Definition of Immunoglobulin a Receptors on Eosinophils and Their Enhanced Expression in Allergic Individuals

Total Page:16

File Type:pdf, Size:1020Kb

Definition of Immunoglobulin a Receptors on Eosinophils and Their Enhanced Expression in Allergic Individuals Definition of immunoglobulin A receptors on eosinophils and their enhanced expression in allergic individuals. R C Monteiro, … , G L Gartland, H Kubagawa J Clin Invest. 1993;92(4):1681-1685. https://doi.org/10.1172/JCI116754. Research Article Fc alpha receptors (Fc alpha R), detected by the binding of IgA and by anti-Fc alpha R antibodies, were found to be differentially expressed on eosinophils and neutrophils. Neutrophils were the major granulocyte population expressing Fc alpha R, and they expressed much higher levels of Fc alpha R than eosinophils. The expression of Fc alpha R by eosinophils could be upregulated approximately threefold by Ca2+ ionophore treatment in a dose- and time-dependent manner. This effect, which was blocked by a chelating agent, was not duplicated by other cellular stimuli. Eosinophils in allergic individuals displayed enhanced Fc alpha R expression, whereas neutrophils did not. The Fc alpha R on eosinophils had a higher molecular mass (70-100 kD) than those identified on neutrophils (55-75 kD). However, removal of N-linked carbohydrates from Fc alpha R of eosinophils and neutrophils revealed a major protein core of 32 kD for both cell types. The data indicate that expression of Fc alpha R molecules with a characteristic glycosylation pattern is upregulated on eosinophils in allergic individuals. Find the latest version: https://jci.me/116754/pdf Definition of Immunoglobulin A Receptors on Eosinophils and Their Enhanced Expression in Allergic Individuals Renato C. Monteiro, * Robert W. Hostoffer, Max D. Cooper,* James R. Bonner, G. Larry Gartland, and Hiromi Kubagawa Division of Developmental and Clinical Immunology, Departments of Pediatrics, Medicine, Pathology, and Microbiology, and the Comprehensive Cancer Center, University ofAlabama at Birmingham; and the *Howard Hughes Medical Institute, Birmingham, Alabama 35294 Abstract binding to specific Fc7yR and FcER present on the cell surface (3, 4). However, IgA is the most abundant Ig isotype in the Fca receptors (FcaR), detected by the binding of IgA and by secretions (5) where eosinophils carry out many of their effec- anti-FcaR antibodies, were found to be differentially expressed tor functions. It has been shown that IgA can bind to eosino- on eosinophils and neutrophils. Neutrophils were the major phils (6, 7), which suggests they may possess IgA receptor(s), granulocyte population expressing FcaR, and they expressed but FcaR on eosinophils has not been identified and character- much higher levels of FcaR than eosinophils. The expression of ized. FcaR by eosinophils could be upregulated approximately An FcaR on monocyte/macrophages and granulocytes has threefold by Ca2" ionophore treatment in a dose- and time-de- been defined as a variably glycosylated protein of 55-75 kD (8, pendent manner. This effect, which was blocked by a chelating 9) that can bind IgA I and IgA2 antibodies via their Fc regions agent, was not duplicated by other cellular stimuli. Eosinophils (9, 10). The open reading frame of the recently identified in allergic individuals displayed enhanced FcaR expression, FcaR gene encodes a transmembrane protein of approxi- whereas neutrophils did not. The FcaR on eosinophils had a mately 30 kD, which has six potential sites for N-linked glyco- higher molecular mass (70-100 kD) than those identified on sylation in its extracellular region ( 11). The selective expres- neutrophils (55-75 kD). However, removal of N-linked carbo- sion of FcaR by myeloid lineage cells has been confirmed by hydrates from FcaR of eosinophils and neutrophils revealed a analysis of FcaR mRNA expression ( 11 ) and FcaR molecules major protein core of 32 kD for both cell types. The data indi- identified by monoclonal antibodies specific for native and re- cate that expression of FcaR molecules with a characteristic combinant FcaR protein (12-14). glycosylation pattern is upregulated on eosinophils in allergic In this report, we have used the natural IgA ligand and individuals. (J. Clin. Invest. 