A Knowledge and Reasoning Toolkit for Cognitive Applications

Total Page:16

File Type:pdf, Size:1020Kb

A Knowledge and Reasoning Toolkit for Cognitive Applications A Knowledge and Reasoning Toolkit for Cognitive Applications Mustafa Canim Cristina Cornelio Robert Farrell IBM T.J. Watson Research Center IBM T.J. Watson Research Center IBM T.J. Watson Research Center Yorktown Heights, NY Yorktown Heights, NY Yorktown Heights, NY [email protected] [email protected] [email protected] Achille Fokoue Kyle Gao John Gunnels IBM T.J. Watson Research Center IBM T.J. Watson Research Center IBM T.J. Watson Research Center Yorktown Heights, NY Yorktown Heights, NY Yorktown Heights, NY [email protected] [email protected] [email protected] Arun Iyengar Ryan Musa Mariano Rodriguez-Muro IBM T.J. Watson Research Center IBM T.J. Watson Research Center IBM T.J. Watson Research Center Yorktown Heights, NY Yorktown Heights, NY Yorktown Heights, NY [email protected] [email protected] [email protected] Rosario Uceda-Sosa IBM T.J. Watson Research Center Yorktown Heights, NY [email protected] ABSTRACT 1 INTRODUCTION This paper presents a knowledge and reasoning toolkit for devel- There is an increasing need to provide support for cognitive ap- oping cognitive applications which have significant requirements plications which make use of structured and semi-structured data for managing structured and semi-structured data. Our system pro- and require advanced querying and reasoning to be performed on vides enhanced querying and reasoning capabilities along with the data. The specific requirements for these types of applications natural language processing support and the ability to automati- vary. One of the key challenges is to develop tools which support cally extract data from PDF documents. We also have the capability cognitive applications in a general way so that they can be reused to manage ontologies in a user-friendly way. Our system is imple- for a wide variety of customer scenarios. mented as a set of Web services, and we provide enhanced clients We are developing a knowledge and reasoning toolkit (KRT) to allow applications to easily access our knowledge and reasoning based on real world scenarios which is designed to be used for a toolkit. broad range of cognitive applications. It is exposed to the user as a set of Web services allowing applications to easily make use of KEYWORDS it via the http protocol. This paper describes our system and also Data extraction, knowledge representation, natural language pro- provides considerable information about past work in the area. cessing, ontology engineering, reasoning, Resource Description The objective of the Knowledge and Reasoning Toolkit (KRT) is Framework (RDF), Web Ontology Language (OWL) to bring content into a structured knowledge representation to inte- grate data from heterogeneous sources, and enable conversational ACM Reference Format: access in support of humans engaging in conducting relevant tasks. Mustafa Canim, Cristina Cornelio, Robert Farrell, Achille Fokoue, Kyle Previously, extracting and representing such information from nat- Gao, John Gunnels, Arun Iyengar, Ryan Musa, Mariano Rodriguez-Muro, ural language, structured, and semi-structured (table) content is and Rosario Uceda-Sosa. 2017. A Knowledge and Reasoning Toolkit for highly manual, tedious, and error prone. The KRT creates and lever- Cognitive Applications. In Proceedings of HotWeb’17, San Jose / Silicon Valley, ages knowledge extraction, management, and reasoning techniques CA, USA, October 14, 2017, 10 pages. to reduce the human effort, ensure a principled representation, and https://doi.org/10.1145/3132465.3132478 support effective and fluent human-machine conversation. The KRT leverages knowledge and reasoning at different stages Permission to make digital or hard copies of all or part of this work for personal or of a project’s lifetime. At early stages, the KRT uses reasoning to classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation support data integration tasks, i.e., discovering connections within on the first page. Copyrights for components of this work owned by others than ACM the datasets, proposing initial alignments, and providing pointers must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a to possible misalignments as well as candidate corrections. The fee. Request permissions from [email protected]. KRT services provide means to assess the quality of the data, offer HotWeb’17, October 14, 2017, San Jose / Silicon Valley, CA, USA confidence levels about the integrated data with respect to domain © 2017 Association for Computing Machinery. knowledge and extend the data with new data that might have been ACM ISBN 978-1-4503-5527-8/17/10...