed complementa strand of duplex DNA. The unmethylated single strand DNA was isolated from f1 phage (R408) propagated on a strain of E. coli contaning the dam- 16 alele (Chapter 2) to eliminate the possibilty of residual Dam-methylation of d(GA TC) sequences. Tranformation of E. coli indicator strains with heteroduplexes containing 1 4 and 5 base inserton/deletion heterolo- gies were scored for repair based on colony color. The results of these experiments show that the Dam-dependent mismatch repai system can recognize and repai 1, 2 and 3 base heterologies as well as repaing Gff mispais (Chapters 3 and 4). The repai of 4 base heterologies was marginal, while no repai was observed with 5 base heterologies (Chap- ters 3 and 4). Repai of the 1 3 and 4 base heterologies proceeded in a Dam- dependent process that required the gene products of mutL, mutS, and I have demonstrated that MutS protein from both Salmonella typhimurium and coli can recognize and bind in vitro to the same 1, 3 and 4 base heterologies used for the genetic studies above (Chapters 4 and 5). In fact, MutS protein binds to 1, 2 and 3 base heterologies with greater affinity than it binds to a Grr mismatch. The in vitro observation that MutS does not bind to 5 base heterologies is consistent with the in vivo observation that 5 base heterologies are not subject to repair. I have also shown that MutS protein specifically binds to 1, 2 and 3 base heterologies since MutS protects about 25 base pais of DNA flanng the site of the heterology from DNaseI digestion. The results of the genetic and biochemical experients describe in this thesis (and summarzed above) serve to re-emphasize the importance of the role that methyl-diected mismatch repai plays in mutation avoidance, and hence in the preservation of genetic integrty. """"""""""" ...... .......... .................... .............................................. .......................... ............ .......... .......................... ............................... ...........,... TABLE OF CONTENTS Title Page....... ................................................ .......... Signature Page................................... ........ .............. Acknowledgements....................................... .................................,............................. iii Dedication..................................................................................................................... iv Abstract... Table of Contents......... .............................................................. .......... ......................... vii List of Tables...... .................................................................. .........................."............ List of Figues................................................................... ............................................ Xlll CHAPTER 1: Introduction.......... .............. .............. .............................................. A. The conservation of genetic informtion........................................................... 2 Systems involved in repaing DNA as a result of endogenous damage........... Systems that protect against environmenta and chemical insult...................... Initial misincorporation of deoxynucleotides is dependent on base.................. selection by DNA polymerase il holoenzyme and the gene product of mutT. The 3' -5' exonuc1eolytic proofreading function of DNA polymerase II.......... 7 Dam-dependent mismatch repai corrects errors after passage of the................ 9 replication fork. B. d(GA TC) Sequences and Dam-dependent Mismatch Repair............................. DNA adenine methyltransferase (Dam) is encoded by the dam gene................ 11 vii Dam-methylation of adenine in d(GATC) sequences diects the....................... strandedess of repai. Dam-dependent mismatch correction requires at least one d(GA TC)............... site for efficient correction of a mismatch. C. Specificity of Dam-dependent Mismatch Repai............................................. Trasition mispais are corrected more efficiently than transversion............... mispais. Repai of small frame shift mutations................................................................ D. The Biochemistr of Dam-dependent Mismatch Repair.................................. Isolation and characterization of MutS.............................................................. 21 Isolation and characterization of MutH............................................................. Isolation and characterization of MutL.............................................................. Components of excision
Recommended publications
  • The Counsyl Foresight™ Carrier Screen
    The Counsyl Foresight™ Carrier Screen 180 Kimball Way | South San Francisco, CA 94080 www.counsyl.com | [email protected] | (888) COUNSYL The Counsyl Foresight Carrier Screen - Disease Reference Book 11-beta-hydroxylase-deficient Congenital Adrenal Hyperplasia .................................................................................................................................................................................... 8 21-hydroxylase-deficient Congenital Adrenal Hyperplasia ...........................................................................................................................................................................................10 6-pyruvoyl-tetrahydropterin Synthase Deficiency ..........................................................................................................................................................................................................12 ABCC8-related Hyperinsulinism........................................................................................................................................................................................................................................ 14 Adenosine Deaminase Deficiency .................................................................................................................................................................................................................................... 16 Alpha Thalassemia.............................................................................................................................................................................................................................................................
