Dynamical Decoupling and Codes

Gerardo A. Paz-Silva and Daniel Lidar Center for Quantum Information Science & Technology University of Southern California

GAPS and DAL paper in preparation 1

Dynamical Decoupling and Quantum Error Correction Codes (SXDD)

Gerardo A. Paz-Silva and Daniel Lidar Center for Quantum Information Science & Technology University of Southern California

GAPS and DAL paper in preparation 2 Motivation

qMac 푯푺

3 Motivation

푯푩

qMac 푯푺

4 Motivation

푯푩

푯푺푩 푯푺푩 qMac 푯푺

푯푺푩

푯푺푩

5 Motivation

푯푩

푯푺푩 QEC + FT 푯푺푩 qMac 푯푺

푯푺푩

푯푺푩

6 Motivation

푯푩

Dynamical Decoupling

푯푺푩 QEC + FT 푯푺푩 qMac 푯푺

푯푺푩

푯푺푩

7 Motivation

푯푩

Dynamical Decoupling

푯′푺푩 푯푺푩 QEC + FT 푯푺푩 푯′푺푩 qMac 푯푺

푯푺푩 푯′푺푩 푯′푺푩

푯푺푩

8 −푖(퐻 τ푚푖푛) 퐻 = 퐼⊗퐻퐵 + 퐻푆퐵  푈 τ푚푖푛 = 푒

휂0 = 퐻푆퐵 τ푚푖푛

[[n,k,d]] QEC code

 −푖(퐻 τ푚푖푛) 퐻 = 퐼⊗퐻퐵 + 퐻푆퐵  푈 τ푚푖푛 = 푒

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 −푖(퐻∅,푒푓푓 푇+퐻푆퐵,푒푓푓 푂 푇 ) 푈퐷퐷 푇 = 푒 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇

[[n,k,d]] QEC code

 −푖(퐻 τ푚푖푛) 퐻 = 퐼⊗퐻퐵 + 퐻푆퐵  푈 τ푚푖푛 = 푒

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 −푖(퐻∅,푒푓푓 푇+퐻푆퐵,푒푓푓 푂 푇 ) 푈퐷퐷 푇 = 푒 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇

휂퐷퐷 < 휂0

[[n,k,d]] QEC code

 −푖(퐻 τ푚푖푛) 퐻 = 퐼⊗퐻퐵 + 퐻푆퐵  푈 τ푚푖푛 = 푒

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 −푖(퐻∅,푒푓푓 푇+퐻푆퐵,푒푓푓 푂 푇 ) 푈퐷퐷 푇 = 푒 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇

휂퐷퐷 < 휂0

[[n,k,d]] QEC code DD DD DD DD DD

Ng,Lidar,Preskill PRA 84, 012305(2011) • Enhanced fidelity of physical gates via appended DD sequences

 −푖(퐻 τ푚푖푛) 퐻 = 퐼⊗퐻퐵 + 퐻푆퐵  푈 τ푚푖푛 = 푒

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 −푖(퐻∅,푒푓푓 푇+퐻푆퐵,푒푓푓 푂 푇 ) 푈퐷퐷 푇 = 푒 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇

휂퐷퐷 < 휂0

[[n,k,d]] QEC code DD DD DD DD DD

Ng,Lidar,Preskill PRA 84, 012305(2011) • Enhanced fidelity of physical gates via appended DD sequences • Order of decoupling N cannot be arbitrarily large.  −푖(퐻 τ푚푖푛) 퐻 = 퐼⊗퐻퐵 + 퐻푆퐵  푈 τ푚푖푛 = 푒

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 −푖(퐻∅,푒푓푓 푇+퐻푆퐵,푒푓푓 푂 푇 ) 푈퐷퐷 푇 = 푒 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇

