The Bu.Lletins of This Station Are Mailed Free to All Ts of T., E State Who Make Application for Them
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reptile Pets Shuttle Grasshopper Allergy and Asthma Into Homes Erika Jensen-Jarolim1,2*, Isabella Pali-Schöll1,2, Sebastian A.F
Jensen-Jarolim et al. World Allergy Organization Journal (2015) 8:24 DOI 10.1186/s40413-015-0072-1 journal REVIEW Open Access Caution: Reptile pets shuttle grasshopper allergy and asthma into homes Erika Jensen-Jarolim1,2*, Isabella Pali-Schöll1,2, Sebastian A.F. Jensen3, Bruno Robibaro3,4 and Tamar Kinaciyan5 Abstract The numbers of reptiles in homes has at least doubled in the last decade in Europe and the USA. Reptile purchases are increasingly triggered by the attempt to avoid potentially allergenic fur pets like dogs and cats. Consequently, reptiles are today regarded as surrogate pets initiating a closer relationship with the owner than ever previously observed. Reptile pets are mostly fed with insects, especially grasshoppers and/or locusts, which are sources for aggressive airborne allergens, best known from occupational insect breeder allergies. Exposure in homes thus introduces a new form of domestic allergy to grasshoppers and related insects. Accordingly, an 8-year old boy developed severe bronchial hypersensitivity and asthma within 4 months after purchase of a bearded dragon. The reptile was held in the living room and regularly fed with living grasshoppers. In the absence of a serological allergy diagnosis test, an IgE immunoblot on grasshopper extract and prick-to-prick test confirmed specific sensitization to grasshoppers. After 4 years of allergen avoidance, a single respiratory exposure was sufficient to trigger a severe asthma attack again in the patient. Based on literature review and the clinical example we conclude that reptile keeping is associated with introducing potent insect allergens into home environments. Patient interviews during diagnostic procedure should therefore by default include the question about reptile pets in homes. -
Comparative Study on the Various Species of Locusts with Special
Journal of Entomology and Zoology Studies 2016; 4(6): 38-45 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Comparative study on the various species of locusts JEZS 2016; 4(6): 38-45 © 2016 JEZS with special reference to its population fluctuation Received: 07-09-2016 Accepted: 08-10-2016 from Thar Desert, Sindh Ahmed Ali Samejo Department of Zoology, University of Sindh, Jamshoro- Ahmed Ali Samejo and Riffat Sultana Pakistan Abstract Riffat Sultana Thar Desert is most favorable for life of human throughout the deserts of the world. It is rain fed land, Department of Zoology, some patches are cultivated by farmers in the form of fields for producing sources of economy, other University of Sindh, Jamshoro- Pakistan large part of desert remains untouched for natural vegetation for livestock, but unfortunately little yield of desert is also affected by variety of insect including locusts. During present study four species of locusts; belonging to four genera Anacridium, Cyrtacanthacris, Locusta and Schistocerca, two subfamilies Cyrtacanthacridinae and Oedipodenae and one family Acrididae were reported from Thar Desert from June 2015 to May 2016. Comparative study revealed that two species Schistocerca gregaria and Locusta migratoria are swarming and destructive while, Anacridium aegyptium and Cyrtacanthacridinae tatarica are non-swarming but are larger in body size and graze more vegetation than both swarming species. Though these four species have ecological and morphological difference but the nature of damage is almost similar. All these species were recorded as pest of foliage of all crops and natural vegetation. Keywords: Comparative morphology, geographic distribution, locusts, Thar Desert, damage to useful plants 1. -
Locusts in Queensland
LOCUSTS Locusts in Queensland PEST STATUS REVIEW SERIES – LAND PROTECTION by C.S. Walton L. Hardwick J. Hanson Acknowledgements The authors wish to thank the many people who provided information for this assessment. Clyde McGaw, Kevin Strong and David Hunter, from the Australian Plague Locust Commission, are also thanked for the editorial review of drafts of the document. Cover design: Sonia Jordan Photographic credits: Natural Resources and Mines staff ISBN 0 7345 2453 6 QNRM03033 Published by the Department of Natural Resources and Mines, Qld. February 2003 Information in this document may be copied for personal use or published for educational purposes, provided that any extracts are fully acknowledged. Land Protection Department of Natural Resources and Mines GPO Box 2454, Brisbane Q 4000 #16401 02/03 Contents 1.0 Summary ................................................................................................................... 1 2.0 Taxonomy.................................................................................................................. 2 3.0 History ....................................................................................................................... 3 3.1 Outbreaks across Australia ........................................................................................ 3 3.2 Outbreaks in Queensland........................................................................................... 3 4.0 Current and predicted distribution ........................................................................ -
