Fishery Statistical Bulletin 2014.Pdf (2.419Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Fishery Statistical Bulletin 2014.Pdf (2.419Mb) © 2017 Southeast Asian Fisheries Development Center (SEAFDEC) P.O. Box 1046, Kasetsart Post Office, Chatuchak, Bangkok 10903, Thailand All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronical or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission in writing from the copywriter. ISSN 0857-748X FOREWORD In Southeast Asia, the importance of fishery statistics has been widely accepted as a crucial tool that provides the foundation for formulating not only national fisheries policies but also national management frameworks and actions. The said information also presents the basis for understanding the status and condition of the fishery resources in the region. Since 1978, SEAFDEC has been regularly compiling regional fishery statistics for the “Fishery Statistical Bulletin for the South China Sea Area” and the “Fishery Statistical Bulletin of Southeast Asia” from 2008 and onwards. The Bulletin is meant to display reliable and comparable fishery statistics of the Southeast Asian region with standardized definitions and classifications. In order to attain such goal, SEAFDEC continues to support the ASEAN Member States (AMSs) in their efforts towards improving the collection and compilation of their respective fishery statistics. SEAFDEC recognizes that fishery statistics data and information are useful for the AMSs and SEAFDEC, as basis for generating appropriate policy to support sustainable fisheries development and management in the Southeast Asian region. Through the years, publication by SEAFDEC of the annual Fishery Statistical Bulletin has been successfully realized because of the continued efforts of the AMSs in providing the most updated national fishery data and information. From the inputs provided by the AMSs, a time series is made available in the Bulletin making it possible to compare over time and between AMSs. Specifically for 2014, the time series cover fishery data from 2010 to 2014. Moreover, the information provided in this issue of the Bulletin includes fisheries production, fishing fleet, fishing gear, fish price, and employment in fisheries. For their cooperation and support, especially in providing the necessary information that went into this Bulletin, SEAFDEC is indeed very grateful to the national agencies and concerned personnel of the AMSs. SEAFDEC also looks forward to the sustained and strengthened cooperation of the AMSs, especially on fisheries data compilation for the improvement of the forthcoming issues of the Bulletin. Once again, SEAFDEC would like to thank the ASEAN Member States as well as related organizations for their cooperation and support in the compilation of fisheries statistical data including the inputs that went into this 2014 Bulletin. With such continued support, SEAFDEC would be assured of the sustainability of the Bulletin as a tool for enhancing the sustainable development of the respective fisheries of the AMSs. Dr. Kom Silapajarn Secretary-General Southeast Asian Fisheries Development Center CONTENTS I EXPLANATORY NOTES 1. GENERAL Notes ........................................................................................................................ i 1.1 Data Sources ....................................................................................................................................... i 1.2 Incomplete Data ................................................................................................................................. i 1.3 Time Reference................................................................................................................................... i 1.4 Unit of Measurement......................................................................................................................... i 1.5 Standard Symbols and Abbreviations ................................................................................................. i 2. Notes ON Statistics ................................................................................................................ ii 2.1 Statistical Coverage ............................................................................................................................. ii 2.2 Geographical Coverage ....................................................................................................................... ii 2.3 Fishery Structure and Sub-sectors ...................................................................................................... ii 2.3.1 Statistics on Capture Fisheries .............................................................................................. ii 2.3.1.1 Marine Capture Fishery ....................................................................................... ii 2.3.1.2 Inland Capture Fishery ......................................................................................... iv 2.3.2 Statistics on Aquaculture ..................................................................................................... vi 2.3.3 Statistics on Fish Price .......................................................................................................... viii APPENDICES 1. Classification of Fishing Areas ............................................................................................................. ix 2. Classification of Small-scale and Commercial Fisheries ...................................................................... xiv 3. List of Aquatic Animals and Plants ...................................................................................................... xvi 4. Classification of Fishing Gears ............................................................................................................xviii 5. Classification of Fishing Boats............................................................................................................. xxi 6. Classification of Fishers and Farmers.................................................................................................. xxii II SUMMARY 2014 StAtIStics SuMMAry ............................................................................................................................. 3 III STATISTICAL TABLES 2014 1. ANNUAL SERIES OF FISHERY PRODUCTION.................................................................................. 21 1.1 total Production ................................................................................................................................. 21 1.1.1 In Quantity............................................................................................................................... 21 1.1.2 In Value .................................................................................................................................. 21 1.2 Marine Fishery Production................................................................................................................. 22 1.2.1 In Quantity............................................................................................................................... 22 1.2.2 In Value .................................................................................................................................. 22 1.3 Inland Fishery Production.................................................................................................................. 23 1.3.1 In Quantity.............................................................................................................................. 23 1.3.2 In Value................................................................................................................................... 23 1.4 Aquaculture Production..................................................................................................................... 24 1.4.1 In Quantity.............................................................................................................................. 24 1.4.2 In Value................................................................................................................................... 24 2. Fishery Production by Sub-sector................................................................................... 26 2.1 In Quantity......................................................................................................................................... 26 2.2 In Value.............................................................................................................................................. 27 3. MARINE Capture Fishery Statistics................................................................................... 28 3.1 Number of Fishing Boats by Type and Tonnage................................................................................. 28 3.2 Number of Fishing units by Size of Boat........................................................................................... 30 3.2.1 Brunei Darussalam................................................................................................................. 30 3.2.2 Indonesia................................................................................................................................ 31 3.2.3 Malaysia................................................................................................................................. 32 3.2.4 Myanmar...............................................................................................................................
