Evolving Knowledge Extraction from Online Resources Zhibo Xiao, Tharini Nayanika De Silva, Kezhi Mao

Total Page:16

File Type:pdf, Size:1020Kb

Evolving Knowledge Extraction from Online Resources Zhibo Xiao, Tharini Nayanika De Silva, Kezhi Mao World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering Vol:11, No:6, 2017 Evolving Knowledge Extraction from Online Resources Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao Abstract—In this paper, we present an evolving knowledge information retrieval and information extraction have been extraction system named AKEOS (Automatic Knowledge Extraction investigated. reference [5] proposed a summarization method from Online Sources). AKEOS consists of two modules, including to track the development of tweet stream. This work extracts a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and key phrases but does not discover the development of an event. automatically harvests knowledge from online unstructured resources Reference [6] proposed a method to track the emerging topics in an unsupervised way. The output of the one-time learning is a of streaming documents using dictionary learning. References CORE ZENODO structured vector representing the harvested knowledge. The evolving [7]-[9] investigated a specific time-related information retrieval learning module automatically schedules and performs repeated task, chronological citation recommendation, which utilized one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module different topic models to discover time-related features provided by summarizes the knowledge learned at different time points to produce of academic citations. In spite of the success of the a final knowledge vector about the event. With the evolving learning, aforementioned work, each work only touches on one single brought to you by we are able to visualize the key information of the event, discover aspect of evolving learning. In this study, we present the trends, and track the development of an event. our AKEOS (Automatic Knowledge Extraction from Online Keywords—Evolving learning, knowledge extraction, knowledge Sources) which is an end-to-end system. graph, text mining. AKEOS consists of two main modules, including a one-time learning module and an evolving learning module. The I. INTRODUCTION one-time learning aims to distil the valuable information HE information on the Internet is overwhelming us. Even from the overwhelmingly large volume of unstructured text T for the result of a single query on a search engine, it that search engine returns for one query, and output a is hard to quickly grasp the key information underlying the structured knowledge vector to summarize the query result. returned search results. Traditional media and social media are The one-time learning extracts knowledge for one query also shortening our attentions and shifting our focuses with the session and the knowledge extracted just reflects the event news flash that we usually may not be able to keep up with. In until a particular time. As the event develops, new information order to address this problem, automatic knowledge extraction will be generated. The objective of the evolving learning is to has been proposed. extract the knowledge of the new development of the event. A few open information extraction (OIE) systems have been The user only needs to submit a query once, the evolving developed. As stated in [1], an OIE system takes in a corpus learning mechanism in AKEOS automatically schedules and of texts, without any a priori knowledge or specification of the performs the one-time knowledge extraction, and summarize relations of interest, and outputs a set of extracted relations. the knowledge extracted at a different time. Here, the One example work is KnowItAll [2], which is an information knowledge summarization is done through knowledge vector extraction system that addresses the challenge of automated merging, including attribute merging and value merging. The information extraction by learning to label its own training end product is a knowledge vector. The final knowledge vector examples. KnowItAll sets a foundation of modern OIE system summarizes the overall information of an event, while the but it requires a large amount of data from search engine individual knowledge vectors generate at different time points to train and learn relations. The more recent TextRunner [3], reflect how the event evolves over time. however, learns a general model of how relations are expressed In summary, AKEOS has the following merits: in a particular language using CRF paradigm, in this way, 1) It harvests unstructured text data from online resources, International Science Index, Computer and Systems Engineering Vol:11, No:6, 2017 waset.org/Publication/10007303 it not only reduces the error rate of KnowItAll, but also distils the important information from the data to save the time when learning new relations. Recently, SemIE produce structured knowledge vectors. is proposed in [4], which extends TextRunner and exploits 2) It is an end-to-end system, with query words as input, the predicate-argument structure of a text to handle complex knowledge vector as the end product. sentences. 