Song Dissertation
SYSTEMATICS OF CYRTACANTHACRIDINAE (ORTHOPTERA: ACRIDIDAE) WITH A FOCUS ON THE GENUS SCHISTOCERCA STÅL 1873: EVOLUTION OF LOCUST PHASE POLYPHENISM AND STUDY OF INSECT GENITALIA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hojun Song, M.S. ***** The Ohio State University 2006 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Norman F. Johnson ______________________________ Dr. Johannes S. H. Klompen Advisor Graduate Program in Entomology Copyright by Hojun Song 2006 ABSTRACT The systematics of Cyrtacanthacridinae (Orthoptera: Acrididae) is investigated to study the evolution of locust phase polyphenism, biogeography, and the evolution of male genitalia. In Chapter Two, I present a comprehensive taxonomic synopsis of the genus Schistocerca Stål. I review the taxonomic history, include an identification key to species, revise the species concepts of six species and describe a new species. In Chapter Three, I present a morphological phylogeny of Schistocerca, focusing on the biogeography. The phylogeny places the desert locust S. gregaria deep within the New World clade, suggesting that the desert locust originated from the New World. In Chapter Four, I review the systematics of Cyrtacanthacridinae and present a phylogeny based on morphology. Evolution of taxonomically important characters is investigated using a character optimization analysis. The biogeography of the subfamily is also addressed. In Chapter Five, I present a comprehensive review the recent advances in the study of locust phase polyphenism from various disciplines. The review reveals that locust phase polyphenism is a complex phenomenon consisting of numerous density-dependent phenotypically plastic traits. -
The Occurrence in the Migratory Locust, Locusta Migratoria (Orthoptera
Eur. J. Entomol. 110(4): 577–583, 2013 http://www.eje.cz/pdfs/110/4/577 ISSN 1210-5759 (print), 1802-8829 (online) The occurrence in the migratory locust, Locusta migratoria (Orthoptera: Acrididae), of a short-winged morph with no obvious fitness advantages over the long-winged morph YUDAI NISHIDE and SEIJI TANAKA Locust Research Laboratory, National Institute of Agro-biological Sciences at Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; e-mail: [email protected] Key words. Orthoptera, Acrididae, Locusta migratoria, adaptive significance, trade-off, wing dimorphism Abstract. A short-winged morph, whose occurrence is controlled by a simple recessive Mendelian unit, was recently discovered in Locusta migratoria. The existence of trade-offs between flight capability associated with wing length and other fitness-related traits are often documented for insects. The present study investigated the evolutionary significance of the short-winged and long-winged morphs of this locust using two laboratory strains showing wing dimorphism. The life-history traits examined included nymphal development, adult body weight, percentage adult survival, age at first reproduction, egg production and hatchling body weight. The results indicate that there are no consistent morph-specific differences in any of these traits. Of the several possibilities considered, the most likely is that the short-winged morph of this locust is an aberration or represents an initial stage in the evolution of this spe- cies. INTRODUCTION bairn, 1988) and beetles (Utida, 1972). Other costs asso- Intra-specific wing length polymorphism and poly- ciated with the long-winged morph include develop- phenism are widespread among insects (Harrison, 1980; mental delay (Zera, 1984; Dixon & Howard, 1986), Dingle, 1985; Pener, 1985; Tauber et al., 1986; Roff & decreased longevity (Denno et al., 1989) and smaller off- Fairbairn, 1991; Zera & Denno, 1997). -
Locust Swarm and Its Management
Locust Swarm and its Management Contents What are locusts? ................................................................................................................................... 3 How many species of Locusts are there in India? ................................................................................. 3 From where these locusts come? .......................................................................................................... 4 How much they can eat? ........................................................................................................................ 5 Low long locust swarm lasts in a given place? ...................................................................................... 5 How to control Locust Swarm? .............................................................................................................. 5 1. Mechanical methods ...................................................................................................................... 6 2. Baiting ............................................................................................................................................. 6 3. Dusting ............................................................................................................................................ 6 4. Spraying insecticides ...................................................................................................................... 7 Precautions to be taken: ....................................................................................................................... -
Destructivo Locusts