Recommended publications
  • (Niño 3.4 Index) in the West of Java Sea
    Available online at www.worldscientificnews.com WSN 117 (2019) 175-182 EISSN 2392-2192 SHORT COMMUNICATION Variability in fish catch rates associated with Sea Surface Temperature Anomaly (Niño 3.4 index) in the West of Java Sea Mega Syamsuddin*, Sunarto, Lintang Yuliadi, Syawaludin Harahap Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor Sumedang Indonesia *E-mail address: [email protected] ABSTRACT The remotely derived oceanographic variables included sea surface height anomaly (SSHA), sea surface temperature (SST), chlorophyll-a (Chl a) and fish catches are used as a combined dataset to understand the ocean climate variability and further addresses their relations with the fish catches in the West-Java Sea. Fish catches and remotely sensed data are analyzed for the 5 years datasets from 2010- 2014 and emphasized the differences of climate conditions during El Niño Southern Oscillation (ENSO) events. Here, we demonstrate the prominent annual variation of two species small pelagic fish catches (Euthynus affinis and Scomberomorus commerson) and one demersal species (Netuma thallasina) as representative of dominant catch in the region. Small pelagic catches had significant increment during El Niño compared to during La Niña events. Changes in oceanographic conditions during ENSO events resulted in perceivable variations in catches, with an average catches of 839.6 t (E. affinis) and 273,7 t (S. commerson) during El Niño. During La Niña event catch rates were reduced with an average catches of 602.6 t (E. affinis) and 210.3 t (S. commerson). During the La Niña event was less favorable for small pelagic catches.
    [Show full text]
  • Download Article (PDF)
    STUDIES ON THE CLASSIFICATION OF THE CATFISHES OF THE ORIENTAL AND PALAEARCTIC FAMILY SILURID AE. By JANET RAIG, NoJ,ural History Museum, Stanford University, U. S. A. CONTENTS. PAGE. Introduction 59 Acknowledgements 60 The Fa.mily Siluridae- A. History of the Family 60 B. Characterization of the Family .. 60 C. Distdbution 61 ~. Diagnostic Key to the Genera 61 A Tenta.tive Review of the Genera of Siluridae- 1. Hemisilurus 63 2. Oeratoglanis 65 3. Belodontichthys 65 4. Silurichthys 67 o. Silurus 71 6. Wallago 79 7. Hito 81 8.0mpok 83 9. Kryptopter'U8 92 A Checklist of the Genera and species 94 References 110 INTRODUCTION. The present study was undertaken in order to untangle some of the problems of classification which have beset this group. The genera have not been studied in toto since the days of Bleeker and Gunther. In this study I have made an attempt to clarify the relationships of the various genera, which in some cases has involved revision of generic limits. Lack of time and material has precluded a thorough analysis of the species within any genus; for the same reason no skeletal examinations were possible. It is hoped, however, that a clarification of generic limits through study of external characters will make it easier in the future for interested workers, with sufficient material at hand, to do further and much-needed work on both the genera and the species. [ 59 ] 60 Records of the Indian Muse'U1n. [VOL. XLVIII; ACKNOWLEDGEMENTS. For most valuable aid and guidance in this study, and the giving free~y of precious tin;te, I wish to thank Dr.
