Ent17 4 343 348 (Shcherbakov).Pmd

Total Page:16

File Type:pdf, Size:1020Kb

Ent17 4 343 348 (Shcherbakov).Pmd Russian Entomol. J. 17(4): 343348 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2008 Review of the fossil and extant genera of the cicada family Tettigarctidae (Hemiptera: Cicadoidea) Îáçîð âûìåðøèõ è ñîâðåìåííûõ ðîäîâ öèêàä ñåìåéñòâà Tettigarctidae (Hemiptera: Cicadoidea) D.E. Shcherbakov Ä.Å. Ùåðáàêîâ Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, 117647 Moscow, Russia. E-mail: [email protected] Ïàëåîíòîëîãè÷åñêèé èíñòèòóò ÐÀÍ, Ïðîôñîþçíàÿ óë. 123, 117647 Ìîñêâà, Ðîññèÿ. KEY WORDS: Hemiptera, Cicadomorpha, Cicadoidea, Tettigarctidae, fossil, phylogeny, venation, Mesozoic, Jurassic, Cretaceous, Paleogene. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Hemiptera, Cicadomorpha, Cicadoidea, Tettigarctidae, èñêîïàåìûå, ôèëîãåíèÿ, æèëêîâàíèå, ìåçîçîé, þðà, ìåë, ïàëåîãåí. ABSTRACT. Tettigarctidae, the most primitive fam- Nel, 1996, syn.n. Ïðåäëîæåíî íàçâàíèå Shaanxiarcta ily of Cicadoidea, recorded since terminal Triassic (ca. nom.n. äëÿ Involuta Zhang, 1993, non Cox, 1931.Çàäíåå 200 Myr) and ancestral to singing cicadas (Cicadidae), êðûëî èç ñðåäíåãî ýîöåíà Ýêôåëüäà (Ãåðìàíèÿ) is briefly characterized. Seventeen described fossil tet- ïðåäïîëîæèòåëüíî îòíåñåíî ê ñîâðåìåííîé òðèáå tigarctid genera are keyed and compared to the only Tettigarctini. Îäèííàäöàòü âûìåðøèõ ðîäîâ èñêëþ- extant genus (hairy cicadas); some fossil taxa are com- ÷åíû èç ñîñòàâà ñåìåéñòâà. mented. Based on tegminal venation, the family is di- vided into two subfamilies, Cicadoprosbolinae with tribes Introduction Cicadoprosbolini stat.n., Architettigini trib.n. and Tu- rutanoviini trib.n., and Tettigarctinae with tribes Prota- Tettigarctidae is a relict family, comprising the only banini stat.n., Meunierini and Tettigarctini. Sunotettig- extant genus of hairy cicadas with two species restricted arcta kudryashevae sp.n. (Upper Jurassic of Karatau) to the mountains of Tasmania and South-East Australia. and Magrebarcta gen.n. for Liassotettigarcta africana Tettigarcta is the most primitive living member of the Nel, Zarbout, Barale et Philippe are described. Liassoci- superfamily Cicadoidea, autplesiomorphic in the prono- cada Bode, 1953 = Liassotettigarcta Nel, 1996, syn.n. tum expanded posteriorly, venation generalized, male Shaanxiarcta nom.n. is proposed for Involuta Zhang, genitalia with harpagones, tarsal empodia present, and 1993, non Cox, 1931. The hindwing from the Middle thoracic ganglia separated [Evans, 1941; Moulds, 1990, Eocene of Eckfeld, Germany is tentatively placed in the 2005]. Unlike Cicadidae, hairy cicadas (of both sexes) extant tribe Tettigarctini. Eleven fossil genera are ex- produce only substrate-transmitted vibrational signals cluded from the family. [Claridge et al., 1999] and lack auditory tympana. They ÐÅÇÞÌÅ. Äàíà êðàòêàÿ õàðàêòåðèñòèêà Tettig- prefer cool to cold climates and are confined mainly to arctidae, ñàìîãî ïðèìèòèâíîãî ñåìåéñòâà Cicadoidea, subalpine forests; adults are active at dusk and after dark èçâåñòíîãî íà÷èíàÿ ñ òåðìèíàëüíîãî òðèàñà (îêîëî (hiding under loose bark during the day), common even in 200 ìëí. ëåò íàçàä) è ïðåäêîâîãî äëÿ ïåâ÷èõ öèêàä snowy season, and tolerate subzero temperatures [Moulds, (Cicadidae). Ïðèâåäåíû êëþ÷è äëÿ ñåìíàäöàòè îïè- 