$15.00 https://doi.org/10.1145/3132465.3132478 HotWeb’17, October 14, 2017, San Jose / Silicon Valley, CA, USA M. Canim et al. missing, or that can be computed if background knowledge is taken Then, we present KRT approach to handle structured and semi- into account. structured data. Most state-of-the-art approaches decouple the On the query answering and conversational side, the KRT lowers specification of the mappings or transformations from their ac- the effort required to obtain useful data by enabling new knowl- tual execution to either produce a new knowledge graph from the edge management and query answering paradigms that are guided legacy data (materialization approach) or to directly query the data by knowledge and that can interact with the user. Conversational in its original form through query rewrite (virtualization approach). systems can use KRT services to allow a domain expert to interact These approaches mainly differ along the following key dimensions: with the domain knowledge to facilitate bootstrapping, develop- • Format specific vs. Format agnostic ment and maintenance of the system. During query answering, • Generic automated direct mapping vs. Customizable map- conversational systems can use KRT query services to explore do- ping specification main knowledge, help the user refine the query and obtain the • Materialization vs. Virtualization desired answers. The KRT provides new forms of query answering • High level declarative mapping language vs. General purpose that combine the power of structured queries, with the flexibility of transformation/query or programming language information retrieval techniques, enabling complex query answer- • Existence vs. Absence of visual mapping editors ing with lower requirements with respect to data consistency. Some of these dimensions represent a spectrum along which differ- ent proposals fall. Others correspond to discrete (but not necessarily 1.1 Key challenges mutually exclusive) design choices. Data extraction and data integration projects can require large in- vestments before some results can be exploited. The integration 2.1 Format specific vs. Format agnostic of the structured data, e.g., mapping and alignment, and the train- The research on mapping or aligning legacy data to knowledge ing of models for information extraction for the unstructured data graphs started more than a decade ago with, as initial focus, the are lengthy and tedious tasks. Given that the tools and techniques exploration of approaches to map relational data into RDF/OWL. involved are unaware of the meaning of the data and the domain, Experiences from early systems such as D2RQ [9, 10], R2O [68], issues in this data and in the integration or in the models are often and SQL-RDF [70], which offer both generic automated mapping invisible until later stages in the project. Debugging and mainte- and customizable mapping approaches, led to the adoption of the nance is a difficult task for which there is little or no automated W3C standard mapping language for customizing the mapping from support. relational data to RDF, R2ML[23], along with an approach for auto- Similarly, constructing conversational systems that can use the mated generic direct mapping from relational data to RDF[4]. [57] resulting data is often a costly project-specific task. Mapping of user provides a good survey of approaches and systems to map relational queries to data sets is done in an application specific fashion, limit- data to RDF. Likewise, multiple approaches have been proposed to ing re-usability of the systems developed and limiting the queries map XML data to RDF through both direct generic automated trans- that the system is able to handle. In general, the conversational formations (e.g., xCurator[75] or XSL-based transformation[12] ) or systems in these projects lack an abstraction layer that allows them through customized mappings/transformations [7, 8]. Approaches to separate the knowledge that is specific to the domain of the have also been developed to handle mapping from other specific project from the conversational flow of the application; they have data formats: e.g. CSV and spreadsheet data ( [37, 48]). Recently, due no back-end support that allows them to explore, query and reason to the need to integrate and map information from multiple inter- with the knowledge to drive the flow. The conversational systems related sources with heterogeneous formats, new approaches have also have no way to alter, correct and update this knowledge in been proposed to map data in a format agnostic way. A prominent order to deal with issues in the data ingestion stage and no way to approach, RML [24], extends the R2RML standard [23] in order to use this knowledge to resolve conversation specific-problems, such support many input formats beside relational data (e.g., JSON, CSV, as disambiguating the relevant data. and XML). Another example, xR2RML [56], extends both R2RML The remainder of the paper is structured as follows. Section 2 and RML to also handle mapping from NoSQL databases. summarizes past work in handling semi-structured data and de- scribes how the KRT handles it. Section 3 describes reasoning ca- 2.2 Generic automated direct mapping vs. pabilities of our system.