    [Show full text]
  • Oral Ambroxol Increases Brain Glucocerebrosidase Activity in a Nonhuman Primate
    Received: 17 November 2016 | Revised: 24 January 2017 | Accepted: 12 February 2017 DOI 10.1002/syn.21967 SHORT COMMUNICATION Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate Anna Migdalska-Richards1 | Wai Kin D. Ko2 | Qin Li2,3 | Erwan Bezard2,3,4,5 | Anthony H. V. Schapira1 1Department of Clinical Neurosciences, Institute of Neurology, University College Abstract London, NW3 2PF, United Kingdom Mutations in the glucocerebrosidase 1 (GBA1) gene are related to both Parkinson disease (PD) and 2Motac Neuroscience, Manchester, United Gaucher disease (GD). In both cases, the condition is associated with deficiency of glucocerebrosi- Kingdom dase (GCase), the enzyme encoded by GBA1. Ambroxol is a small molecule chaperone that has 3 Institute of Laboratory Animal Sciences, been shown in mice to cross the blood-brain barrier, increase GCase activity and reduce alpha- China Academy of Medical Sciences, Beijing synuclein protein levels. In this study, we analyze the effect of ambroxol treatment on GCase City, People’s Republic of China activity in healthy nonhuman primates. We show that daily administration of ambroxol results in 4University de Bordeaux, Institut des Maladies Neurodeg en eratives, UMR 5293, increased brain GCase activity. Our work further indicates that ambroxol should be investigated as Bordeaux F-33000, France a novel therapy for both PD and neuronopathic GD in humans. 5CNRS, Institut des Maladies Neurodeg en eratives, UMR 5293, Bordeaux F-33000, France KEYWORDS Correspondence ambroxol, glucocerebrosidase,
    [Show full text]
  • Assessment of a Targeted Gene Panel for Identification of Genes Associated with Movement Disorders
    Supplementary Online Content Montaut S, Tranchant C, Drouot N, et al; French Parkinson’s and Movement Disorders Consortium. Assessment of a targeted gene panel for identification of genes associated with movement disorders. JAMA Neurol. Published online June 18, 2018. doi:10.1001/jamaneurol.2018.1478 eMethods. Supplemental methods. eTable 1. Name, phenotype and inheritance of the genes included in the panel. eTable 2. Probable pathogenic variants identified in a cohort of 23 patients with cerebellar ataxia using WES analysis. eTable 3. Negative cases in a cohort of 23 patients with cerebellar ataxia studied using WES analysis. eTable 4. Variants of unknown significance (VUSs) identified in the cohort. eFigure 1. Examples of pedigrees of cases with identified causative variants. eFigure 2. Pedigrees suggesting mendelian inheritance in negative cases. eFigure 3. Examples of pedigrees of cases with identified VUSs. eResults. Supplemental results. This supplementary material has been provided by the authors to give readers additional information about their work. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 eMethods. Supplemental methods Patients selection In the multicentric, prospective study, patients were selected from 25 French, 1 Luxembourg and 1 Algerian tertiary MDs centers between September 2014 and July 2016. Inclusion criteria were patients (1) who had developed one or several chronic MDs (2) with an age of onset below 40 years and/or presence of a family history of MDs. Patients suffering from essential tremor, tic or Gilles de la Tourette syndrome, pure cerebellar ataxia or with clinical/paraclinical findings suggestive of an acquired cause were excluded.