U.S. DEPARTMENT OF AGRICULTURE. DIVISION OE ENTOMOLOGY. BULLETIN NO. 25. DESTRUCTIVO LOCUSTS. A POPULAR CONSIDERATION OF A FEW OF THE MORE INJURIOUS LOCUSTS (OR "GRASSHOP- PERS") OF THE UNITED STATES, TO- GETHER WITH THE BEST MEANS OF DESTROYING THEM. BY C. V. RILEY, M. A., Ph. D., ENTOMOLOGIST. PUBLISHED BY AUTHORITY OE THE SECRETARY OK AGRICULTURE. WASHINGTON: GOVERNMENT PRINTING OF F I C E. I 89 I . CONTENTS. Page. Letter of submittal 5 Introduction 7 The Kooky Mountain Locust 0 Bange of species Í) Destructive appearances 10 Lile history and habits 10 Where the eggs are laid 10 Manner in which the eggs are laid 12 Philosophy of the egg-mass 13 Number of egg-masses laid by a single i emulo 14 The hatching process 15 Where and under what conditions of soil the young hatch most frceiy. 18 Time of hatching 18 Habits of the young or unhedged locusts in the temporary region ID Directions in which the young locusts travel 21 Kate at which the young travel 22 They reach, in the temporary region, but a few miles east, of where they hatch 22 Kate at which locust swarms move 23 Direction of invading swarms 24 Time of appearance of invading swarms 25 Number of broods; peculiarities of habit 25 Hibernation 26 The Lesser Migratory locust 26 Bau go of species 26 Destructive appearances 27 Life history and habits 27 The Non-Migratory Bed-legged Locust 27 Bango of the species 27 Destructive appearances 28 Life history and habits „ 28 The California Devastating Locust 28 Bange of the species 28 Destructive appearances 21) Life history and habits 30 The Differential Locust 30 Bange of the species 30 Destructive appearances 30 Life history and habits 31 The Two-striped Locust 31 Bange of species 31 Destiuctive appearances 31 Life history and habits 32 Tage. -
Application of Remote Sensing Data for Locust Research and Management—A Review
insects Review Application of Remote Sensing Data for Locust Research and Management—A Review Igor Klein 1,* , Natascha Oppelt 2 and Claudia Kuenzer 1,3 1 German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, Germany; [email protected] 2 Department of Geography, Kiel University, 24118 Kiel, Germany; [email protected] 3 Institute of Geography and Geology, University Wuerzburg, 97074 Wuerzburg, Germany * Correspondence: [email protected] Simple Summary: Locust outbreaks around the world regularly affect vast areas and millions of people. Mapping and monitoring locust habitats, as well as prediction of locust outbreaks is essential to minimize the damage on crops and pasture. In this context, remote sensing has become one of the most important data sources for effective locust management. This review paper summarizes remote sensing-based studies for locust management and research over the past four decades and reveals progress made and gaps for further research. We quantify which locust species, regions of interest, sensor data and variables were mainly used and which thematic foci were of interest. Our review shows that most studies were conducted for the desert locust, the migratory locust and Australian plague locust and corresponding areas of interest. Remote sensing studies for other destructive locust species are rather rare. Most studies utilized data from optical sensors to derive NDVI and land cover for mapping and monitoring the locust habitats. Furthermore, temperature, precipitation and soil moisture are derived from thermal infrared, passive and active radar sensors. Citation: Klein, I.; Oppelt, N.; Applications of the European Sentinel fleet, entire Landsat archive or very-high-spatial-resolution Kuenzer, C. -
FJALOR I Emrave Të Kafshëve Të Shqipërisë
1 Prof. Dr. Dhimitër Dhora Universiteti i Shkodrës “Luigj Gurakuqi” Fakulteti i Shkencave të Natyrës Departamenti i Biologji-Kimisë FJALOR i emrave të kafshëve të Shqipërisë latinisht-shqip-anglisht Botimet “Camaj-Pipa” 2 Prof. Dr. Dhimitër Dhora Fjalor i emrave të kafshëve të Shqipërisë latinisht-shqip-anglisht _________________________________________________ Grafika: Gjergj Spathari ISBN 978-99956-02-61-1 ©Copyright: Dh. Dhora 3 Përmbajtja Parathënie .................................................. 5 Latinisht-shqip-anglisht ............................. 7 Shqip-latinisht ............................................ 142 Anglisht-latinisht ....................................... 211 Latinisht, në renditje sistematike ............... 248 Literaturë .................................................... 284 4 Parathënie Në shekullin e fundit është bërë një punë e madhe për grum- bullimin dhe pasqyrimin në fjalorë të emrave shqip të kafshëve dhe këtu mund të veçoj fjalorët e Gazullit (1942) dhe Demës (2005), Fjalorin e Shqipes së Sotme (2002) e tj. Nga ana tjetër në shumë fauna të ndryshme të Shqipërisë janë dhënë edhe emrat shqip të llojeve të kafshëve, si tek Bino e tjerë (2006) për shpendët dhe gjitarët, Poljakov e tjerë (1958) dhe Rakaj (1995) për peshqit e tjerë. Mirëpo në të gjitha rastet vërehet mungesa e një bashkëpunimi të frytshëm të gjuhëtarëve me specialistët faunistë, çka duket tek mungesa e specifikimit dhe shpjegimit të saktë të emrave, ose tek varfëria e emrave, për shkak të mos- njohjes së fondit të tyre. Nevojat për të zgjidhur në tërësi këto probleme dhe për ti dhënë lexuesve një fjalor sa më të plotë, kanë qenë motivet kryesore të punës për hatimin e tij dhe për të qënë më i vlefshëm, u hartua në tre gjuhë, latinisht – shqip – anglisht. Ky fjalor përmban emrat e 1140 llojeve të kafshëve të Shqipërisë. -
