THERMOPLASTIC ELASTOMER BLENDS (October 1993)

Total Page:16

File Type:pdf, Size:1020Kb

THERMOPLASTIC ELASTOMER BLENDS (October 1993) Abstract Process Economics Program Report No. 175C THERMOPLASTIC ELASTOMER BLENDS (October 1993) Thermoplastic elastomers are polymers that combine the flexibility and impact resistance of thermoset rubbers with the strength and convenient processibility of thermoplastics. This unique combination of properties is a result of the two-phase morphology of these materials. One means of preparing thermoplastic elastomers is to blend a thermoplastic with an elastomer. In this report SRI examines the technology of thermoplastic/elastomer blends, particularly blends derived from polypropylene, polyvinyl chloride, or thermoplastic polyurethane. This report contains an evaluation of a process known as dynamic vulcanization, which is one method of preparing thermoplastic elastomers with a preferred two-phase morphology. We also compare the economics for preparing thermoplastic polyolefin elastomers (TPOs) using dynamic vulcanization with the economics for preparing TPOs by the new in-reactor polymerization process. For those in the thermoplastic elastomers business, this report will be useful for its extensive review of recently published literature and the comparative economics. Users of thermoplastic elastomers will also find it useful for understanding the underlying principles of the product technology. We summarize and evaluate over 200 pertinent patents. PEP’92 GMB CONTENTS GLOSSARY xiii 1 INTRODUCTION 1-1 2 SUMMARY 2-1 GENERAL ASPECTS OF TPE BLENDS 2-1 Polypropylene Blends 2-1 Polyvinyl Chloride Compounds and Blends 2-2 Thermoplastic Polyurethane Blends 2-2 TECHNICAL ASPECTS 2-2 Dynamic Vulcanization 2-3 Extrusion Compounding 2-3 ECONOMIC ASPECTS 2-3 3 INDUSTRY STATUS 3-1 OVERVIEW 3-1 THERMOPLASTIC POLYOLEFIN ELASTOMERS 3-2 Producers of Thermoplastic Polyolefin Elastomers 3-3 Markets for Thermoplastic Olefin Elastomers 3-3 POLYVINYL CHLORIDE COMPOUNDS AND BLENDS 3-6 THERMOPLASTIC POLYURETHANE BLENDS 3-7 4 TYPES OF POLYMER BLENDS 4-1 MISCIBLE BLENDS 4-3 TWO-PHASE BLENDS 4-3 COMPATIBILIZERS 4-4 5 POLYPROPYLENE BLENDS 5-1 REVIEW OF POLYPROPYLENE BLENDS 5-3 Polypropylene/EP(D)M 5-3 Polypropylene/EPDM Vulcanizates 5-8 Polypropylene/Nitrile Rubber 5-16 Polypropylene/Butyl Rubber 5-20 Polypropylene Blends WIth Other Elastomers 5-22 - iii - CONTENTS (Continued) 5 POLYPROPYLENE BLENDS (Concluded) BLENDING EQUIPMENT AND PROCEDURES 5-23 COMMERCIAL VULCANIZATION 5-24 PROCESS DESCRIPTION 5-25 CAPITAL INVESTMENT 5-29 CONVERSION COSTS 5-29 PRODUCTION COSTS 5-29 6 POLYVINYL CHLORIDE BLENDS 6-1 REVIEW OF POLYVINYL CHLORIDE BLENDS 6-2 Polyvinyl Chloride/Nitrile Rubber 6-2 Polyvinyl Chloride/Polyurethane 6-5 Polyvinyl Chloride/Ethylene-Vinyl Acetate 6-6 Polyvinyl Chloride/Chlorinated Polyethylene 6-7 Other Polyvinyl Chloride Blends 6-8 BLENDING EQUIPMENT AND PROCEDURES 6-8 COMMERCIAL VULCANIZATION 6-9 PROCESS DESCRIPTION 6-10 CAPITAL INVESTMENT 6-14 CONVERSION COSTS 6-14 PRODUCTION COSTS 6-14 7 THERMOPLASTIC POLYURETHANE BLENDS 7-1 REVIEW OF POLYURETHANE BLENDS 7-1 TPU/ABS 7-2 TPU/Polycarbonate 7-6 Other Polyurethane Blends 7-7 PROCESS DESCRIPTION 7-7 PRODUCTION COSTS 7-8 - iv - CONTENTS (Concluded) APPENDIX A: PATENT SUMMARY TABLES A-1 APPENDIX B: DESIGN AND COST BASES B-1 APPENDIX C: PRODUCT INFORMATION C-1 APPENDIX D: EQUIPMENT SUPPLIERS D-1 APPENDIX E: CITED REFERENCES E-1 APPENDIX F: PATENT REFERENCES BY COMPANY F-1 - v - - vi - ILLUSTRATIONS 4.1 Typical Stress-Strain Curves 4-2 5.1 Structures of Homopolymer Polypropylene 5-1 5.2 Yield Stress and E Modulus Versus PP Content of Blends Consisting of