Recommended publications
  • Knowledge Extraction by Internet Monitoring to Enhance Crisis Management
    El Hamali Knowledge Extraction by Internet Monitoring to Enhance Crisis Management Knowledge Extraction by Internet Monitoring to Enhance Crisis Management El Hamali Samiha Nadia Nouali-TAboudjnent, Omar Nouali National School for Computer Science ESI, Research Center of Scientific and Technique Algiers, Algeria Information CERIST, Algeria [email protected] {nnouali, onouali}@cerist.dz ABSTRACT This paper presents our work on developing a system for Internet monitoring and knowledge extraction from different web documents which contain information about disasters. This system is based on ontology of the disasters domain for the knowledge extraction and it presents all the information extracted according to the kind of the disaster defined in the ontology. The system disseminates the information extracted (as a synthesis of the web documents) to the users after a filtering based on their profiles. The profile of a user is updated automatically by interactively taking into account his feedback. Keywords Crisis management, internet monitoring, knowledge extraction, ontology, information filtering. INTRODUCTION Several crises and disasters happened in the last decades. After the southern Asian tsunami, the Katrina hurricane in the United States, and the Kashmir earthquake, people throughout the world used the Web as a source of information and a means of communication. In the hours and days immediately following a disaster, a lot of information becomes available on the web. With a single Google search, 17 millions “emergency management” sites and documents have been listed (Min & Peishih, 2008). The user finds a lot of information which comes from different sources, for instance : during the first 3 days of tsunami disaster in south-east Asia, 4000 reports were gathered by the Google News service, and within a month of the incident, 200000 distinct news reports from several online sources (Yiming, et al., 2007 IEEE).
    [Show full text]
  • Injection of Automatically Selected Dbpedia Subjects in Electronic
    Injection of Automatically Selected DBpedia Subjects in Electronic Medical Records to boost Hospitalization Prediction Raphaël Gazzotti, Catherine Faron Zucker, Fabien Gandon, Virginie Lacroix-Hugues, David Darmon To cite this version: Raphaël Gazzotti, Catherine Faron Zucker, Fabien Gandon, Virginie Lacroix-Hugues, David Darmon. Injection of Automatically Selected DBpedia Subjects in Electronic Medical Records to boost Hos- pitalization Prediction. SAC 2020 - 35th ACM/SIGAPP Symposium On Applied Computing, Mar 2020, Brno, Czech Republic. 10.1145/3341105.3373932. hal-02389918 HAL Id: hal-02389918 https://hal.archives-ouvertes.fr/hal-02389918 Submitted on 16 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Injection of Automatically Selected DBpedia Subjects in Electronic Medical Records to boost Hospitalization Prediction Raphaël Gazzotti Catherine Faron-Zucker Fabien Gandon Université Côte d’Azur, Inria, CNRS, Université Côte d’Azur, Inria, CNRS, Inria, Université Côte d’Azur, CNRS, I3S, Sophia-Antipolis, France I3S, Sophia-Antipolis, France
    [Show full text]
  • Handling Semantic Complexity of Big Data Using Machine Learning and RDF Ontology Model
    S S symmetry Article Handling Semantic Complexity of Big Data using Machine Learning and RDF Ontology Model Rauf Sajjad *, Imran Sarwar Bajwa and Rafaqut Kazmi Department of Computer Science & IT, The Islamia University Bahawalpur, Bahawalpur 63100, Pakistan; [email protected] (I.S.B.); [email protected] (R.K.) * Correspondence: [email protected]; Tel.: +92-62-925-5466 Received: 3 January 2019; Accepted: 14 February 2019; Published: 1 March 2019 Abstract: Business information required for applications and business processes is extracted using systems like business rule engines. Since the advent of Big Data, such rule engines are producing rules in a big quantity whereas more rules lead to more complexity in semantic analysis and understanding. This paper introduces a method to handle semantic complexity in rules and support automated generation of Resource Description Framework (RDF) metadata model of rules and such model is used to assist in querying and analysing Big Data. Practically, the dynamic changes in rules can be a source of conflict in rules stored in a repository. It is identified during the literature review that there is a need of a method that can semantically analyse rules and help business analysts in testing and validating the rules once a change is made in a rule. This paper presents a robust method that not only supports semantic analysis of rules but also generates RDF metadata model of rules and provide support of querying for the sake of semantic interpretation of the rules. The results of the experiments manifest that consistency checking of a set of big data rules is possible through automated tools.