3) It tracks the development of events and discovers the In recent years, evolving learning has received more and underlying patterns. more attentions. Different aspects of evolving learning in Zhibo Xiao and Tharini Nayanika de Silva are with the School of Electrical II. SYSTEM ARCHITECTURE and Electronic Engineering, Nanyang Technological University, Singapore. Kezhi Mao is with the School of Electrical and Electronic Engineering, AKEOS consists of two modules: one-time learning Nanyang Technological University, Singapore (e-mail: [email protected]). and evolving learning. The one-time learning module is a International Scholarly and Scientific Research & Innovation 11(6) 2017 747 scholar.waset.org/1307-6892/10007303 View metadata, citation and similar papers at core.ac.uk World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering Vol:11, No:6, 2017 Fig. 1 The AKEOS architecture stand-alone system, while the evolving learning module is built III. ONE-TIME KNOWLEDGE EXTRACTION upon the one-time learning module. The system architecture One-time learning module takes in user query to crawl the is shown in Fig. 1. The inputs to the one-time learning Internet for relevant articles and extract relevant information system are query words from a user. The query words are from these article. One-time learning is the foundation of the then used to crawl related documents from online resources. evolving learning module. Since Google ranks search results by relevance to the query, The module first takes in user query and use Google search top documents, say top 100 documents, are deemed “relevant engine to search relevant articles on the Internet. We treat documents”. The one-time learning system first extracts the the top 100 query results from Google as relevant articles. main paragraph text from each document. Feature words are After extracting the text from these webpages, we adopted then selected from the relevant documents. These feature an enhanced TF-IDF method which combines the TF-IDF words are associated with key information of an event and measure with word frequencies from Google’s N-gram dataset are used as a guide to relevant sentence selection. From these to measure the importance of the word in the context of the relevant sentences, useful entities are extracted. Through this user query in relation to a generic context. Extracted feature procedure of knowledge extraction, the unstructured text is words will be used in the following tasks, including one-time transformed into a structured knowledge vector. Each time learning and evolving learning. the one-time learning is performed, the structured knowledge Till now, the relevant documents concerning the query vector will be stored in the knowledge base for further use. words are collected, but not all the sentences are relevant to the query words. Hence, feature words are used to select The one-time learning module only extract the knowledge the relevant sentences. For a sentence containing M words of an event until a particular time point. The evolving learning in the corpus, each word is transformed into a vector, then module schedules and performs repeated one-time learning at convoluted with each feature word vector. The sentence is different stages of an event to ensure the knowledge extracted transformed into a vector with the length of M. A further is up-to-date. The newly extracted knowledge will be merged max pooling operation will select the most distinct feature in with previously extracted knowledge to form a new vector. For the sentence. In this manner, a sentence with variable length example, after the first day of an event, the feature word list is transformed into a scalar. With a predefined threshold, the for day 1 is learned, along with relevant sentences, extracted relevant sentences are selected. useful entities and the knowledge vector v1 of the event for After relevant sentences are selected, the next step is to day 1. After the second day, the feature word list based on International Science Index, Computer and Systems Engineering Vol:11, No:6, 2017 waset.org/Publication/10007303 extract entities containing useful information. In AKEOS, the the newly published articles on day 2 are generated, along following are extracted as entities: with the corresponding relevant sentences, useful entities and • knowledge vector of v2. At the end of day 2, the knowledge Quantitative words, which are words associated with a vectors of day 1 and day 2 are merged into a new vector, number, such as ‘deaths’, ‘people killed’, ‘missing’, ‘km’, denoted by u1. After n days, un−1 is learned and is treated ‘magnitude’. • as final vector v = un−1. User can use the final vector v Geographic locations to check the summarized knowledge of the event, and use • NER tags, such as date, time, location, person, vi,i =1, 2,...,n to review the development of the event.
Recommended publications
  • Knowledge Extraction by Internet Monitoring to Enhance Crisis Management
    El Hamali Knowledge Extraction by Internet Monitoring to Enhance Crisis Management Knowledge Extraction by Internet Monitoring to Enhance Crisis Management El Hamali Samiha Nadia Nouali-TAboudjnent, Omar Nouali National School for Computer Science ESI, Research Center of Scientific and Technique Algiers, Algeria Information CERIST, Algeria [email protected] {nnouali, onouali}@cerist.dz ABSTRACT This paper presents our work on developing a system for Internet monitoring and knowledge extraction from different web documents which contain information about disasters. This system is based on ontology of the disasters domain for the knowledge extraction and it presents all the information extracted according to the kind of the disaster defined in the ontology. The system disseminates the information extracted (as a synthesis of the web documents) to the users after a filtering based on their profiles. The profile of a user is updated automatically by interactively taking into account his feedback. Keywords Crisis management, internet monitoring, knowledge extraction, ontology, information filtering. INTRODUCTION Several crises and disasters happened in the last decades. After the southern Asian tsunami, the Katrina hurricane in the United States, and the Kashmir earthquake, people throughout the world used the Web as a source of information and a means of communication. In the hours and days immediately following a disaster, a lot of information becomes available on the web. With a single Google search, 17 millions “emergency management” sites and documents have been listed (Min & Peishih, 2008). The user finds a lot of information which comes from different sources, for instance : during the first 3 days of tsunami disaster in south-east Asia, 4000 reports were gathered by the Google News service, and within a month of the incident, 200000 distinct news reports from several online sources (Yiming, et al., 2007 IEEE).