ZAMBIA: African Migratory Locust FLASH UPDATE – 26 October 2020
ZAMBIA: African Migratory Locust FLASH UPDATE – 26 October 2020 IN NUMBERS 12 88,700 47,000 $1,150,000 districts affected Households in need of urgent hectares estimated to be needed by the FAO to assist the humanitarian assistance destroyed by AML affected districts in Zambia OVERVIEW On 4 September 2020, the Food and Agriculture Organization of the United Nations (FAO) in Accra warned that Outbreaks of African Migratory Locust (AML) are threatening the food security and livelihoods of millions of people in Botswana, Namibia, Zambia and Zimbabwe. The AML outbreaks in southern Africa are separate to the Desert Locust emergency in Eastern Africa. Locusts are among the most destructive pests in the world. One swarm can contain tens of millions of adults - there are currently multiple swarms in the southern region. A single swarm can eat as much in one day as 2,500 people, demolishing crops and livestock pasture in a matter of hours. In Zambia the outbreak of the AML affects parts of Figure 1: AML in Shesheke district Photo by: Nicholas Mwale (MoA) Central, Southern and Western Provinces. Affected districts include Shibuyunji, Mumbwa, Itezhi-tezhi, Kazungula, Namwala, Sesheke, Nalolo, Mongu, Mwandi, Kalabo, Senanga and Sioma. The invasion has become very serious in Sesheke, Mwandi and Sioma in Western and Kazungula in Southern Provinces. The outbreak of the locusts has the potential to disrupt the 2020/2021 agricultural season that is due to start in October/November and thereby affect household and national food security. In March 2020, an outbreak of the AML was reported in Kazungula district of Southern Province. -
Grasshoppers, Locusts and Their Population Control What Is the Difference Between a Grasshopper and a Locust? Systematics L3
Orthoptera: Acrididae Grasshoppers, Locusts and their Population Control What is the difference between a grasshopper and a locust? Systematics L3 © RPB 2009; orthoptera2 v. 1.5 Hieroglyphus daganensis: a Locusts & grasshoppers of the Sahel: grasshopper of the Sahel booklets • Locust spp. in several families Solitary Abbreviations for names: SGR: Schistocerca gregaria OSE: Oedaleus senegalensis Crowded Threats to (marginal) agriculture Migratory locust Locusta migratoria (LMI) Senegalese grasshopper Oedaleus senegalensis 1 African Asian species … locust • Locusta migratoria manilensis • Nomadacris (Patanga) succincta plagues Bombay locust • Rice grasshopper - Oxya spp. • Grasshopper complex in N. Asian pasture Nymphs of the desert locust, Young adult SGR Schistocerca gregaria (SGR) period of maturation before flight and swarming Solitary Gregarious From B.P. Uvarov (1966) “Grasshoppers and Locusts” (discovery 1921) photos: FAO Gregarisation solitarious gregarious Dispersed yes no Aggregated 2 Cues for gregarisation Triggering gregarisation Solitarious individuals can be Periods suitable for locust breeding followed made to become gregarious by vegetation drying - leading to clumping of simply by buffeting them with vegetation and concentration of population small balls of papier mâché, or millet seeds. Crowding causes increased physical contact between individuals (especially hind legs) Visual and pheromonal stimulation effects Experiments with solitarious Bands may merge leading to greater crowding SGR - in cages where they Band behaviour affected by vegetation cover can neither see nor smell and uniformity other individuals TOUCH (not chemicals): the major trigger of swarming, Haegele, B.F. & Simpson, S.J. (2000) J. Insect Physiology, 46, 1295-1301. i.e. contact between crowded individuals makes them Simpson, S.J., et al. (2001) Proc. Nat. Acad. Sci., USA 98, 3895-3897. -
SADC African Migratory Locust Appeal
Regional Appeal to contain the African Migratory Locust October 2020 0 Contents 1. Statement .............................................................................................................................................................................. 2 2. Preface .................................................................................................................................................................................... 4 3. Executive summary ............................................................................................................................................................ 5 4. Background ........................................................................................................................................................................... 6 5. Impact on affected Member States ............................................................................................................................ 7 6. Situation in affected Member States .......................................................................................................................... 7 6.1 Angola ..................................................................................................................................................................... 7 6.2 Botswana ................................................................................................................................................................ 7 6.3 Namibia ..................................................................................................................................................................