    [Show full text]
  • A Comparison of Knowledge Extraction Tools for the Semantic Web
    A Comparison of Knowledge Extraction Tools for the Semantic Web Aldo Gangemi1;2 1 LIPN, Universit´eParis13-CNRS-SorbonneCit´e,France 2 STLab, ISTC-CNR, Rome, Italy. Abstract. In the last years, basic NLP tasks: NER, WSD, relation ex- traction, etc. have been configured for Semantic Web tasks including on- tology learning, linked data population, entity resolution, NL querying to linked data, etc. Some assessment of the state of art of existing Knowl- edge Extraction (KE) tools when applied to the Semantic Web is then desirable. In this paper we describe a landscape analysis of several tools, either conceived specifically for KE on the Semantic Web, or adaptable to it, or even acting as aggregators of extracted data from other tools. Our aim is to assess the currently available capabilities against a rich palette of ontology design constructs, focusing specifically on the actual semantic reusability of KE output. 1 Introduction We present a landscape analysis of the current tools for Knowledge Extraction from text (KE), when applied on the Semantic Web (SW). Knowledge Extraction from text has become a key semantic technology, and has become key to the Semantic Web as well (see. e.g. [31]). Indeed, interest in ontology learning is not new (see e.g. [23], which dates back to 2001, and [10]), and an advanced tool like Text2Onto [11] was set up already in 2005. However, interest in KE was initially limited in the SW community, which preferred to concentrate on manual design of ontologies as a seal of quality. Things started changing after the linked data bootstrapping provided by DB- pedia [22], and the consequent need for substantial population of knowledge bases, schema induction from data, natural language access to structured data, and in general all applications that make joint exploitation of structured and unstructured content.
    [Show full text]
  • CN-Dbpedia: a Never-Ending Chinese Knowledge Extraction System
    CN-DBpedia: A Never-Ending Chinese Knowledge Extraction System Bo Xu1,YongXu1, Jiaqing Liang1,2, Chenhao Xie1,2, Bin Liang1, B Wanyun Cui1, and Yanghua Xiao1,3( ) 1 Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China {xubo,yongxu16,jqliang15,xiech15,liangbin,shawyh}@fudan.edu.cn, [email protected] 2 Data Eyes Research, Shanghai, China 3 Shanghai Internet Big Data Engineering and Technology Center, Shanghai, China Abstract. Great efforts have been dedicated to harvesting knowledge bases from online encyclopedias. These knowledge bases play impor- tant roles in enabling machines to understand texts. However, most cur- rent knowledge bases are in English and non-English knowledge bases, especially Chinese ones, are still very rare. Many previous systems that extract knowledge from online encyclopedias, although are applicable for building a Chinese knowledge base, still suffer from two challenges. The first is that it requires great human efforts to construct an ontology and build a supervised knowledge extraction model. The second is that the update frequency of knowledge bases is very slow. To solve these chal- lenges, we propose a never-ending Chinese Knowledge extraction system, CN-DBpedia, which can automatically generate a knowledge base that is of ever-increasing in size and constantly updated. Specially, we reduce the human costs by reusing the ontology of existing knowledge bases and building an end-to-end facts extraction model. We further propose a smart active update strategy to keep the freshness of our knowledge base with little human costs. The 164 million API calls of the published services justify the success of our system.