    [Show full text]
  • Injection of Automatically Selected Dbpedia Subjects in Electronic
    Injection of Automatically Selected DBpedia Subjects in Electronic Medical Records to boost Hospitalization Prediction Raphaël Gazzotti, Catherine Faron Zucker, Fabien Gandon, Virginie Lacroix-Hugues, David Darmon To cite this version: Raphaël Gazzotti, Catherine Faron Zucker, Fabien Gandon, Virginie Lacroix-Hugues, David Darmon. Injection of Automatically Selected DBpedia Subjects in Electronic Medical Records to boost Hos- pitalization Prediction. SAC 2020 - 35th ACM/SIGAPP Symposium On Applied Computing, Mar 2020, Brno, Czech Republic. 10.1145/3341105.3373932. hal-02389918 HAL Id: hal-02389918 https://hal.archives-ouvertes.fr/hal-02389918 Submitted on 16 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Injection of Automatically Selected DBpedia Subjects in Electronic Medical Records to boost Hospitalization Prediction Raphaël Gazzotti Catherine Faron-Zucker Fabien Gandon Université Côte d’Azur, Inria, CNRS, Université Côte d’Azur, Inria, CNRS, Inria, Université Côte d’Azur, CNRS, I3S, Sophia-Antipolis, France I3S, Sophia-Antipolis, France
    [Show full text]
  • Handling Semantic Complexity of Big Data Using Machine Learning and RDF Ontology Model
    S S symmetry Article Handling Semantic Complexity of Big Data using Machine Learning and RDF Ontology Model Rauf Sajjad *, Imran Sarwar Bajwa and Rafaqut Kazmi Department of Computer Science & IT, The Islamia University Bahawalpur, Bahawalpur 63100, Pakistan; [email protected] (I.S.B.); [email protected] (R.K.) * Correspondence: [email protected]; Tel.: +92-62-925-5466 Received: 3 January 2019; Accepted: 14 February 2019; Published: 1 March 2019 Abstract: Business information required for applications and business processes is extracted using systems like business rule engines. Since the advent of Big Data, such rule engines are producing rules in a big quantity whereas more rules lead to more complexity in semantic analysis and understanding. This paper introduces a method to handle semantic complexity in rules and support automated generation of Resource Description Framework (RDF) metadata model of rules and such model is used to assist in querying and analysing Big Data. Practically, the dynamic changes in rules can be a source of conflict in rules stored in a repository. It is identified during the literature review that there is a need of a method that can semantically analyse rules and help business analysts in testing and validating the rules once a change is made in a rule. This paper presents a robust method that not only supports semantic analysis of rules but also generates RDF metadata model of rules and provide support of querying for the sake of semantic interpretation of the rules. The results of the experiments manifest that consistency checking of a set of big data rules is possible through automated tools.
    [Show full text]
  • A Comparison of Knowledge Extraction Tools for the Semantic Web
    A Comparison of Knowledge Extraction Tools for the Semantic Web Aldo Gangemi1;2 1 LIPN, Universit´eParis13-CNRS-SorbonneCit´e,France 2 STLab, ISTC-CNR, Rome, Italy. Abstract. In the last years, basic NLP tasks: NER, WSD, relation ex- traction, etc. have been configured for Semantic Web tasks including on- tology learning, linked data population, entity resolution, NL querying to linked data, etc. Some assessment of the state of art of existing Knowl- edge Extraction (KE) tools when applied to the Semantic Web is then desirable. In this paper we describe a landscape analysis of several tools, either conceived specifically for KE on the Semantic Web, or adaptable to it, or even acting as aggregators of extracted data from other tools. Our aim is to assess the currently available capabilities against a rich palette of ontology design constructs, focusing specifically on the actual semantic reusability of KE output. 1 Introduction We present a landscape analysis of the current tools for Knowledge Extraction from text (KE), when applied on the Semantic Web (SW). Knowledge Extraction from text has become a key semantic technology, and has become key to the Semantic Web as well (see. e.g. [31]). Indeed, interest in ontology learning is not new (see e.g. [23], which dates back to 2001, and [10]), and an advanced tool like Text2Onto [11] was set up already in 2005. However, interest in KE was initially limited in the SW community, which preferred to concentrate on manual design of ontologies as a seal of quality. Things started changing after the linked data bootstrapping provided by DB- pedia [22], and the consequent need for substantial population of knowledge bases, schema induction from data, natural language access to structured data, and in general all applications that make joint exploitation of structured and unstructured content.