1990]. Tettigarcta was separated into a tribe by Distant ñàííûõ âûìåðøèõ ðîäîâ òåòòèãàðêòèä è åäèíñòâåí- [1905], raised to subfamily rank by Tillyard [1926] and to íîãî ñîâðåìåííîãî; äàíû çàìå÷àíèÿ ïî íåêîòîðûì a full family by Becker-Migdisova [1947: 448]. âûìåðøèì òàêñîíàì. Ïî æèëêîâàíèþ ïåðåäíèõ êðû- Tettigarctidae were first recognized in the fossil record ëüåâ ñåìåéñòâî ðàçäåëåíî íà äâà ïîäñåìåéñòâà, by Zeuner [1944] (Cenozoic of Europe) and Becker-Migd- Cicadoprosbolinae ñ òðèáàìè Cicadoprosbolini stat.n., isova [1949] (Mesozoic of Asia); earlier authors described Architettigini trib.n. è Turutanoviini trib.n., è Tettig- them as Diptera, Megaloptera, or Cicadidae. Becker-Migd- arctinae ñ òðèáàìè Protabanini stat.n., Meunierini è isova [1947] first described Cicadoprosbole in Prosbol- Tettigarctini. Îïèñàíû Sunotettigarcta kudryashevae idae, but later transferred it to Tettigarctidae along with sp.n. (âåðõíÿÿ þðà Êàðàòàó) è Magrebarcta gen.n. äëÿ three other Mesozoic genera [Becker-Migdisova, 1949]. Liassotettigarcta africana Nel, Zarbout, Barale et Evans [1956] separated Cicadoprosbole at the family Philippe. Liassocicada Bode, 1953 = Liassotettigarcta level, and some other authors followed him, placing most Printed in 2009. or all Mesozoic genera into Cicadoprosbolidae [e.g. Hamil- 344 D.E. Shcherbakov Table. Some tegminal characters of tettigarctid tribes and genera compared to the type genera of both subfamilies and to Cicadidae. Òàáëèöà. Íåêîòîðûå ïðèçíàêè ïåðåäíåãî êðûëà â òðèáàõ è ðîäàõ Tettigarctidae â ñðàâíåíèè ñ òèïîâûìè ðîäàìè îáîèõ ïîäñåìåéñòâ è Cicadidae. C as in Cicadoprosbole; T as in Tettigarcta; i intermediate state; a, b, d aberrant; ? unknown; a and T homoplastic to a and T of extant cicadoids; Cc last appearance of C condition in transformation series. First four taxa show more characters in Cicadoprosbole state, last two more characters in Tettigarcta condition, and Protabanini are about halfway between the nominate genera of two subfamilies. C êàê ó Cicadoprosbole; T êàê ó Tettigarcta; i ïðîìåæóòî÷íîå ñîñòîÿíèå; a, b, d óêëîíÿþùååñÿ; ? íåèçâåñòíî; a è T ïàðàëëåëèçì ïî îòíîøåíèþ ê a è T ñîâðåìåííûõ öèêàäîèäîâ; Cc ïîñëåäíåå ïîÿâëåíèå ñîñòîÿíèÿ C â òðàíñôîðìàöèîííîì ðÿäó. Ó ÷åòûð¸õ ïåðâûõ òàêñîíîâ ïðåîáëàäàþò ïðèçíàêè â ñîñòîÿíèè êàê ó Cicadoprosbole, ó äâóõ ïîñëåäíèõ â ñîñòîÿíèè êàê ó Tettigarcta, à Protabanini íàõîäÿòñÿ ïðèìåðíî íà ïîëïóòè ìåæäó òèïîâûìè ðîäàìè äâóõ ïîäñåìåéñòâ. ton, 1990, 1996]. However, it is better to treat these groups Architettix) [Hamilton, 1990] provided with jumping as subfamilies [Boulard & Nel, 1990], because diverse armature (long laterotibial spines) more developed than Mesozoic forms fill the gap between Cicadoprosbole in recent cicadoids. and Tettigarcta (Table). The hair covering in diverse, well preserved tettig- The oldest records of Tettigarctidae s.l. are from the arctids was apparently never as long and abundant as in earliest Jurassic and terminal Triassic (ca. 200 Myr) of modern hairy cicadas (Tettigarcta spp.). A common Eurasia. Jurassic insects of Gondwana are virtually name of Mesozoic hairy cicadas could rather be ap- unknown, and fossil tettigarctids in the Southern Hemi- plied to another, unrelated family of large, cicada- and sphere were found only in the Lower Cretaceous of even moth-like Auchenorrhyncha, Palaeontinidae, be- Brazil [Hamilton, 1990; Menon, 2005] and Tunisia cause at least some palaeontinids (as seen in specimens [Nel et al., 1998]. There are no tettigarctids among ten from the Upper Jurassic of Karatau) were extremely auchenorrhynchan specimens from the well-known Cre- hairy, with very long beak and unarmed legs. They taceous locality Koonwarra, Australia. The family per- presumably were crepuscular and well camouflaged on sisted in Europe at least until the Middle Eocene (ca. 45 tree trunks, like living Tettigarcta, and the niche parti- Myr) [Wappler, 2003], whereas the earliest record of tion between Palaeontinidae and Tettigarctidae in the Cicadidae is from the Paleocene (ca. 65 Myr) of North Mesozoic might be analogous to that between Tettig- America [Cooper, 1941]. Eskov [1987: 98] briefly sum- arcta and Cicadidae now. marized the former distribution of Tettigarctidae in the Tettigarcta was contrasted to Cicadidae as the most Northern Hemisphere. Nel [1996] listed extinct genera primitive living genus of the superfamily, and Mesozoic which belong to (or are excluded from) the family. tettigarctid genera permit to trace the ancestry of Cica- Tettigarctids were structurally diverse and not rare doidea even more clearly. All three extant superfamilies in the Jurassic and Cretaceous, like are singing cicadas of Cicadomorpha Clypeata (Cercopoidea, Cicadoidea, in the Cenozoic and nowadays. They varied in size from Membracoidea) descended from the fourth, Mesozoic small forms, with transparent wings less than 15 mm Hylicelloidea [Shcherbakov, 1996]. Cercopoids and long (Turutanovia, Architettix) to large cicadas (larger cicadoids united by several sound synapomorphies than modern Tettigarcta) with dark-patterned wings up [Emeljanov, 1987] enter the record almost synchro- to 60 mm long (Figs 14). Cretaceous Elkinda shows nously and possibly represent closely related lineages; tegminal veins profusely branched, like in some cica- membracoids had separated from hylicelloids some- dids (e.g. Polyneura). Tettigarctids had the beaks usual- what later. Phylogenetic position of tettigarctids was ly very long, and hind legs at least sometimes (e.g. also discussed by Hamilton [1996]. Review of fossil and extant Tettigarctidae 345 3 All veins profusely branched beyond nodal line; about 30 apical cells. CuA with more than 2 branches; apical cell behind posterior CuA branch much wider than next apical cells. M and CuA forming short stalk beyond basal cell ................................................... *Elkinda Shcherbakov Less than 15 apical cells. CuA with 2 branches; apical cell behind CuA2 narrower than next apical cell .............. 4 4 Transverse ir nearer to nodal line than to wing tip. Basal CuA1 section converging to M3+4. Apical cell behind CuA2 short and narrow. RA bent at nodal line. Both M and CuA slightly sigmoidal, cross-joined beyond basal cell ....................... *Cicadoprosbole Becker-Migdisova Reclined ir nearer to wing tip than to nodal line. Basal CuA1 section subparallel
Recommended publications
  • Based on Comparative Morphological Data AF Emel'yanov Transactions of T