휂퐷퐷 < 휂0

[[n,k,d]] QEC code DD DD DD DD DD

Ng,Lidar,Preskill PRA 84, 012305(2011) • Enhanced fidelity of physical gates via appended DD sequences • Order of decoupling N cannot be arbitrarily large.  Unless 퐻푆퐵 has restricted locality  ‘Local-bath assumption’ −푖(퐻 τ푚푖푛) 퐻 = 퐼⊗퐻퐵 + 퐻푆퐵  푈 τ푚푖푛 = 푒

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 −푖(퐻∅,푒푓푓 푇+퐻푆퐵,푒푓푓 푂 푇 ) 푈퐷퐷 푇 = 푒 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇

휂퐷퐷 < 휂0

[[n,k,d]] QEC code DD DD DD DD DD

Ng,Lidar,Preskill PRA 84, 012305(2011) • Enhanced fidelity of physical gates via appended DD sequences • Order of decoupling N cannot be arbitrarily large.  Unless 퐻푆퐵 has restricted locality  ‘Local-bath assumption’ < FT −푖(퐻 τ푚푖푛) 퐻 = 퐼⊗퐻퐵 + 퐻푆퐵  푈 τ푚푖푛 = 푒

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 −푖(퐻∅,푒푓푓 푇+퐻푆퐵,푒푓푓 푂 푇 ) 푈퐷퐷 푇 = 푒 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇

휂퐷퐷 < 휂0

[[n,k,d]] QEC code DD DD DD DD DD n Ng,Lidar,Preskil–qubit Pauli basislhas as restricted decoupling locality group ‘Local No- ‘localbath assumption bath assumption’’ • • LengthEnhanced of sequence fidelity of exponential physical gates in 2n via appended DD sequences • • PulsesOrder look of decoupling like errors Nto cannotthe code be  arbitrarily limits possible large. integration with other schemes  Unless 퐻 푆퐵 푆퐵 퐵 푆퐵 has restricted locality  ‘Local-bath < FT assumption’

−푖(퐻 τ푚푖푛) 퐻 = 퐼⊗퐻퐵 + 퐻푆퐵  푈 τ푚푖푛 = 푒

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 Desiderata−푖(퐻∅,푒푓푓 for 푇DD+퐻 +QEC:푆퐵,푒푓푓 푂 푇 ) 푈퐷퐷 푇 = 푒 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇 I. No extra locality assumptions

II. Pulses in the code 휂퐷퐷 < 휂0

III. Shorter sequences than full decoupling approach [[n,k,d]] QEC. code DD DD DD DD DD 휂퐷퐷 < 휂0 n Ng,Lidar,Preskil–qubit Pauli basislhas as restricted decoupling locality group ‘Local No- ‘localbath assumption bath assumption’’ • • LengthEnhanced of sequence fidelity of exponential physical gates in 2n via appended DD sequences • • PulsesOrder look of decoupling like errors Nto cannotthe code be  arbitrarily limits possible large. integration with other schemes  Unless 퐻 푆퐵 푆퐵 퐵 푆퐵 has restricted locality  ‘Local-bath < FT assumption’

The magic is in the decoupling group

18 The magic is in the decoupling group

Too small  No arbitrary order decoupling  No general Hamiltonians

Too large  Overkill  Shorter sequences are better

19 The magic is in the decoupling group

Too small  No arbitrary order decoupling  No general Hamiltonians

Too large  Overkill  Shorter sequences are better

• Mutually Orthogonal Operator (generator) Set = {Ω푖}푖=1,…,퐾 2 (Ω푖) = 퐼 푓(푖,푗) Ω푖 Ω푗 = −1 Ω푗 Ω푖; 푓(푖, 푗) = {0,1} Ω푖 Ω푗 ≠ Ω푘

20 The magic is in the decoupling group

Too small  No arbitrary order decoupling  No general Hamiltonians

Too large  Overkill  Shorter sequences are better

• Mutually Orthogonal Operator (generator) Set = {Ω푖}푖=1,…,퐾 2 (Ω푖) = 퐼 푓(푖,푗) Ω푖 Ω푗 = −1 Ω푗 Ω푖; 푓(푖, 푗) = {0,1} Ω푖 Ω푗 ≠ Ω푘