Homopolymer PP (MFR 10) and HMW Semicrystalline EPDM 5-5 5.3 Elastic Recovery Versus PP Content of Blends Consisting of Homopolymer PP (MFR 10) and HMW Semicrystalline EPDM 5-6 5.4 Effect of Thermoplastic Fraction (fH) on Modulus of EPDM/PP Elastomeric Blends 5-11 5.5 Effect of Polypropylene Content on Tensile Strength 5-12 5.6 Effect of Crosslink Density on Tensile Strength and Tension Set 5-13 5.7 Effect of Vulcanized Elastomer Particle Size on Mechanical Properties 5-14 5.8 Effect of Curative Level on Polypropylene/Nitrile Rubber Physical Properties 5-19 5.9 Polypropylene Blends by Dynamic Vulcanization 5-28 6.1 Polyvinyl Chloride Blends by Dynamic Vulcanization 6-13 7.1 Izod Impact Strength of Heat Resistant Grade ABS/Polyester TPU System 7-3 7.2 TPU/ABS Blends Tensile Strength and 100% Modulus Versus ABS Content 7-4 7.3 Line For Blending of Polyolefin Thermoplastics 7-9 - vii - - viii - TABLES 2.1 Thermoplastic Polyolefin Elastomers Manufacturing Cost Summary 2-5 2.2 Thermoplastic PVC and TPU Blends Manufacturing Cost Summary 2-6 3.1 Thermoplastic Elastomers 1991 Consumption 3-2 3.3 Consumption of TPOs in 1991 3-5 3.4 1991 Consumption of TPOs by End-use 3-5 3.2 Producers of Thermoplastic Olefin Elastomers 3-9 3.5 Producers of PVC Compounds and Blends 3-11 5.1 Polypropylene Blends Patent Summary A-3 5.2 Property Comparison of DexflexÔ with Dexter Corp. Patent Example 5-7 5.3 Curing Systems 5-9 5.4 Property Comparison of Santoprene® with Monsanto Patent Example 5-15 5.5 Block Copolymers For NBR/PP Compatibilization 5-18 5.6 Property Comparison of Geolast® with Monsanto Patent Example 5-20 5.7 Property Comparison of TrefsinÔ with Tonen Sekiyukagaku/Exxon Chemical Patent Example 5-22 5.8 Polypropylene Blends Major Equipment 5-26 5.9 Polypropylene Blends Utilities Summary 5-27 5.10 Polypropylene Blends Total Capital Investment 5-30 5.11 Polypropylene Blends Thermoplastic/Elastomer Vulcanizates Dynamic Vulcanization Conversion Costs 5-31 5.12 Polypropylene Blends Product Value of PP/EPDM Vulcanized Blend 5-32 - ix - TABLES (Continued) 5.13 Polypropylene Blends Product Value of PP/NBR Vulcanized Blend 5-33 5.14 Polypropylene Blends Product Value of PP/Bromobutyl Rubber/ EPDM Vulcanized Blend 5-34 5.15 Reactor Thermoplastic Polyolefin Production Costs 5-35 6.1 Polyvinyl Chloride Blends Patent Summary A-26 6.2 Commercial PVC/NBR Blends 6-3 6.3 Polyvinyl Chloride Blends Major Equipment 6-11 6.4 Polyvinyl Chloride Blends Utilities Summary 6-12 6.5 Polyvinyl Chloride Blends Total Capital Investment 6-15 6.6 Polyvinyl Chloride Blends Thermoplastic/Elastomer Vulcanizates Conversion Costs 6-16 6.7 Polyvinyl Chloride Blends Product Value of PVC/NBR Blend 6-17 7.1 Polyurethane Blends Patent Summary A-43 7.2 Property Comparison of PrevailÔ with Dow Patent Example 7-5 7.3 Property Comparison of Texin® with Mobay Patent Example 7-7 7.4 Thermoplastic Polyurethane Blends Product Value of TPU/ABS Blend 7-10 7.5 Thermoplastic Polyurethane Blends Product Value of TPU/Polycarbonate Blend 7-11 C.1 PP/EP Blend DexflexÔ Product Information Injection Molding Grades C-3 - x - TABLES (Concluded) C.2 PP/EP Blend VistaFlexÔ Product Information C-4 C.3 PP/EP Blend Polytrope® Product Information C-5 C.4 PP/EPDM Vulcanizate Santoprene® Product Information C-12 C.5 PP/NBR Vulcanizate Geolast® Product Information C-18 C.6 PP/Elastomer Vulcanizate Sarlink® Product Information C-19 C.7 PVC/NBR Blend Bur-A-Loy® Product Information C-20 C.8 PVC/NBR Blend Krynac Nv870 Product Information C-28 C.9 PVC/NBR Blends Paracril Ozo® Product Information C-31 C.10 PVC/NBR Blends Nipol® Product Information C-32 C.11 PVC/TPU Blends 90-P513A Product Information C-33 C.12 TPU/ABS Blends PrevailÔ Product Information C-34 - xi -.