    The phylogeny of the Cicadina (Homoptera, Cicadina) based on comparative morphological data A.F. Emel’yanov Transactions of the All-Union Entomological Society Morphological principles of insect phylogeny The phylogenetic relationships of the principal groups of cicadine* insects have been considered on more than one occasion, commencing with Osborn (1895). Some phylogenetic schemes have been based only on data relating to contemporary cicadines, i.e. predominantly on comparative morphological data (Kirkaldy, 1910; Pruthi, 1925; Spooner, 1939; Kramer, 1950; Evans, 1963; Qadri, 1967; Hamilton, 1981; Savinov, 1984a), while others have been constructed with consideration given to paleontological material (Handlirsch, 1908; Tillyard, 1919; Shcherbakov, 1984). As the most primitive group of the cicadines have been considered either the Fulgoroidea (Kirkaldy, 1910; Evans, 1963), mainly because they possess a small clypeus, or the cicadas (Osborn, 1895; Savinov, 1984), mainly because they do not jump. In some schemes even the monophyletism of the cicadines has been denied (Handlirsch, 1908; Pruthi, 1925; Spooner, 1939; Hamilton, 1981), or more precisely in these schemes the Sternorrhyncha were entirely or partially depicted between the Fulgoroidea and the other cicadines. In such schemes in which the Fulgoroidea were accepted as an independent group, among the remaining cicadines the cicadas were depicted as branching out first (Kirkaldy, 1910; Hamilton, 1981; Savinov, 1984a), while the Cercopoidea and Cicadelloidea separated out last, and in the most widely acknowledged systematic scheme of Evans (1946b**) the last two superfamilies, as the Cicadellomorpha, were contrasted to the Cicadomorpha and the Fulgoromorpha. At the present time, however, the view affirming the equivalence of the four contemporary superfamilies and the absence of a closer relationship between the Cercopoidea and Cicadelloidea (Evans, 1963; Emel’yanov, 1977) is gaining ground.
    [Show full text]
  • (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China
    European Journal of Taxonomy 733: 146–159 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.733.1229 www.europeanjournaloftaxonomy.eu 2021 · Zheng Y. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:043C9407-7E8A-4E8F-9441-6FC43E5A596E New fossil records of Xyelidae (Hymenoptera) from the Middle Jurassic of Inner Mongolia, China Yan ZHENG 1,*, Haiyan HU 2, Dong CHEN 3, Jun CHEN 4, Haichun ZHANG 5 & Alexandr P. RASNITSYN 6,* 1,4 Institute of Geology and Paleontology, Linyi University, Shuangling Rd., Linyi 276000, China. 1,4,5 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, East Beijing Road, Nanjing 210008, China. 2 School of Agronomy and Environment, Weifang University of Science and Techonoly, Jinguang Road, Shouguang, 262700, China. 3 School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China. 6 Palaeontological Institute, Russian Academy of Sciences, Moscow, 117647, Russia. 6 Natural History Museum, London SW7 5BD, UK. * Corresponding authors: [email protected], [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 5 Email: [email protected] 1 urn:lsid:zoobank.org:author:28EB8D72-5909-4435-B0F2-0A48A5174CF9 2 urn:lsid:zoobank.org:author:91B2FB61-31A9-449B-A949-7AE9EFD69F56 3 urn:lsid:zoobank.org:author:51D01636-EB69-4100-B5F6-329235EB5C52 4 urn:lsid:zoobank.org:author:8BAB244F-8248-45C6-B31E-6B9F48962055 5 urn:lsid:zoobank.org:author:18A0B9F9-537A-46EF-B745-3942F6A5AB58 6 urn:lsid:zoobank.org:author:E7277CAB-3892-49D4-8A5D-647B4A342C13 Abstract.