    [Show full text]
  • Stock Enhancement Activities in the Union of Myanmar
    Stock enhancement activities in the Union of Myanmar Item Type book_section Authors Win, Kyaw Myo Publisher Aquaculture Department, Southeast Asian Fisheries Development Center Download date 25/09/2021 20:31:29 Link to Item http://hdl.handle.net/1834/40487 Stock enhancement activities in the Union of Myanmar Win, Kyaw Myo Date published: 2006 To cite this document : Win, K. M. (2006). Stock enhancement activities in the Union of Myanmar. In J. H. Primavera, E. T. Quinitio, & M. R. R. Eguia (Eds.), Proceedings of the Regional Technical Consultation on Stock Enhancement for Threatened Species of International Concern, Iloilo City, Philippines, 13-15 July 2005 (pp. 117-120). Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center. To link to this document : http://hdl.handle.net/10862/2940 Share on : PLEASE SCROLL DOWN TO SEE THE FULL TEXT This content was downloaded from SEAFDEC/AQD Institutional Repository (SAIR) - the official digital repository of scholarly and research information of the department Downloaded by: [Anonymous] On: January 30, 2019 at 11:14 PM CST Follow us on: Facebook | Twitter | Google Plus | Instagram Library & Data Banking Services Section | Training & Information Division Aquaculture Department | Southeast Asian Fisheries Development Center (SEAFDEC) Tigbauan, Iloilo 5021 Philippines | Tel: (63-33) 330 7088, (63-33) 330 7000 loc 1340 | Fax: (63-33) 330 7088 Website: www.seafdec.org.ph | Email: [email protected] Copyright © 2011-2015 SEAFDEC Aquaculture Department. Stock Enhancement Activities in the Union of Myanmar Kyaw Myo Win Department of Fisheries, Sinmin Road Ahlone Township, Yangon, Union of Myanmar Introduction Exploitation of endangered species is strictly prohibited hence, there are no The geography of the Union of Myanmar recorded catches for these species.
    [Show full text]
  • Quarantine Requirements for the Importation of Live Fish and Their Gametes and Fertilized Eggs
    Appendix 2-1 Quarantine Requirements for the Importation of Live Fish and Their Gametes and Fertilized Eggs (In case of any discrepancy between the English version and the Chinese text of these Requirements, the Chinese text shall govern.) Promulgated by Council of Agriculture on May 2, 1994 Amendment by Council of Agriculture on December 8, 2003 Amendment by Council of Agriculture on February 16, 2011 Amendment of attached table by Council of Agriculture on December 20, 2011 Amendment by Council of Agriculture on June 22, 2017 1. The scope of species and pertinent diseases of concern of live fish, their gametes and fertilized eggs to which these Requirements apply is shown in the attached table. Gametes mentioned in the preceding paragraph refer to sperms and unfertilized eggs of fish. 2. Sample collection, testing and surveillance as referred to in these Requirements must be conducted in accordance with relevant provisions in the Manual of Diagnostic Tests for Aquatic Animals of the World Organization for Animal Health (hereinafter referred to as the OIE Aquatic Manual). For diseases with no sampling, testing or surveillance methods prescribed in the OIE Aquatic Manual, methods that have been published in international scientific journals are to be used. Disease incubation periods referred to in these Requirements are those specified in the OIE Aquatic Manual or the Aquatic Animal Health Code of the OIE (hereinafter referred to as the OIE Aquatic Code). For diseases with incubation periods not specified in the OIE Aquatic Manual or OIE Aquatic Code, incubation periods stated in articles published in international scientific journals shall apply.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Siluriformes) in Coastal Waters of Guinea
    BULLETIN OF MARINE SCIENCE. 56(1): 5M7,1995 AGE AND GROWTH OF THREE SPECIES OF ARIIDAE (SILURIFORMES) IN COASTAL WATERS OF GUINEA Frangois Conand, Sekou Balta Camara and Frangois Domain ABSTRACT The growth of three West African marine catfish, Arius heudeloti, A. parkii, A, latiscutatus (Siluriformes, Ariidae), was studied in Guinea by examining sections of the first dorsal spine. Age and growth interpretations were possible for fish up to 40 cm and the three species reveal a similar biology. A single annulus is formed each year at the beginning of the rainy season. Growth seems to be slow, and 40 cm fork length individuals are about 6 years old. These ariids can reach large sizes (80 cm or larger), which may indicate that the natural mortality is low. This adaptativeness is probably related to their strong body protection against predators, their low fecundity and egg incubation. Marine catfish have a high commercial value in Guinea and represent an im- portant fishery for coastal waters. Catch was estimated to 1,000 metric tons in 1990 (COPACE, 1991). Information on growth and age is needed along with other life history information for effective management, but little is known on west African species. Three species of marine catfish are found in Guinea, Arius heudeloti Valenci- ennes 1840, Arius parkii Günther 1864 and Arius Zutiscututus Günther 1864. They live on muddy bottoms in estuaries and in the sea inside the 20 m depth line along the western coast of Africa between 20"N and 20%. These ariids are char- acteristic of the Sciaenid community (Domain, 1989).