    [Show full text]
  • Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0161.v1 Review Sphingolipids and cell signaling: Relationship between health and disease in the central nervous system Andrés Felipe Leal1, Diego A. Suarez1,2, Olga Yaneth Echeverri-Peña1, Sonia Luz Albarracín3, Carlos Javier Alméciga-Díaz1*, Angela Johana Espejo-Mojica1* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia; [email protected] (A.F.L.), [email protected] (D.A.S.), [email protected] (O.Y.E.P.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia; [email protected] (D.A.S.) 3 Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; [email protected] (S.L.A.) * Correspondence: [email protected]; Tel.: +57-1-3208320 (Ext 4140) (C.J.A-D.). [email protected]; Tel.: +57-1-3208320 (Ext 4099) (A.J.E.M.) Abstract Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases.
    [Show full text]
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
    [Show full text]
  • DNA Sequence Analysis of Spontaneous Mutagenesis in Saccharomyces Cerevisiae
    Copyright 1998 by the Genetics Society of America DNA Sequence Analysis of Spontaneous Mutagenesis in Saccharomyces cerevisiae Bernard A. Kunz, Karthikeyan Ramachandran and Edward J. Vonarx School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria, 3217, Australia ABSTRACT To help elucidate the mechanisms involved in spontaneous mutagenesis, DNA sequencing has been applied to characterize the types of mutation whose rates are increased or decreased in mutator or antimutator strains, respectively. Increased spontaneous mutation rates point to malfunctions in genes that normally act to reduce spontaneous mutation, whereas decreased rates are associated with defects in genes whose products are necessary for spontaneous mutagenesis. In this article, we survey and discuss the mutational speci®cities conferred by mutator and antimutator genes in the budding yeast Saccharomyces cerevisiae. The implications of selected aspects of the data are considered with respect to the mechanisms of spontaneous mutagenesis. PONTANEOUS mutations play a fundamental role in the production of single and multiple base pair alter- S in evolution and have been implicated in aging, ations (Ripley and Glickman 1983; Kunkel 1990). In- carcinogenesis, and human genetic disease (Harmon sertions of transposable elements generally constitute 1981; Kirkwood 1989; Cooper and Krawczak 1990; larger sequence changes in DNA. Although transposon Arber 1991; Drake 1991a; Loeb 1991, 1994; Win- movement can be a relatively infrequent event, transpo- tersberger 1991; Caskey et al. 1992; Strauss 1992). sition rates may be increased by the presence of DNA They are thought to originate as a consequence of intra- damage, including that which occurs spontaneously cellular events, including the formation of DNA lesions, (Bradshaw and McEntee 1989; Kunz et al.
    [Show full text]
  • Diagnostic Methods for Lysosomal Storage Disease
    Reports of Biochemistry & Molecular Biology Vol.7, No.2, Jan 2019 Review article www.RBMB.net Diagnostic methods for Lysosomal Storage Disease Armin Mokhtariye1,3, Lida Hagh-Nazari1, Abdol-Reza Varasteh2, Fatemeh Keyfi*3 Abstract Lysosomal storage disorders (LSD) are a class of metabolic disturbance in which manifested by the accumulation of large molecules (complex lipids, glycoproteins, glycosaminoglycans, etc.) in lysosomes. LSDs have a wide range of clinical symptoms that may contain organ dysfunction, neurological and skeletal disorders. The first stage of diagnosis is clinically suspected by a physician. Next stage is enzyme activity assays including Fluorometry and MS/MS methods. These methods usually placed in newborn program screening. The second laboratory diagnostic stage is molecular examination (RFLP-PCR and ARMS-PCR, Mutations Scanning Methods, DNA sequencing, MLPA and NGS methods) that is confirmation of the enzyme assays. In this article, routine diagnostic methods for LSDs were discussed. The gold standard for enzyme activity assay and molecular diagnosis is TMS and NGS, respectively. Keywords: Diagnostic methods, Enzyme activity, Lysosomal storage disease, Molecular assay. Introduction Pompe disease is a rare and neuromuscular The last operators in the endocytic process are disorder due to a lack or decrease of the acid alpha lysosomes that cleavage the large molecules into glucosidase (GAA) that leads to a deposit of simpler component (1). Hydrolytic enzymes are glycogen in lysosomes of many tissues, particularly proprietary for multiple substrates in the lysosomes- heart and skeletal muscle (6, 7). This enzyme is which are activated in the acidic pH (between 4.5 coded by GAA gene, located on chromosome 17 and 5.0) in the organelles' intracellular (1).