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line supplement v.2021.1 Andrew J. Ross 21/06/2021 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] Dr Andrew Ross | National Museums Scotland (nms.ac.uk) This taxonomic list is a supplement to Ross (2021) and follows the same format. It includes taxa described or recorded from the beginning of January 2021 up to the end of May 2021, plus 3 species that were named in 2020 which were missed. Please note that only higher taxa that include new taxa or changed/corrected records are listed below. The list is until the end of May, however some papers published in June are listed in the ‘in press’ section at the end, but taxa from these are not yet included in the checklist. As per the previous on-line checklists, in the bibliography page numbers have been added (in blue) to those papers that were published on-line previously without page numbers. New additions or changes to the previously published list and supplements are marked in blue, corrections are marked in red. In Ross (2021) new species of spider from Wunderlich & Müller (2020) were listed as being authored by both authors because there was no indication next to the new name to indicate otherwise, however in the introduction it was indicated that the author of the new taxa was Wunderlich only. Where there have been subsequent taxonomic changes to any of these species the authorship has been corrected below.
    [Show full text]
  • Hemiptera: first Record for an Australian Lophopid (Hemiptera, Lophopidae)
    Australian Journal of Entomology (2007) 46, 129–132 Historical use of substrate-borne acoustic production within the Hemiptera: first record for an Australian Lophopid (Hemiptera, Lophopidae) Adeline Soulier-Perkins,1* Jérôme Sueur2 and Hannelore Hoch3 1Muséum National d’Histoire Naturelle, Département Systématique et Évolution, USM 601 MNHN & UMR 5202 CNRS, Case Postale 50, 45, Rue Buffon, F-75005 Paris, France. 2NAMC-CNRS UMR 8620, Bât. 446, Université Paris XI, F-91405 Orsay Cedex, France. 3Museum für Naturkunde, Institut für Systematische Zoologie, Humboldt-Universität zu Berlin Invalidenstr. 43, D- 10115 Berlin, Germany. Abstract Here the first record of communication through substrate-borne vibrations for the Lophopidae family is reported. The signals from Magia subocellata that the authors recorded were short calls with a decreasing frequency modulation. Acoustic vibrations have been observed for other families within the Hemiptera and a scenario concerning the historical use of vibrational communication within the Hemiptera is tested using a phylogenetic inference. The most parsimonious hypothesis suggests that substrate-borne communication is ancestral for the hemipteran order and highlights the groups for which future acoustic research should be undertaken. Key words Cicadomorpha, Coleorrhyncha, evolutionary scenario, Heteroptera, Sternorrhyncha, substrate vibration. INTRODUCTION Lophopidae migrating into America via the Bering land bridge. Some other ancestors of the extant groups moved onto Many animals have been recently recognised for their ability newly emerging land in the Pacific, expanding their distribu- to communicate through substrate-borne vibrations (Hill tion as far east as the Samoan Islands, and as far south as 2001). While elephants produce vibrations transmitted by the Australia (Soulier-Perkins 2000).