1993. 92:1681-1685.) Key words: anti-FcaR mAbs to analyze the expression, regulation, and bio- Fca receptor * IgA receptor * Fc receptor - eosinophil - allergy chemical nature of FcaR on eosinophils. FcaR molecules were detected on eosinophils from all normal individuals following in vitro activation, whereas fresh eosinophils from allergic indi- Introduction viduals frequently expressed FcaR. The FcaR molecules ex- pressed by eosinophils differ from those on neutrophils and Eosinophils may play important roles in protection against par- macrophages in that the former have a higher content of N- asitic diseases and in mediating inflammation in allergic indi- linked carbohydrate moieties. viduals ( 1 ). These functions are linked to the eosinophil's abil- ity to release biologically active factors following antigen acti- Methods vation. Several granule-derived proteins are released in the ensuing degranulation process. These include highly cytotoxic Subjects. Heparinized blood samples were obtained from 45 adult indi- factors, such as eosinophil cationic protein, major basic pro- viduals (27 male and 18 female). 22 had severe symptoms of allergic tein, and eosinophil-derived neurotoxin ( 1). rhinitis and/or asthma. These allergic individuals were further selected One degranulation mode is initiated via Fc receptors on the basis of acute wheal and flare reactions in response to two or more allergens when tested by the prick method with extracts of house (FcR)' in an antibody-dependent cell cytotoxic manner (2). dust mite, grass pollen, ragweed pollen, tree pollen, and animal danders Both IgG and IgE antibodies promote this reaction cascade by ( 15). The other 23 individuals had no history of allergy and were skin- test negative. None of the allergic subjects had received systemic corti- costeroids or other medication at the time of blood collection. Address reprint requests to Dr. Hiromi Kubagawa, 378 Tumor Insti- Reagents. The following mouse antibodies were used: A3 (-YIK), tute, University of Alabama at Birmingham, Birmingham, AL 35294. A59 (' Il K), A62 (l1K), and A77 (y IK) mAbs specific for the FcaR Dr. Monteiro's current address is INSERM U25, H6pital Necker, 161, ( 13), the 32.2 (-Y I K) mAb specific for the FcyR I (CD64) (Medarex, rue des Sevres, 75743 Paris Cedex 15, France. Dr. Hostoffer's current Inc., W. Lebanon, NH), the IV.3 ('y2b) mAb specific for the FcyRII address is Rainbow Babies & Children's Hospital, 2074 Abington (CD32w) (ATCC), the 3G8 ('YIK) mAb specific for the Fc-yR III Road, Cleveland, OH 44106. (CD16) (16), the W8E7 (-y2aK) anti-CD1O mAb, the LeuM1 (,UKK) Received /br publication 25 February 1993 and in revised fiorm II anti-CD 15 mAb, and the My4 (y 1K) anti-CD 14 mAb (Coulter Corp., May 1993. Hialeah, FL). Control antibodies included an irrelevant mouse IgG2a (Becton Dickinson & Co., Mountain View, CA), JH3 (-YlK) anti-Id 1. Abbreviation used in this paper: FcR, Fc receptors. ( 17), the Cla(MK) anti-chicken Ia mAb ( 18), and the MOPC 141 ( y2b) myeloma. FITC-labeled goat anti-mouse Ig antibodies lacking cross- J. Clin. Invest. reactivity with human Ig were from Southern Biotechnology Asso- © The American Society for Clinical Investigation, Inc. ciates (Birmingham, AL). The human IgA myeloma proteins and 0021-9738/93/10/1681/05 $2.00 F( ab')2 fragments of the corresponding goat anti-Id antibodies are de- Volume 92, October 1993, 168 1-1685 scribed elsewhere ( 19). Eosinophil Fc Receptor 1681 Isolation ofeosinophils and neutrophils. Red cells and granulocytes scatter and side light scatter characteristics determined by flow were first separated from mononuclear cells by centrifugation over Fi- cytometric analysis (21, 22). A forward-side scatter population coll/Hypaque (Pharmacia Fine Chemicals, Piscataway, NJ) density distinct from neutrophils was first observed when eosinophils gradients. Granulocytes were isolated