    [Show full text]
  • Molecular Therapy for Lysosomal Storage Diseases
    Chapter 24 Molecular Therapy for Lysosomal Storage Diseases Daisuke Tsuji and Kohji Itoh Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54074 1. Introduction Lysosomes are organella involving the catabolism of biomolecules extracellularly and intra‐ cellularly incorporated, which contain more than 60 distinct acidic hydrolases (lysosomal enzymes) and their co-factors. Lysosomal storage diseases (LSDs) are caused by germ-line gene mutations encoding lysosomal enzymes, their activator proteins, integral membrane proteins, cholesterol transporters and proteins concerning intracellular trafficking of lysoso‐ mal enzymes [1,2]. The LSDs associate with excessive accumulation of natural substrates, in‐ cluding glycoconjugates (glycosphingolipids, oligosaccharides derived from glycoproteins, and glycosaminoglycans from proteoglycans) as well as heterogeneous manifestations in both visceral and nervous systems [1,2]. LSDs comprise greater than 40 diseases, of which incidence is about 1 per 100 thousand births, and recognized as so-called ‘Orphan diseases’. In the biosynthesis of lysosomal matrix enzymes, newly synthesized enzymes are N-glyco‐ sylated in the endoplasmic reticulum (ER) and then phosphorylated in the Golgi apparatus on the 6 position of the terminal mannose residues (M6P) via two step reactions catalyzed by Golgi-localized phosphotransferase and uncovering enzyme necessary to expose the ter‐ minal M6P residues [3,4]. The M6P-carrying enzymes then bind the cation-dependent man‐ nose 6-phosphate receptor (CD-M6PR) at physiological pH in the Golgi. The enzyme– receptor complex is then transported to late-endosomes where the M6P-carrying enzymes dissociate from the receptor at acidic pH, while the CD-M6PR then traffics back to the Golgi as a shuttle.
    [Show full text]
  • Protein Network Analyses of Pulmonary Endothelial Cells In
    www.nature.com/scientificreports OPEN Protein network analyses of pulmonary endothelial cells in chronic thromboembolic pulmonary hypertension Sarath Babu Nukala1,8,9*, Olga Tura‑Ceide3,4,5,9, Giancarlo Aldini1, Valérie F. E. D. Smolders2,3, Isabel Blanco3,4, Victor I. Peinado3,4, Manuel Castell6, Joan Albert Barber3,4, Alessandra Altomare1, Giovanna Baron1, Marina Carini1, Marta Cascante2,7,9 & Alfonsina D’Amato1,9* Chronic thromboembolic pulmonary hypertension (CTEPH) is a vascular disease characterized by the presence of organized thromboembolic material in pulmonary arteries leading to increased vascular resistance, heart failure and death. Dysfunction of endothelial cells is involved in CTEPH. The present study describes for the frst time the molecular processes underlying endothelial dysfunction in the development of the CTEPH. The advanced analytical approach and the protein network analyses of patient derived CTEPH endothelial cells allowed the quantitation of 3258 proteins. The 673 diferentially regulated proteins were associated with functional and disease protein network modules. The protein network analyses resulted in the characterization of dysregulated pathways associated with endothelial dysfunction, such as mitochondrial dysfunction, oxidative phosphorylation, sirtuin signaling, infammatory response, oxidative stress and fatty acid metabolism related pathways. In addition, the quantifcation of advanced oxidation protein products, total protein carbonyl content, and intracellular reactive oxygen species resulted increased
    [Show full text]
  • DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces Cerevisiae
    YEASTBOOK GENOME ORGANIZATION & INTEGRITY DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae Serge Boiteux* and Sue Jinks-Robertson†,1 *Centre National de la Recherche Scientifique UPR4301 Centre de Biophysique Moléculaire, 45071 Orléans cedex 02, France, and yDepartment of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 ABSTRACT DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mech- anisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion.