    [Show full text]
  • Knowledge Extraction for Hybrid Question Answering
    KNOWLEDGEEXTRACTIONFORHYBRID QUESTIONANSWERING Von der Fakultät für Mathematik und Informatik der Universität Leipzig angenommene DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fachgebiet Informatik vorgelegt von Ricardo Usbeck, M.Sc. geboren am 01.04.1988 in Halle (Saale), Deutschland Die Annahme der Dissertation wurde empfohlen von: 1. Professor Dr. Klaus-Peter Fähnrich (Leipzig) 2. Professor Dr. Philipp Cimiano (Bielefeld) Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 17. Mai 2017 mit dem Gesamtprädikat magna cum laude. Leipzig, den 17. Mai 2017 bibliographic data title: Knowledge Extraction for Hybrid Question Answering author: Ricardo Usbeck statistical information: 10 chapters, 169 pages, 28 figures, 32 tables, 8 listings, 5 algorithms, 178 literature references, 1 appendix part supervisors: Prof. Dr.-Ing. habil. Klaus-Peter Fähnrich Dr. Axel-Cyrille Ngonga Ngomo institution: Leipzig University, Faculty for Mathematics and Computer Science time frame: January 2013 - March 2016 ABSTRACT Over the last decades, several billion Web pages have been made available on the Web. The growing amount of Web data provides the world’s largest collection of knowledge.1 Most of this full-text data like blogs, news or encyclopaedic informa- tion is textual in nature. However, the increasing amount of structured respectively semantic data2 available on the Web fosters new search paradigms. These novel paradigms ease the development of natural language interfaces which enable end- users to easily access and benefit from large amounts of data without the need to understand the underlying structures or algorithms. Building a natural language Question Answering (QA) system over heteroge- neous, Web-based knowledge sources requires various building blocks.
    [Show full text]
  • Real-Time Population of Knowledge Bases: Opportunities and Challenges
    Real-time Population of Knowledge Bases: Opportunities and Challenges Ndapandula Nakashole, Gerhard Weikum Max Planck Institute for Informatics Saarbrucken,¨ Germany {nnakasho,weikum}@mpi-inf.mpg.de Abstract 2011; Nakashole 2011) which is now three years old. The NELL system (Carlson 2010) follows a Dynamic content is a frequently accessed part “never-ending” extraction model with the extraction of the Web. However, most information ex- process going on 24 hours a day. However NELL’s traction approaches are batch-oriented, thus focus is on language learning by iterating mostly not effective for gathering rapidly changing data. This paper proposes a model for fact on the same ClueWeb09 corpus. Our focus is on extraction in real-time. Our model addresses capturing the latest information enriching it into the the difficult challenges that timely fact extrac- form of relational facts. Web-based news aggrega- tion on frequently updated data entails. We tors such as Google News and Yahoo! News present point out a naive solution to the main research up-to-date information from various news sources. question and justify the choices we make in However, news aggregators present headlines and the model we propose. short text snippets. Our focus is on presenting this information as relational facts that can facilitate re- 1 Introduction lational queries spanning new and historical data. Challenges. Timely knowledge extraction from fre- Motivation. Dynamic content is an important part quently updated sources entails a number of chal- of the Web, it accounts for a substantial amount of lenges: Web traffic. For example, much time is spent read- ing news, blogs and user comments in social media.