    [Show full text]
  • Cretaceous and Palaeogene Diversification of Planthoppers and Leafhoppers
    Bulletin of Insectology 61 (1): 111-112, 2008 ISSN 1721-8861 Paradise Lost? – Cretaceous and Palaeogene diversification of planthoppers and leafhoppers Jacek SZWEDO Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland Abstract History of the evolutionary changes of the Fulgoromorpha and Cicadomorpha (Hemiptera) in the Cretaceous and Palaeogene is shortly presented. Rapid differentiation and extinction of the groups is related to Mid-Cretaceous biotic events. Early Palaeogene is believed to be the time of dispersal of numerous groups, while Eocene greenhouse time as the period of differentiation and dis- persal of descendants of both lineages, including extinct groups. Oligocene cooling and further Miocene biotic changes as the times of origination of recent faunas are discussed in brief. Key words: Fulgoromorpha, Cicadomorpha, Cretaceous, Palaeogene, faunistic turnover. Introduction Mid-Cretaceous turnover The mid-Cretaceous is generally referred to as a Fulgoromorpha and Cicadomorpha are ancient lineages greenhouse period characterized by exceptionally warm of the Hemiptera, known since the Permian. The fossil climates. Mid-Cretaceous is regarded as a period of en- record and diversity of the ancient Fulgoromorpha have vironmental change and biotic crisis (Rasnitsyn, 1988). not been very high. Cicadomorpha appears more diver- Angiosperms were more frequent and abundant at lower sified since their beginnings. Roots of most of the recent latitudes in a dry (sub)tropical zone, at that time mainly groups of Fulgoromorpha and Cicadomorpha could be tropical Gondwanaland, though gymnospermous forests placed in the Jurassic, or even as far as in Triassic prevailed in wetter climates in the higher latitudes of (Shcherbakov and Popov, 2002; Szwedo et al., 2004).
    [Show full text]
  • An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna
    © Copyright Australian Museum, 2005 Records of the Australian Museum (2005) Vol. 57: 375–446. ISSN 0067-1975 An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna M.S. MOULDS Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] ABSTRACT. The history of cicada family classification is reviewed and the current status of all previously proposed families and subfamilies summarized. All tribal rankings associated with the Australian fauna are similarly documented. A cladistic analysis of generic relationships has been used to test the validity of currently held views on family and subfamily groupings. The analysis has been based upon an exhaustive study of nymphal and adult morphology, including both external and internal adult structures, and the first comparative study of male and female internal reproductive systems is included. Only two families are justified, the Tettigarctidae and Cicadidae. The latter are here considered to comprise three subfamilies, the Cicadinae, Cicadettinae n.stat. (= Tibicininae auct.) and the Tettigadinae (encompassing the Tibicinini, Platypediidae and Tettigadidae). Of particular note is the transfer of Tibicina Amyot, the type genus of the subfamily Tibicininae, to the subfamily Tettigadinae. The subfamily Plautillinae (containing only the genus Plautilla) is now placed at tribal rank within the Cicadinae. The subtribe Ydiellaria is raised to tribal rank. The American genus Magicicada Davis, previously of the tribe Tibicinini, now falls within the Taphurini. Three new tribes are recognized within the Australian fauna, the Tamasini n.tribe to accommodate Tamasa Distant and Parnkalla Distant, Jassopsaltriini n.tribe to accommodate Jassopsaltria Ashton and Burbungini n.tribe to accommodate Burbunga Distant.
    [Show full text]
  • Title: the Phylogenetic Information Carried by a New Set Of
    CORE Metadata, citation and similar papers at core.ac.uk Title: The phylogenetic information carried by a new set of morphological characters in planthoppers : the internal mouthpart structures and test in the Cixiidae model (Hemiptera: Fulgoromorpha) Author: Jolanta Brożek, Thierry Bourgoin Citation style: Brożek Jolanta, Bourgoin Thierry. (2013). The phylogenetic information carried by a new set of morphological characters in planthoppers : the internal mouthpart structures and test in the Cixiidae model (Hemiptera: Fulgoromorpha).. "Zoomorphology" (2013, no. 4, s. 403-420), doi 10.1007/s00435-013-0195-2 Zoomorphology (2013) 132:403–420 DOI 10.1007/s00435-013-0195-2 ORIGINAL PAPER The phylogenetic information carried by a new set of morphological characters in planthoppers: the internal mouthpart structures and test in the Cixiidae model (Hemiptera: Fulgoromorpha) Jolanta Brozek_ • Thierry Bourgoin Received: 28 January 2013 / Revised: 28 April 2013 / Accepted: 4 May 2013 / Published online: 23 May 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Internal morphological structures of Cixiidae Introduction mouthparts are described and compared in various repre- sentatives of the Cixiidae and several other representatives The Hemiptera are characterised by a deep modification of of hemipterans. The morphological study shows that the their buccal apparatus into a rostrum consisting of the mouthpart structures have not evolved uniformly and labium guiding two pairs of respective mandibular and reveals the great disparity of these structures. Particularly, maxillar stylets allowing their penetration into feedings the connecting system of the mouthparts, localisation of tissues. For mechanical efficiency, these stylets are mor- salivary canal and shape of the mandibular and maxillar phologically more or less strongly coapted through inter- stylets provide together a new set of 17 new characters.