Concatenated Dynamical Decoupling (CDD) Pulses  [Khodjasteh and Lidar, Phys. Rev. Lett. 95, 180501 (2005)] (2퐾)푁 pulses Nested Uhrig Dynamical Decoupling (NUDD) Pulses  MOOS [Wang and Liu, Phys. Rev. A 83, 022306 (2011)] (푁 + 1)퐾 pulses

21 What we propose…

• Stabilizer generators = {S푖}푖=1,…,푄

MOOS = {S푖}푖=1,…,푄

22 What we propose…

• Stabilizer generators = {S푖}푖=1,…,푄 (퐿) (퐿) • Logical operators (Pauli basis) = { X푖 , Z푖 }푖=1,…,푘

(퐿) (퐿) MOOSMOOS == {{SS푖푖}}푖푖==11,…,…,푄,푄 ⋃{ X푖 , Z푖 }푖=1,…,푘

23 What we propose…

• Stabilizer generators = {S푖}푖=1,…,푄 (퐿) (퐿) • Logical operators (Pauli basis) = { X푖 , Z푖 }푖=1,…,푘

(퐿) (퐿) MOOSMOOS == {{SS푖푖}}푖푖==11,…,…,푄,푄 ⋃{ X푖 , Z푖 }푖=1,…,푘

푁+1 −푖(퐻∅,푒푓푓푂 푇 +퐻푆퐵,푒푓푓 푂(푇 )) 푈퐷퐷 푇 = 푒

퐻∅,푒푓푓 ∝ {S푖}푖=1,…,푄

Contains no physical or logical errors ! Only harmless terms ! Even if 퐻푆퐵 is a logical error!

24 What do we gain ?

 No extra locality assumptions: The DD group is powerful enough.

CDD:  NO higher order Magnus term is UNDECOUPLABLE and HARMFUL  The next level of concatenation can deal with it

NUDD: (See proof in W.-J. Kuo, GAPS, G. Quiroz, D. Lidar in preparation)

1 - 0 푯푺푩

25 What do we gain ?

 No extra locality assumptions: The DD group is powerful enough.

CDD:  NO higher order Magnus term is UNDECOUPLABLE and HARMFUL  The next level of concatenation can deal with it

NUDD: (See proof in W.-J. Kuo, GAPS, G. Quiroz, D. Lidar in preparation)

21 - 0 푯푺푩

 DD Pulses are bitwise / transversal in the code

Pulses do not look like errors to the code  Allows interaction with other protection schemes.

26 What else do we gain ?

• Shorter sequences than full decoupling approach:

For stabilizer/subsystem codes: MOOS : n-k-g stabilizers + 2k logical operators

푛+푘−푔 푁 2푛푁 퐶퐷퐷(<Ω푖>,푁)  2 < 2 푛+푘−푔 2푛 푁푈퐷퐷({Ω푖,푁})  (푁 + 1) < (푁 + 1)

27 What else do we gain ?

• Shorter sequences than full decoupling approach:

For stabilizer/subsystem codes: MOOS : n-k-g stabilizers + 2k logical operators

푛+푘−푔 푁 2푛푁 퐶퐷퐷(<Ω푖>,푁)  2 < 2 푛+푘−푔 2푛 푁푈퐷퐷({Ω푖,푁})  (푁 + 1) < (푁 + 1) e.g. [[ 푛2, 1, 푛]] Bacon Shor code: Stabilizer generators: 2(n-1) Logical generators: 2

SXDD Full decoupling D(MOOS) 2 푛 2 푛2

2 푛 2 푛2 NUDD (푁 + 1) (푁 + 1) 2 CDD 22 푛 푁 22 푛 푁

3 - 0 푯 푺푩 28 휼푫푫 < 휼ퟎ ?

 Recall our (effective) noise rates:

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇

 Are an overestimation:  bounds obtained without using the QEC code structure. (work in progress)

29 휼푫푫 < 휼ퟎ ?

