Planning and Engineering of Coastal Flooding Mitigation Works of an Airport Runway in a Storm-tracked Island Eric C. Cruz1,2 Edgardo P. Kasilag II2 1Professor, Institute of Civil Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines; Email:
[email protected] 2 Principal, AMH Philippines Inc., Bahay ng Alumni Bldg, U.P. Diliman Campus, Quezon City 1101 ABSTRACT: An existing airport requires a length extension of its runway to meet increased air traffic demand. The extension places the runway termini to be along the coasts. This paper discusses the methodology applied to address the likely coastal flooding at both termini, which are tracked by typhoons. The approach hinges on the quantification of storm tide levels and local wave effects induced by historical typhoons. Aviation clearance requirement and sediment stability around the seawall toe are also addressed. It is found that the required minimum non-overtopping seawall elevation is highly influenced by historical storm and by local seabed features. Keywords: coastal flooding, runway, seawall, overtopping, typhoons, engineering INTRODUCTION With a growing demand for inter-island trade, commerce and tourism, the Philippines is building new or upgrading existing transport infrastructures in major islands. One of the existing airports needs an extension of its runway length to meet the growing domestic and international demand for air travel to Boracay Island, which is famous for its tropical beaches and marine recreation, and as a popular “sun and beaches” destination of Philippine tourism. The airport is in the northern tip of Aklan Province, which hosts the nearest seaport gateway to Boracay. The existing runway has a length of 950 m and runs southwest-northeast (Figure 1) is designed to serve only small-capacity propeller airplanes from major cities such as Manila and Cebu.