    [Show full text]
  • The Unique Phenotype of Lipid-Laden Macrophages
    International Journal of Molecular Sciences Review The Unique Phenotype of Lipid-Laden Macrophages Marco van Eijk * and Johannes M. F. G. Aerts * Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands * Correspondence: [email protected] (M.v.E.); [email protected] (J.M.F.G.A.) Abstract: Macrophages are key multi-talented cells of the innate immune system and are equipped with receptors involved in damage and pathogen recognition with connected immune response guiding signaling systems. In addition, macrophages have various systems that are involved in the uptake of extracellular and intracellular cargo. The lysosomes in macrophages play a central role in the digestion of all sorts of macromolecules and the entry of nutrients to the cytosol, and, thus, the regulation of endocytic processes and autophagy. Simplistically viewed, two macrophage phenotype extremes exist. On one end of the spectrum, the classically activated pro-inflammatory M1 cells are present, and, on the other end, alternatively activated anti-inflammatory M2 cells. A unique macrophage population arises when lipid accumulation occurs, either caused by flaws in the catabolic machinery, which is observed in lysosomal storage disorders, or as a result of an acquired condition, which is found in multiple sclerosis, obesity, and cardiovascular disease. The accompanying overload causes a unique metabolic activation phenotype, which is discussed here, and, consequently, a unifying phenotype is proposed. Keywords: adipose tissue; foam cell; Gaucher disease; GPNMB; macrophage; multiple sclerosis; obesity; TREM-2 Citation: van Eijk, M.; Aerts, J.M.F.G. The Unique Phenotype of Lipid-Laden Macrophages.
    [Show full text]
  • An Intrinsic Mechanism of Secreted Protein Aging and Turnover
    An intrinsic mechanism of secreted protein aging and turnover Won Ho Yanga,b, Peter V. Aziza,b, Douglas M. Heithoffc, Michael J. Mahanc, Jeffrey W. Smithb, and Jamey D. Martha,b,c,1 aCenter for Nanomedicine, University of California, Santa Barbara, CA 93106; bSanford–Burnham–Prebys Medical Discovery Institute, La Jolla, CA 92037; and cDepartment of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106 Edited by Kevin P. Campbell, University of Iowa Carver College of Medicine, Iowa City, IA, and approved September 23, 2015 (received for review August 4, 2015) The composition and functions of the secreted proteome are con- activity levels that change in disease (9). We investigated whether trolled by the life spans of different proteins. However, unlike the normal activities of circulating glycosidases may hydrolyze intracellular protein fate, intrinsic factors determining secreted pro- N-glycan linkages attached to secreted proteins, thereby generat- tein aging and turnover have not been identified and characterized. ing multivalent ligands of endocytic lectin receptors in contribut- Almost all secreted proteins are posttranslationally modified with the ing to a mechanism of secreted protein aging and turnover. covalent attachment of N-glycans. We have discovered an intrinsic Results mechanism of secreted protein aging and turnover linked to the stepwise elimination of saccharides attached to the termini of N-Glycan Remodeling in the Aging of Secreted Proteins. Most se- N-glycans. Endogenous glycosidases, including neuraminidase 1 (Neu1), creted proteins are modified with N-glycans before entry into cir- neuraminidase 3 (Neu3), beta-galactosidase 1 (Glb1), and hexosamini- culatory systems. We isolated secreted proteins among platelet-poor dase B (HexB), possess hydrolytic activities that temporally remodel plasma following i.v.
    [Show full text]