 Recall our (effective) noise rates:

휂0 = 퐻푆퐵 τ푚푖푛 푁+1 휂퐷퐷(푁) = 퐻푆퐵,푒푓푓 푂 푇

 Are an overestimation:  bounds obtained without using the QEC code structure. (work in progress)

푁+1  How to compute 퐻푆퐵,푒푓푓 푂 푇 ??  NLP results (Eqs. 152-164)

Recursive relations for 퐻푆퐵,푒푓푓(푞) and 퐻∅,푒푓푓(푞) at every degree of concatenation q.

푞(푞+3)/2 푞−1 퐻푆퐵,푒푓푓(푞) ≤ 푅 푐 퐻푆퐵 + 퐻퐵 τ0 퐻푆퐵 푞 푇(푞) = 푅 τ푚푖푛

where 푅 = 2퐷(푀푂푂푆) and 푐 ~1

30 휼푫푫 < 휼ퟎ

N=1 N=2 N=3

퐼⊗퐻퐵 = 퐽0

퐻푆퐵 = 퐽푆퐵

[[9,1,3]] – BS code: 휏푚푖푛 = 1 ; 퐷 푀푂푂푆 = 4 + 2 휼푫푫 < 휼ퟎ

N=1 N=2 N=3

퐼⊗퐻퐵 = 퐽0 퐻푆퐵 = 퐽푆퐵 4 - 0 푯푺푩

[[9,1,3]] – BS code: 휏푚푖푛 = 1 ; 퐷 푀푂푂푆 = 4 + 2 휼푫푫 < 휼ퟎ

N=1 N=2 N=3

퐼⊗퐻퐵 = 퐽0 퐻푆퐵 = 퐽푆퐵 4 - 10 푯푺푩

[[9,1,3]] – BS code: 휏푚푖푛 = 1 ; 퐷 푀푂푂푆 = 4 + 2 Beyond 퐻푆 = 0

 DD-based methods for fidelity enhanced gates can be directly ported:

 Dynamically protected gates: works for both CDD and NUDD Append SXDD sequence to a gate. [NLP, PRA 84, 012305(2011)]

 (Concatenated) Dynamically corrected gates: based on CDD Eulerian cycle on the Caley graph of DD group

[Khodjasteh and Viola, PRL 102, 080501 (2009)] [Khodjasteh, Lidar, Viola, PRL 104, 090501 (2010)]

5 - 1 푯푺푩

34 Conclusions

• We have shown how to integrate dynamical decoupling and quantum error correction codes in a ‘natural’ way.

 No extra locality conditions  Pulses in the code.  Shorter sequences than full decoupling approach.  Improve effective error rates AND deal where Hamiltonians QEC fails.

• The pulses of the DD are bitwise and therefore EXPERIMENTALLY/fault-tolerance friendly

35

Conclusions

• We have shown how to integrate dynamical decoupling and quantum error correction codes in a ‘natural’ way.

 No extra locality conditions  Pulses in the code.  Shorter sequences than full decoupling approach.  Improve effective error rates AND deal where Hamiltonians QEC fails.

• The pulses of the DD are bitwise and therefore EXPERIMENTALLY/fault-tolerance friendly

 What we would like to do now:

Detailed calculation of the effective error rate considering correctable errors, etc. in a DD + QEC scenario (at least for one encoded qubit)

36

Conclusions

• We have shown how to integrate dynamical decoupling and quantum error correction codes in a ‘natural’ way.

 No extra locality conditions  Pulses in the code.  Shorter sequences than full decoupling approach.  Improve effective error rates AND deal where Hamiltonians QEC fails.

• The pulses of the DD are bitwise and therefore EXPERIMENTALLY/fault-tolerance friendly

 What we would like to do now:

Detailed calculation of the effective error rate considering correctable errors, etc. in a DD + QEC scenario (at least for one encoded qubit)

THANKS! QUESTIONS ? 37