from the red cell pellet by differ- were partially purified on metrizamide gradients. Sorting for ential sedimentation in 1.5% dextran in PBS (9). All reagents used for this population resulted in an enrichment in eosinophils to granulocyte isolation were prepared in pyrogen-free distilled water. > 98% purity as determined by microscopic evaluation of were using Neutrophils and eosinophils of normal density separated by stained cells. These forward-side scatter characteristics were a discontinuous metrizamide gradient (20). Purity of eosinophils var- ied from 60-90%, whereas neutrophils were > 99% pure as determined then used to establish analytical gates for immunofluorescence by morphological characteristics following Giemsa staining. In some analysis of eosinophils and neutrophils. The eosinophils were experiments, the eosinophils were further enriched (> 99.5%) by fluo- also distinguishable from neutrophils by their lack of or rela- rescence-activated cell sorting, where eosinophils were selected on the tively weak expression of cell surface CD10, CD 14, CD 15, basis of their light scatter characteristics and nonreactivity with anti- CD 16, and CD64 antigens, whereas both cell types expressed CD16 mAb (21, 22). Eosinophils were cultured for 1-18 h in RPMI CDw32 and CD1 lb antigens. 1640 supplemented with 25% of autologous human serum (and peni- To evaluate FcaR expression on blood granulocyte subpo- cillin and streptomycin) in the presence or absence of various concen- pulations, purified eosinophils and the purified neutrophils trations of Ca2" ionophore (Ionomycin; Calbiochem, San Diego, CA). were examined for binding
Recommended publications
  • Antibody-Dependent Cellular Cytotoxicity in HIV Infection
    CE: Namrta; QAD/AIDS-D-18-00733; Total nos of Pages: 13; AIDS-D-18-00733 EDITORIAL REVIEW Antibody-dependent cellular cytotoxicity in HIV infection Donald N. Forthala,b and Andres Finzic,d Interactions between the Fc segment of IgG and its receptors (FcgRs) found on cells such as natural killer cells, monocytes, macrophages and neutrophils can potentially mediate antiviral effects in the setting of HIV and related infections. We review the potential role of Fc-FcR interactions in HIV, SIV and SHIV infections, with an emphasis on antibody- dependent cellular cytotoxicity (ADCC). Notably, these viruses employ various strate- gies, including CD4 down-regulation and BST-2/tetherin antagonism to limit the effect of ADCC. Although correlative data suggest that ADCC participates in both protection and control of established infection, there is little direct evidence in support of either role. Direct evidence does, however, implicate an FcgR-dependent function in aug- menting the beneficial in-vivo activity of neutralizing antibodies. Copyright ß 2018 Wolters Kluwer Health, Inc. All rights reserved. AIDS 2018, 32:000–000 Keywords: antibody-dependent cellular cytotoxicity, CD4, Fc receptor, HIV, natural killer cell, phagocytosis, simian immunodeficiency virus, simian/human immunodeficiency virus Introduction antibody-dependent enhancement, the interested reader is directed elsewhere [1,2]. In addition, detailed Much of the antiviral activity of antibody is mediated by treatments of FcR biology can be found in recent interactions between the Fc segment of immunoglobulin reviews [3,4]. and Fc receptors (FcRs) present on many different cell types. Such interactions could have a beneficial impact on ADCC occurs when antibody forms a bridge between a viral infection through, for example, antibody-dependent target cell bearing foreign antigens on its surface and an cellular cytotoxicity (ADCC), phagocytosis, or trogocy- effector cell, typically a natural killer cell expressing FcRs.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • List of Genes Used in Cell Type Enrichment Analysis