    [Show full text]
  • CN-Dbpedia: a Never-Ending Chinese Knowledge Extraction System
    CN-DBpedia: A Never-Ending Chinese Knowledge Extraction System Bo Xu1,YongXu1, Jiaqing Liang1,2, Chenhao Xie1,2, Bin Liang1, B Wanyun Cui1, and Yanghua Xiao1,3( ) 1 Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China {xubo,yongxu16,jqliang15,xiech15,liangbin,shawyh}@fudan.edu.cn, [email protected] 2 Data Eyes Research, Shanghai, China 3 Shanghai Internet Big Data Engineering and Technology Center, Shanghai, China Abstract. Great efforts have been dedicated to harvesting knowledge bases from online encyclopedias. These knowledge bases play impor- tant roles in enabling machines to understand texts. However, most cur- rent knowledge bases are in English and non-English knowledge bases, especially Chinese ones, are still very rare. Many previous systems that extract knowledge from online encyclopedias, although are applicable for building a Chinese knowledge base, still suffer from two challenges. The first is that it requires great human efforts to construct an ontology and build a supervised knowledge extraction model. The second is that the update frequency of knowledge bases is very slow. To solve these chal- lenges, we propose a never-ending Chinese Knowledge extraction system, CN-DBpedia, which can automatically generate a knowledge base that is of ever-increasing in size and constantly updated. Specially, we reduce the human costs by reusing the ontology of existing knowledge bases and building an end-to-end facts extraction model. We further propose a smart active update strategy to keep the freshness of our knowledge base with little human costs. The 164 million API calls of the published services justify the success of our system.
    [Show full text]
  • Knowledge Extraction for Hybrid Question Answering
    KNOWLEDGEEXTRACTIONFORHYBRID QUESTIONANSWERING Von der Fakultät für Mathematik und Informatik der Universität Leipzig angenommene DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fachgebiet Informatik vorgelegt von Ricardo Usbeck, M.Sc. geboren am 01.04.1988 in Halle (Saale), Deutschland Die Annahme der Dissertation wurde empfohlen von: 1. Professor Dr. Klaus-Peter Fähnrich (Leipzig) 2. Professor Dr. Philipp Cimiano (Bielefeld) Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 17. Mai 2017 mit dem Gesamtprädikat magna cum laude. Leipzig, den 17. Mai 2017 bibliographic data title: Knowledge Extraction for Hybrid Question Answering author: Ricardo Usbeck statistical information: 10 chapters, 169 pages, 28 figures, 32 tables, 8 listings, 5 algorithms, 178 literature references, 1 appendix part supervisors: Prof. Dr.-Ing. habil. Klaus-Peter Fähnrich Dr. Axel-Cyrille Ngonga Ngomo institution: Leipzig University, Faculty for Mathematics and Computer Science time frame: January 2013 - March 2016 ABSTRACT Over the last decades, several billion Web pages have been made available on the Web. The growing amount of Web data provides the world’s largest collection of knowledge.1 Most of this full-text data like blogs, news or encyclopaedic informa- tion is textual in nature. However, the increasing amount of structured respectively semantic data2 available on the Web fosters new search paradigms. These novel paradigms ease the development of natural language interfaces which enable end- users to easily access and benefit from large amounts of data without the need to understand the underlying structures or algorithms. Building a natural language Question Answering (QA) system over heteroge- neous, Web-based knowledge sources requires various building blocks.