    [Show full text]
  • Giant Fish of the Mekong the Mekong River © Daniel Cheong / Executive Summary WWF Greater Mekong Programme ©
    Riverof Giants Giant Fish of the Mekong The Mekong River © Daniel Cheong / www.flickr.com Executive Summary WWF Greater Mekong Programme © The worlds biggest freshwater fish and 4 out of the top ten As ambassadors of the Greater Mekong region, vulnerable to giant freshwater fish species can be found in the Mekong River fishing pressure and changes in the river environment, the which flows through Cambodia, China, Lao PDR, Myanmar, status of the giant fish is one indicator of the health and Thailand and Vietnam. More giants inhabit this mighty river ecological integrity of the Mekong. The well-being of these than any other on Earth. species is therefore closely linked to the sustainable management of the region and to limiting the environmental Little is known about these magnificent species of the Greater impacts of increased regional economic activity and Mekong region, some attaining five metres in length and over integration. half a ton in weight. What is known is that their future is uncertain. Any impact on the ecological balance of the river also threatens the sustainability of the aquatic resources that support Populations of the Mekong giant catfish have plummeted 90 millions of people. There are at least 50 migratory species per cent in just two decades, whilst the giant dog-eating catfish which are highly vulnerable to mainstream dam development. is seldom seen now in the wild. Living amongst the new These make up between 40-70 per cent of the catch of fish in emerging economic powers of Asia, a combination of the Mekong. infrastructure development, habitat destruction and overharvesting, is quickly eroding populations of these The 1995 agreement of the Mekong River Commission should extraordinary species.
    [Show full text]
  • Fish Species
    Fish Species Dorado or Golden Dorado- Classification: Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Characiformes Family: Characidae Genus: Salminus Species: maxillosus Binomial name: Salminus maxillosus Others: Salminus cuvieri, Salminus brasiliensis Characteristics: The dorado has been often referred to as the “tigre de rio” or jaguar of the river to be more accurate. They possess a bright golden coloration, accented by rows of tiny small back dots running along their powerful streamlined bodies. Their fins have a bright red coloration and the caudal fin has a black bar along the middle through the caudal peduncle. Their massive jaws are equipped with rows of razor sharp pointy teeth, living up quite accurately to its local nickname. Dorado can reach upwards of 100cm in length and weigh as much as 45lbs (20.5kgs), more commonly in the 22-33lb (10-15kg) range. Tabarana, the silver dorado- Classification- Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Characiformes Family: Characidae Genus: Salminus Species: hilarii Binomial name: Salminus hilarii Characteristics: This species is a close relative of the dorado, and shares many of its morphological features. However, this fish is smaller in average size, and has less girth. It is silver with bright orange specks between scales, and black and red accents on the caudal fin, as well as black accents on the dorsal and anal fins. This is why it is called the “white or silver dorado” in much of its range. This species is quite aggressive and preys upon smaller tetras and other baitfish such as sabalo (Prochilodus sp.). Its sharp teeth make quick work of the smaller characins in the river system.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • After Eighty Years of Misidentification, a Name for the Glass Catfish (Teleostei: Siluridae)
    Zootaxa 3630 (2): 308–316 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3630.2.6 http://zoobank.org/urn:lsid:zoobank.org:pub:EC31E0FE-4F26-441A-A1E9-2A9081102ED9 After eighty years of misidentification, a name for the glass catfish (Teleostei: Siluridae) HEOK HEE NG1 & MAURICE KOTTELAT1,2 1Raffles Museum of Biodiversity Research, National University of Singapore, 6 Science Drive 2, #03-01, Singapore 117546 E-mail: [email protected] 2Route de la Baroche 12, Case Postale 57, 2952 Cornol, Switzerland (address for correspondence). E-mail: [email protected] Abstract We resolve the identity of the glass catfish, a species of Asian freshwater fish commonly encountered as an ornamental fish and an experimental subject that has long been misidentified as either Kryptopterus bicirrhis or K. minor. Our study indicates that the glass catfish is an unnamed species distinct from either, which we describe here as Kryptopterus vitreolus. Kryptopterus vitreolus is known from river drainages in peninsular and southeastern Thailand, and is distinguished from congeners in having a combination of: transparent body in life, maxillary barbels reaching beyond the base of the first anal-fin, dorsal profile with a pronounced nuchal concavity, snout length 29–35% head length (HL), eye diameter 28–34% HL, slender body (depth at anus 16–20% standard length (SL)) and caudal peduncle (depth 4–7% SL), 14–18 rakers on the first gill arch, and 48–55 anal-fin rays. Key words: Peninsular Thailand, Kryptopterus Introduction Silurid catfishes of the genus Kryptopterus Bleeker 1858 are small- to moderate-sized (ca 70–300 mm SL) fishes found predominantly in fluviatile systems throughout Southeast Asia.