    List of genes used in cell type enrichment analysis Metagene Cell type Immunity ADAM28 Activated B cell Adaptive CD180 Activated B cell Adaptive CD79B Activated B cell Adaptive BLK Activated B cell Adaptive CD19 Activated B cell Adaptive MS4A1 Activated B cell Adaptive TNFRSF17 Activated B cell Adaptive IGHM Activated B cell Adaptive GNG7 Activated B cell Adaptive MICAL3 Activated B cell Adaptive SPIB Activated B cell Adaptive HLA-DOB Activated B cell Adaptive IGKC Activated B cell Adaptive PNOC Activated B cell Adaptive FCRL2 Activated B cell Adaptive BACH2 Activated B cell Adaptive CR2 Activated B cell Adaptive TCL1A Activated B cell Adaptive AKNA Activated B cell Adaptive ARHGAP25 Activated B cell Adaptive CCL21 Activated B cell Adaptive CD27 Activated B cell Adaptive CD38 Activated B cell Adaptive CLEC17A Activated B cell Adaptive CLEC9A Activated B cell Adaptive CLECL1 Activated B cell Adaptive AIM2 Activated CD4 T cell Adaptive BIRC3 Activated CD4 T cell Adaptive BRIP1 Activated CD4 T cell Adaptive CCL20 Activated CD4 T cell Adaptive CCL4 Activated CD4 T cell Adaptive CCL5 Activated CD4 T cell Adaptive CCNB1 Activated CD4 T cell Adaptive CCR7 Activated CD4 T cell Adaptive DUSP2 Activated CD4 T cell Adaptive ESCO2 Activated CD4 T cell Adaptive ETS1 Activated CD4 T cell Adaptive EXO1 Activated CD4 T cell Adaptive EXOC6 Activated CD4 T cell Adaptive IARS Activated CD4 T cell Adaptive ITK Activated CD4 T cell Adaptive KIF11 Activated CD4 T cell Adaptive KNTC1 Activated CD4 T cell Adaptive NUF2 Activated CD4 T cell Adaptive PRC1 Activated
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Eosinophils but Not of Neutrophils Stimulates Effector Functions of Human Interaction with Secretory Component
    Interaction with Secretory Component Stimulates Effector Functions of Human Eosinophils But Not of Neutrophils This information is current as Youichi Motegi and Hirohito Kita of September 23, 2021. J Immunol 1998; 161:4340-4346; ; http://www.jimmunol.org/content/161/8/4340 Downloaded from References This article cites 49 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/161/8/4340.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 23, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Interaction with Secretory Component Stimulates Effector Functions of Human Eosinophils But Not of Neutrophils1 Youichi Motegi and Hirohito Kita2 Eosinophils and their products are important in the pathophysiology of allergic inflammation in mucosal tissues. Secretory component bound to IgA mediates transepithelial transport of IgA and confers increased stability on the resultant secretory IgA; however, the effect of secretory component on the biologic activity of IgA is unknown.
    [Show full text]
  • Detailed Structure and Pathophysiological Roles of the Iga-Albumin Complex in Multiple Myeloma
    International Journal of Molecular Sciences Article Detailed Structure and Pathophysiological Roles of the IgA-Albumin Complex in Multiple Myeloma Yuki Kawata 1, Hisashi Hirano 1, Ren Takahashi 1, Yukari Miyano 1, Ayuko Kimura 1, Natsumi Sato 1, Yukio Morita 2, Hirokazu Kimura 1,* and Kiyotaka Fujita 1 1 Department of Health Sciences, Gunma Paz University Graduate School of Health Sciences, 1-7-1, Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan; [email protected] (Y.K.); [email protected] (H.H.); [email protected] (R.T.); [email protected] (Y.M.); [email protected] (A.K.); [email protected] (N.S.); [email protected] (K.F.) 2 Laboratory of Public Health II, Azabu University School of Veterinary Medicine, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-27-365-3366; Fax: +81-27-388-0386 Abstract: Immunoglobulin A (IgA)-albumin complexes may be associated with pathophysiology of multiple myeloma, although the etiology is not clear. Detailed structural analyses of these protein– protein complexes may contribute to our understanding of the pathophysiology of this disease. We analyzed the structure of the IgA-albumin complex using various electrophoresis, mass spectrom- etry, and in silico techniques. The data based on the electrophoresis and mass spectrometry showed that IgA in the sera of patients was dimeric, linked via the J chain. Only dimeric IgA can bind to albumin molecules leading to IgA-albumin complexes, although both monomeric and dimeric forms of IgA were present in the sera.