    [Show full text]
  • A Giant Tettigarctid Cicada from the Mesozoic of Northeastern China
    SPIXIANA 39 1 119-124 München, September 2016 ISSN 0341-8391 A giant tettigarctid cicada from the Mesozoic of northeastern China (Hemiptera, Tettigarctidae) Jun Chen & Bo Wang Chen, J. & Wang, B. 2016. A giant tettigarctid cicada from the Mesozoic of northeastern China (Hemiptera, Tettigarctidae). Spixiana 39 (1): 119-124. A new genus, Macrotettigarcta gen. nov. in the insect family Tettigarctidae with a new species Macrotettigarcta obesa spec. nov., is described from the latest Middle- earliest Late Jurassic of northeastern China. The new tettigarctid cicada is giant and morphologically unique, and so adds to our knowledge of the biodiversity of the Mesozoic Tettigarctidae. In addition, the evolutionary history of Jurassic–Creta- ceous Tettigarctidae in northeastern China is discussed. Jun Chen (corresponding author), Institute of Geology and Paleontology, Linyi University, Shuangling Rd., Linyi 276000, China; e-mail: [email protected] Bo Wang, State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing In- stitute of Geology and Palaeontology, East Beijing Rd., Nanjing 210008, China; e-mail: [email protected] Introduction of forewing as well as other body structures. The new taxon further ascertains the fact that Mesozoic The Tettigarctidae (hairy cicadas) is the most an- tettigarctids were highly structurally diversified, cient group of the superfamily Cicadoidea and is and so adds to our knowledge of the biodiversity now relict, with only two species attributed to the and evolutionary history of Tettigarctidae. sole genus Tettigarcta White, 1845 (Moulds 1990, Shcherbakov 2009). The Mesozoic records of this family are relatively rich, but most known fossils are Material and methods just incomplete forewing impressions (Li et al.
    [Show full text]
  • 1 Universidade Federal Do Ceará Centro De Ciências
    1 UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE GEOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL FORTALEZA 2019 2 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Orientador: Prof. Dr. Geraldo Jorge Barbosa de Moura. Coorientador: Prof. Dr. César Ulisses Vieira Veríssimo. FORTALEZA 2019 3 4 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Aprovada em: 18/01/2019. BANCA EXAMINADORA ________________________________________ Prof. Dr. Geraldo Jorge Barbosa de Moura (Orientador) Universidade Federal Rural de Pernambuco (UFRPE) _________________________________________ Prof. Dr. Marcio Mendes Universidade Federal do Ceará (UFC) _________________________________________ Prof. Dr. Marcos Antônio Leite do Nascimento Universidade Federal do Rio Grande do Norte (UFRN) _________________________________________ Prof. Dr Kleberson de Oliveira Porpino Universidade do Estado do Rio Grande do Norte (UERN) ________________________________________ Dra Pâmela Moura Universidade Federal do Ceará (UFC) 5 A Deus.