Recommended publications
  • A Review of Restrictions and PVC Free Policies Worldwide
    PVC-Free Future: A Review of Restrictions and PVC free Policies Worldwide A list compiled by Greenpeace International 9th edition, June 2003 © Greenpeace International, June 2003 Keizersgracht 176 1016 DW Amsterdam The Netherlands Tel: +31 20 523 6222 Fax: +31 20 523 6200 Web site: www.greenpeace.org/~toxics If your organisation has restricted the use of Chlorine/PVC or has a Chlorine/PVC-free policy and you would like to be included on this list, please send details to the Greenpeace International Toxics Campaign 1 Contents 1. Political......................................................................................................................... 4 1.1 International Agreements on Hazardous Substances............................. 4 Mediterranean........................................................................................................... 4 North-East Atlantic (OSPAR & North Sea Conference)..................................... 4 International Joint Commission - USA/Canada................................................... 6 United Nations Council on Environment and Development (UNCED)............ 7 United Nations Environment Programme (UNEP).............................................. 7 UNEP – global action on Persistent Organic Pollutants..................................... 7 UNIDO........................................................................................................................ 8 1.2 National PVC & Chlorine Restrictions and Other Initiatives: A-Z.......10 Argentina..................................................................................................................10
    [Show full text]
  • Dynamic Crosslinked Poly(Styrene-Block-Butadiene-Block-Styrene) Via
    RSC Advances Dynamic crosslinked poly(styrene -block -butadiene -block - styrene) via Diels-Alder chemistry: An ideal method to improve solvent resistance and mechanical properties without losing its thermal plastic behavior Journal: RSC Advances Manuscript ID: RA-ART-05-2015-008719 Article Type: Paper Date Submitted by the Author: 11-May-2015 Complete List of Authors: Bai, Jing; Shanghai Jiao Tong University, School of chemistry and chemical engineering, Li, Hui; Shanghai Jiao Tong University, School of chemistry and chemical engineering, Shi, Zixing; Shanghai Jiao Tong University, School of chemistry and chemical engineering Tian, Ming; Beijing University of Chemical Technology, Yin, Jie; Shanghai Jiao Tong University, School of chemistry and chemical engineering Page 1 of 18 RSC Advances Dynamic crosslinked poly(styrene-block-butadiene-block-styrene) via Diels-Alder chemistry: An ideal method to improve solvent resistance and mechanical properties without losing its thermal plastic behavior Jing Baia, Hui Lia, Zixing Shi*a, Ming Tianb and Jie Yina a School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composite Materials, Shanghai Key Lab of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China Shanghai, 200240, China. E-mail: [email protected]; Fax: + 86-21-54747445; Tel: + 86-21-54743268 b State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China [email protected]; Abstract Poly(styrene-block-butadiene-block-styrene)(SBS) is a typical example of thermal plastic elastomers (TPE). People usually meet a well-known paradox for SBS, RSC Advances Page 2 of 18 where improving its poor solvent resistance and low mechanical properties usually suffer from losing its thermal plastic remolding ability, one of most important characters for TPE.