    [Show full text]
  • ISOTYPE-SPECIFIC IMMUNOREGULATION Iga-Binding Factors Produced by Fca Receptor-Positive T Cell Hybridomas Regulate Iga Responses
    ISOTYPE-SPECIFIC IMMUNOREGULATION IgA-binding Factors Produced by Fca Receptor-positive T Cell Hybridomas Regulate IgA Responses BY HIROSHI KIYONO,* LISA M. MOSTELLER-BARNUM, ANNETTE M. PITTS, SHANE I. WILLIAMSON, SUZANNE M. MICHALEK ANn JERRY R. McGHEE From the *Department of Oral Biology and Preventive Dentistry, the Department of Microbiology, the Institute of Dental Research, and the Comprehensive Cancer Center, University of Alabama at Birmingham, University Station, Birmingham, Alabama 35294 Fc receptors (FcR) 1, membrane glycoproteins which bind Ig molecules via their Fc region, have been identified (1) on the surface of various cell types. For example, FcR for IgG are expressed on macrophages, B and T lymphocytes, cytotoxic T lymphocytes, and natural killer cells. FcR are important in immune regulation, and several studies have addressed their role in isotype-specific responses. In this regard, T lymphocyte subpopulations have been described with FcR for IgM (FcttR) (2), XgD (Fc6R) (3), IgG (Fc~,R) (4), IgE (Fc~R) (5), and IgA (FcaR) (6). Previous studies (1, 7, 8) have shown that FcyR-bearing (Fc-yR +) T cells and T cell hybridomas regulate IgG production. These T cells release Fc~,R molecules, termed IgG-binding factors (IBF~) that suppress IgG synthesis (7, 8). Others (9-12) have demonstrated that IgE-binding factors (IBFe) released from FceR + T lymphocytes regulate IgE immune responses. IBFt possess opposite regulatory functions; one factor specifically enhances the IgE response, while a second factor suppresses this isotype (10, 11). Both IgE-potentiating factor and IgE-suppressive factor are produced by the same FctR + T cell subpopulation (9, 12).
    [Show full text]
  • Allergen-Specific Igg1 and Igg3 Through Fc Gamma RII Induce Eosinophil Degranulation
    Allergen-specific IgG1 and IgG3 through Fc gamma RII induce eosinophil degranulation. M Kaneko, … , G J Gleich, H Kita J Clin Invest. 1995;95(6):2813-2821. https://doi.org/10.1172/JCI117986. Research Article Evidence suggests that eosinophils contribute to inflammation in bronchial asthma by releasing chemical mediators and cytotoxic granule proteins. To investigate the mechanism of eosinophil degranulation in asthma, we established an in vitro model of allergen-induced degranulation. We treated tissue culture plates with short ragweed pollen (SRW) extract and sera from either normal donors or SRW-sensitive patients with asthma. Eosinophils were incubated in the wells and degranulation was assessed by measurement of eosinophil-derived neurotoxin in supernatants. We detected degranulation only when sera from SRW-sensitive patients were reacted with SRW. Anti-IgG and anti-Fc gamma RII mAb, but not anti-IgE or anti-Fc epsilon RII mAb, abolished the degranulation. IgG-depleted serum did not induce degranulation; IgE-depleted serum triggered as much degranulation as untreated serum. Furthermore, serum levels of SRW-specific IgG1 or IgG3 correlated with the amounts of released eosinophil-derived neurotoxin. When eosinophils were cultured in wells coated with purified IgG or IgE, eosinophil degranulation was observed only with IgG. Finally, human IgG1 and IgG3, and less consistently IgG2, but not IgG4, induced degranulation. Thus, sera from patients with SRW-sensitive asthma induce eosinophil degranulation in vitro through antigen-specific IgG1 and IgG3 antibodies. These antibodies may be responsible for degranulation of eosinophils in inflammatory reactions, such as bronchial asthma. Find the latest version: https://jci.me/117986/pdf Allergen-specific IgG1 and IgG3 through FcRIl Induce Eosinophil Degranulation Masayuki Kaneko, Mark C.