    [Show full text]
  • Real-Time Population of Knowledge Bases: Opportunities and Challenges
    Real-time Population of Knowledge Bases: Opportunities and Challenges Ndapandula Nakashole, Gerhard Weikum Max Planck Institute for Informatics Saarbrucken,¨ Germany {nnakasho,weikum}@mpi-inf.mpg.de Abstract 2011; Nakashole 2011) which is now three years old. The NELL system (Carlson 2010) follows a Dynamic content is a frequently accessed part “never-ending” extraction model with the extraction of the Web. However, most information ex- process going on 24 hours a day. However NELL’s traction approaches are batch-oriented, thus focus is on language learning by iterating mostly not effective for gathering rapidly changing data. This paper proposes a model for fact on the same ClueWeb09 corpus. Our focus is on extraction in real-time. Our model addresses capturing the latest information enriching it into the the difficult challenges that timely fact extrac- form of relational facts. Web-based news aggrega- tion on frequently updated data entails. We tors such as Google News and Yahoo! News present point out a naive solution to the main research up-to-date information from various news sources. question and justify the choices we make in However, news aggregators present headlines and the model we propose. short text snippets. Our focus is on presenting this information as relational facts that can facilitate re- 1 Introduction lational queries spanning new and historical data. Challenges. Timely knowledge extraction from fre- Motivation. Dynamic content is an important part quently updated sources entails a number of chal- of the Web, it accounts for a substantial amount of lenges: Web traffic. For example, much time is spent read- ing news, blogs and user comments in social media.
    [Show full text]
  • Domain-Targeted, High Precision Knowledge Extraction
    Domain-Targeted, High Precision Knowledge Extraction Bhavana Dalvi Mishra Niket Tandon Peter Clark Allen Institute for Artificial Intelligence 2157 N Northlake Way Suite 110, Seattle, WA 98103 bhavanad,nikett,peterc @allenai.org { } Abstract remains elusive. Specifically, our goal is a large, high precision body of (subject,predicate,object) Our goal is to construct a domain-targeted, statements relevant to elementary science, to sup- high precision knowledge base (KB), contain- port a downstream QA application task. Although ing general (subject,predicate,object) state- ments about the world, in support of a down- there are several impressive, existing resources that stream question-answering (QA) application. can contribute to our endeavor, e.g., NELL (Carlson Despite recent advances in information extrac- et al., 2010), ConceptNet (Speer and Havasi, 2013), tion (IE) techniques, no suitable resource for WordNet (Fellbaum, 1998), WebChild (Tandon et our task already exists; existing resources are al., 2014), Yago (Suchanek et al., 2007), FreeBase either too noisy, too named-entity centric, or (Bollacker et al., 2008), and ReVerb-15M (Fader et too incomplete, and typically have not been al., 2011), their applicability is limited by both constructed with a clear scope or purpose. limited coverage of general knowledge (e.g., To address these, we have created a domain- • targeted, high precision knowledge extraction FreeBase and NELL primarily contain knowl- pipeline, leveraging Open IE, crowdsourcing, edge about Named Entities; WordNet uses only and a novel canonical schema learning algo- a few (< 10) semantic relations) rithm (called CASI), that produces high pre- low precision (e.g., many ConceptNet asser- • cision knowledge targeted to a particular do- tions express idiosyncratic rather than general main - in our case, elementary science.
    [Show full text]
  • 4Th INCF Japan Node International Workshop Advances in Neuroinformatics 2016 and 14Th INCF Nodes Workshop
    4th INCF Japan Node International Workshop Advances in Neuroinformatics 2016 and 14th INCF Nodes Workshop Program and Abstracts May 28-29, 2016 Suzuki Umetaro Hall, RIKEN 2-1, Hirosawa, Wako, Saitama, Japan RIKEN Brain Science Institute JAPAN Organized by RIKEN Brain Science Institute International Neuroinformatics Coordinating Facility (INCF) In Cooperation with The Japanese Society for Artificial Intelligence Japanese Neural Network Society The Japan Neuroscience Society ※This Workshop is a part of the RIKEN Symposium Series. AINI2016 & INCF Nodes Workshop Table of Contents Message from Chairs ..................................................................................................... 3 Workshop Organizing Committee ........................................................................... 4 General Information ....................................................................................................... 5 Program at a Glance ....................................................................................................... 6 Program ............................................................................................................................... 7 Keynote Lecture Abstracts ....................................................................................... 12 Oral Session I Whole Brain Imaging for Approaches to Functions and Anatomy Abstracts ...................................................................................................... 15 Oral Session II Multi-dimensional Theoretical Neuroscience
    [Show full text]
  • Towards Knowledge Acquisition of Metadataon AI Progress
    Towards Knowledge Acquisition of Metadata on AI Progress Zhiyu Chen?, Mohamed Trabelsi?, Brian D. Davison, Jeff Heflin Lehigh University, Bethlehem, PA, USA fzhc415,mot218,davison,[email protected] Abstract. We propose an ontology to help AI researchers keep track of the scholarly progress of AI related tasks such as natural language processing and computer vision. We first define the core entities and relations in the proposed Machine Learning Progress Ontology (MLPO). Then we describe how to use the techniques in natural language processing to construct a Machine Learning Progress Knowledge Base (MPKB) that can support various downstream tasks. Keywords: dataset search · information extraction · ontology · knowledge base 1 Introduction In recent years, there has been a significant increase in the number of published pa- pers for AI related tasks, and this leads to the introduction of new tasks, datasets, and methods. Despite the progress in scholarly search engines, it is challenging to connect previous technologies with new work. Researchers from the semantic web community have noticed the importance of organizing scholarly data from a large collection of papers with tools like Computer Science Ontology [10]. Natural language processing researchers have proposed methods to extract information from research articles for bet- ter literature review [8]. Different from previous work which focuses on the extraction of paper metadata and key insights, we propose to design an ontology and knowledge base for better evaluation of AI research. Papers With Code1 is a website that shows the charts of progress of machine learning models on various tasks and benchmarks. Those charts can help researchers to identify the appropriate literature related to their work, and to select appropriate baselines to compare against.