    [Show full text]
  • Additives for Polyolefins: Getting the Most out of Polypropylene
    ADDITIVES FOR POLYOLEFINS PLASTICS DESIGN LIBRARY (PDL) PDL HANDBOOK SERIES Series Editor: Sina Ebnesajjad, PhD ([email protected]) President, FluoroConsultants Group, LLC Chadds Ford, PA, USA www.FluoroConsultants.com The PDL Handbook Series is aimed at a wide range of engineers and other professionals working in the plastics indus- try, and related sectors using plastics and adhesives. PDL is a series of data books, reference works, and practical guides covering plastics engineering, applications, proces- sing, and manufacturing, and applied aspects of polymer science, elastomers, and adhesives. Recent titles in the series Biopolymers: Processing and Products, Michael Niaounakis (ISBN: 9780323266987) Biopolymers: Reuse, Recycling, and Disposal, Michael Niaounakis (ISBN: 9781455731459) Carbon Nanotube Reinforced Composites, Marcio Loos (ISBN: 9781455731954) Extrusion, 2e, John Wagner and Eldridge Mount (ISBN: 9781437734812) Fluoroplastics, Volume 1, 2e, Sina Ebnesajjad (ISBN: 9781455731992) Handbook of Biopolymers and Biodegradable Plastics, Sina Ebnesajjad (ISBN: 9781455728343) Handbook of Molded Part Shrinkage and Warpage, Jerry Fischer (ISBN: 9781455725977) Handbook of Polymer Applications in Medicine and Medical Devices, Kayvon Modjarrad and Sina Ebnesajjad (ISBN: 9780323228053) Handbook of Thermoplastic Elastomers, Jiri G. Drobny (ISBN: 9780323221368) Handbook of Thermoset Plastics, 2e, Hanna Dodiuk and Sidney Goodman (ISBN: 9781455731077) High Performance Polymers, 2e, Johannes Karl Fink (ISBN: 9780323312226) Introduction
    [Show full text]
  • Thermoplastic Elastomer Filaments and Their Application in 3D Printing
    32 elastomery termoplastyczne w technologii druku 3D Agnieszka Przybytek*, Justyna Kucińska-Lipka* 1, Helena Janik* Thermoplastic elastomer filaments and their application in 3D printing The paper provides an overview on the materials used in the 3D printing technology (the Polish and foreign market) with a particular focus on flexible filaments and their possible application in the industry. There are described the techniques of 3D printing and modern filaments available on the market. There is observed the increase of interest in the production of products from filaments based on thermoplastic elastomers (TPE), including the applications in the electronics and medicine, especially in tissue engineering. Ability to modify the physical and mechanical properties of thermoplastic elastomers, combined with their unique elastic and processability properties, opens new possibilities for engineers, designers and bio-engineers. The possibility to use new materials in 3D printing can contribute to faster development of research and accelerates implementation of innovative products. Keywords: 3D printing, flexible filaments, thermoplastic elastomers (TPE), thermoplastic polyurethanes (TPU). Mgr inż. Agnieszka Przybytek ukończyła studia Dr inż. Justyna Kucińska-Lipka ukończyła studia w 2015 roku na Politechnice Gdańskiej (studia w 2003 roku na Wydziale Technologii i Materiało- inżynierskie – Wydział Fizyki Technicznej i Ma- znawstwa (specjalizacja: chemia technologia poli- tematyki Stosowanej, studia magisterskie – Wy- merów) Politechniki Radomskiej.