    [Show full text]
  • Different Innate and Adaptive Immune Response to SARS-Cov-2 Infection of Asymptomatic, Mild and Severe Cases
    medRxiv preprint doi: https://doi.org/10.1101/2020.06.22.20137141; this version posted September 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Title: Different innate and adaptive immune response to SARS-CoV-2 infection of asymptomatic, mild and severe cases Rita Carsetti1,2*, Salvatore Zaffina3,4, Eva Piano Mortari1#, Sara Terreri1#, Francesco Corrente2, Claudia Capponi2, Patrizia Palomba2, Mattia Mirabella2, Simona Cascioli5, Paolo Palange6, Ilaria Cuccaro6, Cinzia Milito7, Alimuddin Zumla8,9, Markus Maeurer10,11, Vincenzo Camisa3,4, Maria Rosaria Vinci3,4, Annapaola Santoro3,4, Eleonora Cimini12, Luisa Marchioni13, Emanuele Nicastri13, Fabrizio Palmieri13, Chiara Agrati12, Giuseppe Ippolito14, Ottavia Porzio15,16, Carlo Concato17, Andrea Onetti Muda18, Massimiliano Raponi4, Concetta Quintarelli19,20, Isabella Quinti7, Franco Locatelli19,21 Affiliations: 1B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy; 2Diagnostic Immunology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 3Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical- Technological Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 4Health Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 5Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy 6Department of Public Health and infectious diseases pulmonary division, Policlinico Umberto I Hospital, Rome, Italy. 7Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • The Effect of Mirthful Laughter on Stress and Natural Killer Cell Activity
    Western Kentucky University TopSCHOLAR® Nursing Faculty Publications School of Nursing 2003 The ffecE t of Mirthful Laughter on Stress and Natural Killer Cell Activity Mary P. Bennett Western Kentucky University, [email protected] Janice M. Zeller Lisa Rosenberg Judith McCann Follow this and additional works at: http://digitalcommons.wku.edu/nurs_fac_pub Part of the Alternative and Complementary Medicine Commons, Nursing Commons, and the Oncology Commons Recommended Repository Citation Bennett, Mary P.; Zeller, Janice M.; Rosenberg, Lisa; and McCann, Judith. (2003). The Effect of Mirthful Laughter on Stress and Natural Killer Cell Activity. Alternative Therapies in Health and Medicine, 9 (2), 38-45. Available at: http://digitalcommons.wku.edu/nurs_fac_pub/9 This Other is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Nursing Faculty Publications by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. original research THE EFFECT OF MIRTHFUL LAUGHTER ON STRESS AND NATURAL KILLER CELL ACTIVITY Mary P. Bennett, DNSc, RN, Janice M. Zeller, PhD, RN, FAAN, Lisa Rosenberg, PhD, RN, Judith McCann, DNSc, RN Mary P. Bennett is associate professor and assistant dean, function postintervention (t16 =2.52 P=.037) and compared with the Indiana State University School of Nursing in Terre Haute, Ind. remaining participants (t32=32.1; P=.04). Humor response scale scores Janice M. Zeller is professor, Department of Adult Health correlated with changes in NK cell activity (r16=.744;P =.001). Nursing and associate professor, Department of Conclusion • Laughter may reduce stress and improve NK cell activity. As Immunology/Microbiology; and Lisa Rosenberg is assistant pro- low NK cell activity is linked to decreased disease resistance and increased fessor, Department of Community and Mental Health Nursing morbidity in persons with cancer and HIV disease, laughter may be a useful and associate dean, Student Affairs, College of Nursing, at Rush cognitive-behavioral intervention.