    [Show full text]
  • Domain-Targeted, High Precision Knowledge Extraction
    Domain-Targeted, High Precision Knowledge Extraction Bhavana Dalvi Mishra Niket Tandon Peter Clark Allen Institute for Artificial Intelligence 2157 N Northlake Way Suite 110, Seattle, WA 98103 bhavanad,nikett,peterc @allenai.org { } Abstract remains elusive. Specifically, our goal is a large, high precision body of (subject,predicate,object) Our goal is to construct a domain-targeted, statements relevant to elementary science, to sup- high precision knowledge base (KB), contain- port a downstream QA application task. Although ing general (subject,predicate,object) state- ments about the world, in support of a down- there are several impressive, existing resources that stream question-answering (QA) application. can contribute to our endeavor, e.g., NELL (Carlson Despite recent advances in information extrac- et al., 2010), ConceptNet (Speer and Havasi, 2013), tion (IE) techniques, no suitable resource for WordNet (Fellbaum, 1998), WebChild (Tandon et our task already exists; existing resources are al., 2014), Yago (Suchanek et al., 2007), FreeBase either too noisy, too named-entity centric, or (Bollacker et al., 2008), and ReVerb-15M (Fader et too incomplete, and typically have not been al., 2011), their applicability is limited by both constructed with a clear scope or purpose. limited coverage of general knowledge (e.g., To address these, we have created a domain- • targeted, high precision knowledge extraction FreeBase and NELL primarily contain knowl- pipeline, leveraging Open IE, crowdsourcing, edge about Named Entities; WordNet uses only and a novel canonical schema learning algo- a few (< 10) semantic relations) rithm (called CASI), that produces high pre- low precision (e.g., many ConceptNet asser- • cision knowledge targeted to a particular do- tions express idiosyncratic rather than general main - in our case, elementary science.
    [Show full text]
  • 4Th INCF Japan Node International Workshop Advances in Neuroinformatics 2016 and 14Th INCF Nodes Workshop
    4th INCF Japan Node International Workshop Advances in Neuroinformatics 2016 and 14th INCF Nodes Workshop Program and Abstracts May 28-29, 2016 Suzuki Umetaro Hall, RIKEN 2-1, Hirosawa, Wako, Saitama, Japan RIKEN Brain Science Institute JAPAN Organized by RIKEN Brain Science Institute International Neuroinformatics Coordinating Facility (INCF) In Cooperation with The Japanese Society for Artificial Intelligence Japanese Neural Network Society The Japan Neuroscience Society ※This Workshop is a part of the RIKEN Symposium Series. AINI2016 & INCF Nodes Workshop Table of Contents Message from Chairs ..................................................................................................... 3 Workshop Organizing Committee ........................................................................... 4 General Information ....................................................................................................... 5 Program at a Glance ....................................................................................................... 6 Program ............................................................................................................................... 7 Keynote Lecture Abstracts ....................................................................................... 12 Oral Session I Whole Brain Imaging for Approaches to Functions and Anatomy Abstracts ...................................................................................................... 15 Oral Session II Multi-dimensional Theoretical Neuroscience
    [Show full text]
  • Towards Knowledge Acquisition of Metadataon AI Progress
    Towards Knowledge Acquisition of Metadata on AI Progress Zhiyu Chen?, Mohamed Trabelsi?, Brian D. Davison, Jeff Heflin Lehigh University, Bethlehem, PA, USA fzhc415,mot218,davison,[email protected] Abstract. We propose an ontology to help AI researchers keep track of the scholarly progress of AI related tasks such as natural language processing and computer vision. We first define the core entities and relations in the proposed Machine Learning Progress Ontology (MLPO). Then we describe how to use the techniques in natural language processing to construct a Machine Learning Progress Knowledge Base (MPKB) that can support various downstream tasks. Keywords: dataset search · information extraction · ontology · knowledge base 1 Introduction In recent years, there has been a significant increase in the number of published pa- pers for AI related tasks, and this leads to the introduction of new tasks, datasets, and methods. Despite the progress in scholarly search engines, it is challenging to connect previous technologies with new work. Researchers from the semantic web community have noticed the importance of organizing scholarly data from a large collection of papers with tools like Computer Science Ontology [10]. Natural language processing researchers have proposed methods to extract information from research articles for bet- ter literature review [8]. Different from previous work which focuses on the extraction of paper metadata and key insights, we propose to design an ontology and knowledge base for better evaluation of AI research. Papers With Code1 is a website that shows the charts of progress of machine learning models on various tasks and benchmarks. Those charts can help researchers to identify the appropriate literature related to their work, and to select appropriate baselines to compare against.