    [Show full text]
  • Rubber Division ACS Best Paper Awards
    Rubber Division ACS Best Paper Awards The Best Paper Committee of Rubber Division, ACS seeks to improve the quality of technical presentations by evaluating and publicly recognizing the authors of outstanding papers presented our technical meetings. Each year Committee Judges and peer attendees, rate each presentation on quality of content, originality, and clarity. Winning papers are selected from the top-rated presentations after further review by the Best Paper Committee. The Best Symposium is awarded to the symposium with the highest average paper ratings and best average attendance of presentations. Meeting Year Award Authors/Moderators Affiliation Title 196th, Fall 2019 Best Paper Steven K. Henning & Fabien Total Cray Valley Silane-Terminated Liquid Poly(butadienes) in Tread Formulations: A Mechanistic Study 196th, Fall 2019 Best Symposium Ed Terrill & Crittenden ARDL, Inc. & University of Testing and Predicting Behavior of Rubber and Tires Ohlemacher Akron 194th, Fall 2018 Best Paper Nuthathai Warasitthinon and Cooper Tire & Rubber Co. The Payne Effect: Primarily Polymer-Related or Filler-Related Phenomenon? Chris Robertson 194th, Fall 2018 Pest Symposum Cal Moreland & Sy Mowdood Michelin USA & Pirelli Advances in Material and Processes of Car and Truck Tires (Retired 192nd, 2017 Best Paper Anke Blume*, Katarzyna S. University of Twente, Influence of Network Structure on Elastomer Properties Fall Bandzierz, Louis A.E.M. Netherlands Reuvekamp, Jerzy Dryzek, Wilma K. Dierkes, Dariusz M. Bielinski 192nd, 2017 Best Symposium Crittenden Ohlemacher & University of Akron & Characterization Tools for Elastomers Fall Michael Warner CCSI, Inc. 190th, Fall 2016 Best Paper Peter Mott U.S. Naval Research The Thermomechanical Response of Polyurea Laboratory, Chemistry Division 190th, Fall 2016 Honorable Mention Steven K Henning and Taejun Yoo Total Cray Valley The Synthesis and Characterization of Farnesene-Based Oligomers 190th 2016 Best Symposium Sy Mowdood and J.
    [Show full text]
  • Elastomeric Materials
    ELASTOMERIC MATERIALS TAMPERE UNIVERSITY OF TECHNOLOGY THE LABORATORY OF PLASTICS AND ELASTOMER TECHNOLOGY Kalle Hanhi, Minna Poikelispää, Hanna-Mari Tirilä Summary On this course the students will get the basic information on different grades of rubber and thermoelasts. The chapters focus on the following subjects: - Introduction - Rubber types - Rubber blends - Thermoplastic elastomers - Processing - Design of elastomeric products - Recycling and reuse of elastomeric materials The first chapter introduces shortly the history of rubbers. In addition, it cover definitions, manufacturing of rubbers and general properties of elastomers. In this chapter students get grounds to continue the studying. The second chapter focus on different grades of elastomers. It describes the structure, properties and application of the most common used rubbers. Some special rubbers are also covered. The most important rubber type is natural rubber; other generally used rubbers are polyisoprene rubber, which is synthetic version of NR, and styrene-butadiene rubber, which is the most important sort of synthetic rubber. Rubbers always contain some additives. The following chapter introduces the additives used in rubbers and some common receipts of rubber. The important chapter is Thermoplastic elastomers. Thermoplastic elastomers are a polymer group whose main properties are elasticity and easy processability. This chapter introduces the groups of thermoplastic elastomers and their properties. It also compares the properties of different thermoplastic elastomers. The chapter Processing give a short survey to a processing of rubbers and thermoplastic elastomers. The following chapter covers design of elastomeric products. It gives the most important criteria in choosing an elastomer. In addition, dimensioning and shaping of elastomeric product are discussed The last chapter Recycling and reuse of elastomeric materials introduces recycling methods.