    [Show full text]
  • Terra Nostra 2018, 1; Mte13
    IMPRINT TERRA NOSTRA – Schriften der GeoUnion Alfred-Wegener-Stiftung Publisher Verlag GeoUnion Alfred-Wegener-Stiftung c/o Universität Potsdam, Institut für Erd- und Umweltwissenschaften Karl-Liebknecht-Str. 24-25, Haus 27, 14476 Potsdam, Germany Tel.: +49 (0)331-977-5789, Fax: +49 (0)331-977-5700 E-Mail: [email protected] Editorial office Dr. Christof Ellger Schriftleitung GeoUnion Alfred-Wegener-Stiftung c/o Universität Potsdam, Institut für Erd- und Umweltwissenschaften Karl-Liebknecht-Str. 24-25, Haus 27, 14476 Potsdam, Germany Tel.: +49 (0)331-977-5789, Fax: +49 (0)331-977-5700 E-Mail: [email protected] Vol. 2018/1 13th Symposium on Mesozoic Terrestrial Ecosystems and Biota (MTE13) Heft 2018/1 Abstracts Editors Thomas Martin, Rico Schellhorn & Julia A. Schultz Herausgeber Steinmann-Institut für Geologie, Mineralogie und Paläontologie Rheinische Friedrich-Wilhelms-Universität Bonn Nussallee 8, 53115 Bonn, Germany Editorial staff Rico Schellhorn & Julia A. Schultz Redaktion Steinmann-Institut für Geologie, Mineralogie und Paläontologie Rheinische Friedrich-Wilhelms-Universität Bonn Nussallee 8, 53115 Bonn, Germany Printed by www.viaprinto.de Druck Copyright and responsibility for the scientific content of the contributions lie with the authors. Copyright und Verantwortung für den wissenschaftlichen Inhalt der Beiträge liegen bei den Autoren. ISSN 0946-8978 GeoUnion Alfred-Wegener-Stiftung – Potsdam, Juni 2018 MTE13 13th Symposium on Mesozoic Terrestrial Ecosystems and Biota Rheinische Friedrich-Wilhelms-Universität Bonn,
    [Show full text]
  • Evolution of the Insects
    CY501-C08[261-330].qxd 2/15/05 11:10 PM Page 261 quark11 27B:CY501:Chapters:Chapter-08: 8 TheThe Paraneopteran Orders Paraneopteran The evolutionary history of the Paraneoptera – the bark lice, fold their wings rooflike at rest over the abdomen, but thrips true lice, thrips,Orders and hemipterans – is a history beautifully and Heteroptera fold them flat over the abdomen, which reflected in structure and function of their mouthparts. There probably relates to the structure of axillary sclerites and other is a general trend from the most generalized “picking” minute structures at the base of the wing (i.e., Yoshizawa and mouthparts of Psocoptera with standard insect mandibles, Saigusa, 2001). to the probing and puncturing mouthparts of thrips and Relationships among paraneopteran orders have been anopluran lice, and the distinctive piercing-sucking rostrum discussed by Seeger (1975, 1979), Kristensen (1975, 1991), or beak of the Hemiptera. Their mouthparts also reflect Hennig (1981), Wheeler et al. (2001), and most recently by diverse feeding habits (Figures 8.1, 8.2, Table 8.1). Basal Yoshizawa and Saigusa (2001). These studies generally agree paraneopterans – psocopterans and some basal thrips – are on the monophyly of the order Hemiptera and most of its microbial surface feeders. Thysanoptera and Hemiptera suborders and a close relationship of the true lice (order independently evolved a diet of plant fluids, but ancestral Phthiraptera) with the most basal group, the “bark lice” (Pso- heteropterans were, like basal living families, predatory coptera), which comprise the Psocodea. One major issue is insects that suction hemolymph and liquified tissues out of the position of thrips (order Thysanoptera), which either their prey.
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2018.1 Andrew J. Ross 15/05/2018 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of April 2018. It does not contain unpublished records or records from papers in press (including on- line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. New additions or taxonomic changes to the previous list (v.2017.4) are marked in blue, corrections are marked in red. The list comprises 37 classes (or similar rank), 99 orders (or similar rank), 510 families, 713 genera and 916 species. This includes 8 classes, 64 orders, 467 families, 656 genera and 849 species of arthropods. 1 Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in parentheses in the main list below.
    [Show full text]