    [Show full text]
  • On-Farm Feeding and Feed Management Strategies in Tropical Aquaculture
    361 On-farm feeding and feed management strategies in tropical aquaculture Amararatne Yakupitiyage Aquaculture and Aquatic Resources Management Field Asian Institute of Technology Thailand Yakupitage, A. 2013. On-farm feeding and feed management strategies in tropical aquaculture. In M.R. Hasan and M.B. New, eds. On-farm feeding and feed management in aquaculture. FAO Fisheries and Aquaculture Technical Paper No. 583. Rome, FAO. pp. 361–376. ABSTRACT Aquaculture can be defined as the farming of aquatic organisms by controlling at least one stage of the life cycle. The life cycle controls are conceptually divided into larval, nursing, grow-out and broodstock management stages. At each stage, there are different feeding objectives. Those for the first-feeding larval stage are to wean fish larvae onto dry feeds while ensuring maximum survival. Farmer strategies include the use greenwater larval culture, either by fertilizing fish ponds or by culturing phytoplankton and/or zooplankton in tank systems or by initially feeding fish larvae with live feed and subsequently weaning them onto dry feeds. The feeding objective during the nursing stage is to culture postlarvae at relatively high densities to produce high-quality seed. The feeding strategies at the nursing stage are species-specific but generally consist of greenwater technology for omnivorous fish or the feeding of fish with farm-made or commercial feeds without deteriorating water quality. The carrying capacity at the nursing stage is determined mainly by water quality parameters. The feed and feeding management at the grow-out stage has been thoroughly reviewed. The main feeding objective during this stage is to reduce the feed conversion ratio (FCR), hence feed cost, and minimize feed/metabolic waste generation.
    [Show full text]
  • Imperiled Giant Fish and Mainstream Dams in the Lower Mekong Basin: Assessment of Current Status, Threats, and Mitigation
    IMPERILED GIANT FISH AND MAINSTREAM DAMS IN THE LOWER MEKONG BASIN: ASSESSMENT OF CURRENT STATUS, THREATS, AND MITIGATION Report prepared by Zeb Hogan, Ph.D. University of Nevada, Reno Reno, U.S.A. Director, National Geographic Society Megafishes Project National Geographic Society Fellow United Nations Convention on Migratory Species Scientific Councilor for Fish April 15 2011 Executive Summary This report focuses on the impacts of the Xayaburi dam on five of the Mekong’s largest fish and provides a short discussion about potential impacts to other threatened and migratory species. From a biodiversity and fisheries perspective, the environmental impact assessment (EIA) of the dam developer (Ch. Karnchang Public Company Limited) has a number of serious shortcomings. The field portion of the fisheries assessment was completed extremely quickly, relied on a very limited number of sampling techniques, and consisted of only 6 sampling locations spread over just 22 km of river. Given the high diversity of Mekong fish, the seasonality of catches, their migratory nature, and – in the case of threatened species – their rarity, the field survey methodology was grossly inadequate. The developer’s EIA cannot be used to predict with any accuracy the serious impacts of the Xayaburi dam on threatened or migratory fish. All available evidence suggests the Xayaburi dam will have serious negative impacts on the migratory and imperiled fish of the lower Mekong River and may drive the Mekong’s two largest freshwater fish species, the Mekong giant catfish and the giant pangasius catfish to extinction. Introduction The Mekong River is one of the most biodiverse and productive rivers on Earth.
    [Show full text]