    [Show full text]
  • Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Lins
    molecules Article Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging Ramon Tejada-Oliveros, Rafael Balart * , Juan Ivorra-Martinez , Jaume Gomez-Caturla, Nestor Montanes and Luis Quiles-Carrillo * Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; [email protected] (R.T.-O.); [email protected] (J.I.-M.); [email protected] (J.G.-C.); [email protected] (N.M.) * Correspondence: [email protected] (R.B.); [email protected] (L.Q.-C.); Tel.: +34-966-528-433 (L.Q.-C.) Abstract: This research work reports the potential of maleinized linseed oil (MLO) as biobased compatibilizer in polylactide (PLA) and a thermoplastic elastomer, namely, polystyrene-b-(ethylene- ran-butylene)-b-styrene (SEBS) blends (PLA/SEBS), with improved impact strength for the packaging industry. The effects of MLO are compared with a conventional polystyrene-b-poly(ethylene-ran- butylene)-b-polystyrene-graft-maleic anhydride terpolymer (SEBS-g-MA) since it is widely used in these blends. Uncompatibilized and compatibilized PLA/SEBS blends can be manufactured by extrusion and then shaped into standard samples for further characterization by mechanical, thermal, morphological, dynamical-mechanical, wetting and colour standard tests. The obtained results indi- cate that the uncompatibilized PLA/SEBS blend containing 20 wt.% SEBS gives improved toughness Citation: Tejada-Oliveros, R.; (4.8 kJ/m2) compared to neat PLA (1.3 kJ/m2). Nevertheless, the same blend compatibilized with Balart, R.; Ivorra-Martinez, J.; 2 Gomez-Caturla, J.; Montanes, N.; MLO leads to an increase in impact strength up to 6.1 kJ/m , thus giving evidence of the potential Quiles-Carrillo, L.
    [Show full text]
  • High Accuracy and Precision Micro Injection Moulding of Thermoplastic 2016 Elastomers Micro Ring Production No
    4M/IWMF High accuracy and precision micro injection moulding of thermoplastic 2016 elastomers micro ring production No. M. Calaon1, G. Tosello1, R. Elsborg2, H.N. Hansen1 1 Technical University of Denmark, Department of Mechanical Engineering 2 Ortofon A/S, Nakskov, Denmark Abstract The mass-replication nature of the process calls for fast monitoring of process parameters and product geometrical characteristics. In this direction, the present study addresses the possibility to develop a micro manufacturing platform for micro assembly injection molding with real-time process/product monitoring and metrology. The study represent a new concept yet to be developed with great potential for high precision mass-manufacturing of highly functional 3D multi-material (i.e. including metal/soft polymer) micro components. The activities related to HINMICO project objectives proves the importance of using tool geometries as reference calibrated artefacts to establish effective in-line process technology development and control. The results allow identifying the correct process windows for optimal part quality reducing product dimensional variation in the micrometer dimensional range. The proposed metrological approach enabled to quantify product dimensional variations based on process and tooling capabilities. Keywords: Text Arial 9 Point. (i.e. including metal/soft polymer) micro components. 1. Introduction HINMICO project activities have been focus towards these directions. The present paper reports about the In recent years, the manufacturing industry and optimization of the thermoplastic elastomer (TPE) the society as a whole have witnessed a rapid increase suspension ring micro injection moulding production, in demand and usage of micro-products and micro- as key components for final product functionalities of a components in many industrial sectors such as high performances phono cartridges.