    [Show full text]
  • Machine Learning and Knowledge Extraction an Open Access Journal by MDPI
    machine learning and knowledge extraction an Open Access Journal by MDPI Academic Open Access Publishing since 1996 machine learning and knowledge extraction an Open Access Journal by MDPI Editor-in-Chief Message from the Editor-in-Chief Prof. Dr. Andreas Holzinger Machine learning deals with understanding intelligence to design algorithms that can learn from data, gain knowledge from experience and improve their learning behaviour over time. The challenge is to extract relevant structural and/or temporal patterns (“knowledge”) from data, which is often hidden in high dimensional spaces, thus not accessible to humans. Many application domains, e.g., smart health, smart factory, etc. affect our daily life, e.g., recommender systems, speech recognition, autonomous driving, etc. The grand challenge is to understand the context in the real-world under uncertainty. Probabilistic inference can be of great help here as the inverse probability allows to learn from data, to infer unknowns, and to make predictions to support decision making. Author Benefits Open Access Unlimited and free access for readers No Copyright Constraints Retain copyright of your work and free use of your article Thorough Peer-Review No Space Constraints, No Extra Space or Color Charges No restriction on the length of the papers, number of figures or colors Aims and Scope Machine Learning and Knowledge Extraction (MAKE) is an inter-disciplinary, cross-domain, peer-reviewed, scholarly open access journal to provide a platform to support the international machine learning community. It publishes original research articles, reviews, tutorials, research ideas, short notes and Special Issues that focus on machine learning and applications.
    [Show full text]
  • Towards Unsupervised Knowledge Extraction
    Towards Unsupervised Knowledge Extraction Dorothea Tsatsoua,b, Konstantinos Karageorgosa, Anastasios Dimoua, Javier Carbob, Jose M. Molinab and Petros Darasa aInformation Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, 57001, Thermi, Thessaloniki, Greece bComputer Science Department, University Carlos III of Madrid, Av. Universidad 30, Leganes, Madrid 28911, Spain Abstract Integration of symbolic and sub-symbolic approaches is rapidly emerging as an Artificial Intelligence (AI) paradigm. This paper presents a proof-of-concept approach towards an unsupervised learning method, based on Restricted Boltzmann Machines (RBMs), for extracting semantic associations among prominent entities within data. Validation of the approach is performed in two datasets that connect lan- guage and vision, namely Visual Genome and GQA. A methodology to formally structure the extracted knowledge for subsequent use through reasoning engines is also offered. Keywords knowledge extraction, unsupervised learning, spectral analysis, formal knowledge representation, symbolic AI, sub-symbolic AI, neuro-symbolic integration 1. Introduction Nowadays, artificial intelligence (AI) is linked mostly to machine learning (ML) solutions, enabling machines to learn from data and subsequently make predictions based on unidentified patterns in data, taking advantage of neural network (NN)-based methods. However, AI is still far from encompassing human-like cognitive capacities, which include not only learning but also understanding1, abstracting, planning, representing knowledge and logically reasoning over it. On the other hand, Knowledge Representation and Reasoning (KRR) techniques allow machines to reason about structured knowledge, in order to perform human-like complex problem solving and decision-making. AI foundations propose that all the aforementioned cognitive processes (learning, abstracting, representing, reasoning) need to be integrated under a unified strategy, in order to advance to In A.
    [Show full text]