    [Show full text]
  • Arming Tumor-Associated Macrophages to Reverse Epithelial
    Published OnlineFirst August 15, 2019; DOI: 10.1158/0008-5472.CAN-19-1246 Cancer Tumor Biology and Immunology Research Arming Tumor-Associated Macrophages to Reverse Epithelial Cancer Progression Hiromi I.Wettersten1,2,3, Sara M.Weis1,2,3, Paulina Pathria1,2,Tami Von Schalscha1,2,3, Toshiyuki Minami1,2,3, Judith A. Varner1,2, and David A. Cheresh1,2,3 Abstract Tumor-associated macrophages (TAM) are highly expressed it engaged macrophages but not natural killer (NK) cells to within the tumor microenvironment of a wide range of cancers, induce antibody-dependent cellular cytotoxicity (ADCC) of where they exert a protumor phenotype by promoting tumor avb3-expressing tumor cells despite their expression of the cell growth and suppressing antitumor immune function. CD47 "don't eat me" signal. In contrast to strategies designed Here, we show that TAM accumulation in human and mouse to eliminate TAMs, these findings suggest that anti-avb3 tumors correlates with tumor cell expression of integrin avb3, represents a promising immunotherapeutic approach to redi- a known driver of epithelial cancer progression and drug rect TAMs to serve as tumor killers for late-stage or drug- resistance. A monoclonal antibody targeting avb3 (LM609) resistant cancers. exploited the coenrichment of avb3 and TAMs to not only eradicate highly aggressive drug-resistant human lung and Significance: Therapeutic antibodies are commonly engi- pancreas cancers in mice, but also to prevent the emergence neered to optimize engagement of NK cells as effectors. In of circulating tumor cells. Importantly, this antitumor activity contrast, LM609 targets avb3 to suppress tumor progression in mice was eliminated following macrophage depletion.
    [Show full text]
  • Original Articles Sustained Activation of Insulin Receptors Internalized in GLUT4 Vesicles of Insulin-Stimulated Skeletal Muscle
    Original Articles Sustained Activation of Insulin Receptors Internalized in GLUT4 Vesicles of Insulin-Stimulated Skeletal Muscle Luce Dombrowski, Robert Faure, and André Marette Exposure of target cells to insulin results in the for- mation of ligand receptor complexes on the cell surface and their subsequent internalization into the endosomal ne of the major metabolic actions of insulin is apparatus. A current view is that endocytosis of the to stimulate glucose transport and storage in insulin receptor (IR) kinase results in its rapid deacti- insulin-responsive tissues such as cardiac and vation and sorting of the IR back to the cell surface or skeletal muscles and white and brown fat. to late endocytic compartments. We report herein that, O in skeletal muscle, in vivo stimulation with insulin Insulin stimulates glucose transport mainly by inducing the induced a rapid internalization of the IR to an insulin- translocation of GLUT4 transporters from an intracellular sensitive GLUT4-enriched intracellular membrane frac- compartment to the plasma membrane (PM) (1–4) and the tion. After 30 min of stimulation, IR content and tyro- T-tubules (TTs) in skeletal muscle (5,6). The first step in this sine phosphorylation were increased by three and nine stimulation is the binding of insulin to its insulin receptor times in that fraction, respectively, compared with (IR) ␣-subunits, autophosphorylation of the transmem- unstimulated muscles. In vitro autophosphorylation brane ␤-subunits, and intrinsic activation of the IR tyrosine assays revealed that the kinase activity of internalized kinase activity. The IR increases tyrosine phosphorylation IRs was markedly augmented (eight to nine times) by of insulin receptor substrate (IRS) 1 and IRS-2 (7,8), which insulin.
    [Show full text]