    [Show full text]
  • Machine Learning and Knowledge Extraction an Open Access Journal by MDPI
    machine learning and knowledge extraction an Open Access Journal by MDPI Academic Open Access Publishing since 1996 machine learning and knowledge extraction an Open Access Journal by MDPI Editor-in-Chief Message from the Editor-in-Chief Prof. Dr. Andreas Holzinger Machine learning deals with understanding intelligence to design algorithms that can learn from data, gain knowledge from experience and improve their learning behaviour over time. The challenge is to extract relevant structural and/or temporal patterns (“knowledge”) from data, which is often hidden in high dimensional spaces, thus not accessible to humans. Many application domains, e.g., smart health, smart factory, etc. affect our daily life, e.g., recommender systems, speech recognition, autonomous driving, etc. The grand challenge is to understand the context in the real-world under uncertainty. Probabilistic inference can be of great help here as the inverse probability allows to learn from data, to infer unknowns, and to make predictions to support decision making. Author Benefits Open Access Unlimited and free access for readers No Copyright Constraints Retain copyright of your work and free use of your article Thorough Peer-Review No Space Constraints, No Extra Space or Color Charges No restriction on the length of the papers, number of figures or colors Aims and Scope Machine Learning and Knowledge Extraction (MAKE) is an inter-disciplinary, cross-domain, peer-reviewed, scholarly open access journal to provide a platform to support the international machine learning community. It publishes original research articles, reviews, tutorials, research ideas, short notes and Special Issues that focus on machine learning and applications.
    [Show full text]
  • Towards Unsupervised Knowledge Extraction
    Towards Unsupervised Knowledge Extraction Dorothea Tsatsoua,b, Konstantinos Karageorgosa, Anastasios Dimoua, Javier Carbob, Jose M. Molinab and Petros Darasa aInformation Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, 57001, Thermi, Thessaloniki, Greece bComputer Science Department, University Carlos III of Madrid, Av. Universidad 30, Leganes, Madrid 28911, Spain Abstract Integration of symbolic and sub-symbolic approaches is rapidly emerging as an Artificial Intelligence (AI) paradigm. This paper presents a proof-of-concept approach towards an unsupervised learning method, based on Restricted Boltzmann Machines (RBMs), for extracting semantic associations among prominent entities within data. Validation of the approach is performed in two datasets that connect lan- guage and vision, namely Visual Genome and GQA. A methodology to formally structure the extracted knowledge for subsequent use through reasoning engines is also offered. Keywords knowledge extraction, unsupervised learning, spectral analysis, formal knowledge representation, symbolic AI, sub-symbolic AI, neuro-symbolic integration 1. Introduction Nowadays, artificial intelligence (AI) is linked mostly to machine learning (ML) solutions, enabling machines to learn from data and subsequently make predictions based on unidentified patterns in data, taking advantage of neural network (NN)-based methods. However, AI is still far from encompassing human-like cognitive capacities, which include not only learning but also understanding1, abstracting, planning, representing knowledge and logically reasoning over it. On the other hand, Knowledge Representation and Reasoning (KRR) techniques allow machines to reason about structured knowledge, in order to perform human-like complex problem solving and decision-making. AI foundations propose that all the aforementioned cognitive processes (learning, abstracting, representing, reasoning) need to be integrated under a unified strategy, in order to advance to In A.
    [Show full text]