    [Show full text]
  • Thermoplastic Elastomers
    - Report No. 104 THERMOPLASTIC ELASTOMERS by ROBERT H. SCHWAAR with oontxibutions by James J. L. Ma November 1976 A private report by the PROCESS ECONOMICS PROGRAM a STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA I 3 CONTENTS INTRODUCTION. ........................ 1 3 s-r ........................... General Aspects ....................... Econmic Aspects. ...................... Technical Aspects ...................... Styrenic Thermoplastic Elastomers ............. Hydrogenated Styrenic Block Copolymers. .......... Blends of Rubber and Thermoplastics ............ Thermoplastic Copolyester Elastomers. ........... INDUSTRY STATUS ....................... 11 Production. ......................... 12 Producers .......................... 13 Prices ............................ 13 Markets ........................... 13 PROPERTIES OF THERMOPLASTIC ELASTOMERS. ........... 19 STYRENIC BLOCK COPOLYMERS .................. 25 Chemistry .......................... 27 Effect of Structure on Product Properties .......... 33 Review of Processes ..................... 34 Initiators. ........................ 42 Solvent .......................... 42 Raw Materials Purity. ................... 42 Polymerization Procedures ................. 43 Reactors......................... 43 MUDistribution. .................... 44 Additives ........................ 45 Polymerization Monitoring ................ 45 Coupling Living Diblock Polymers. ............. 46 Linear Triblock Copolymers. ............... 46 Star-Block Copolymers .................. 48 Conversion of Polymer
    [Show full text]
  • Thermoplastic Olefin Copolymers and Blends Thereof
    iiililiili^ @ EuroPean Patent Office ^-S Office europeen des brevets (fi) Publication number : 0 661 333 A2 @ EUROPEAN PATENT APPLICATION @ Application number : 94308461.6 © Int. CI.6: C08G 81/02, C08L 71/12, C08L 53/00, C08L 81/02 (22) Date of filing : 16.11.94 © Priority : 02.12.93 US 160133 @ Inventor : Khouri, Farid Fouad 6 Tamarack Lane Drive Clifton Park, New York 12065 (US) @ Date of publication of application : Inventor : Stoddard, Gregory James 05.07.95 Bulletin 95/27 10 N Helderbeg PKY Slingerlands, NJ 12159-9258 (US) @ Designated Contracting States : DE ES FR GB IT NL © Representative : Pratt, Richard Wilson et al London Patent Operation G.E. Technical Services Co. Inc. foM^c"0"8^* © Applicant : GENERAL ELECTRIC COMPANY * 1 River Road 12/13 Essex Street Schenectady, NY 12345 (US) London WC2R 3AA <GB> © Thermoplastic olefin copolymers and blends thereof. (57) Novel thermoplastic olefin copolymers and blends comprising the same are prepared from precursor fu notional ized olefin polymers and functional ized addition polymers. Additionally, the thermoplastic olefin copolymers comprise ester linkages and sulfide linkages. CM < CO CO CO <o CO LU Jouve, 18, rue Saint-Denis, 75001 PARIS EP 0 661 333 A2 Field of the Invention This invention relates to novel thermoplastic olefin copolymers and blends comprising the same. Partic- ularly, said thermoplastic olefin copolymers are prepared from precursor functionalized olefin polymers and 5 functionalized addition polymers under reactive conditions. Background of the Invention Plastics are conventionally divided into two distinct and important groups: thermoplastics and thermoset- 10 ting materials. Thermoplastics are those which melt to become viscous liquids when heated and solids when cooled.
    [Show full text]
  • THE BECKMAN CENTER for the HISTORY of CHEMISTRY HERMAN E. SCHROEDER Transcript of Interviews Conducted by Raymond C. Ferguson In
    THE BECKMAN CENTER FOR THE HISTORY OF CHEMISTRY HERMAN E. SCHROEDER Transcript of Interviews Conducted by Raymond C. Ferguson in Greenville, Delaware on 30 December 1986 and 12 January 1987 This interview has been designated as Free Access. One may view, quote from, cite, or reproduce the oral history with the permission of CHF. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: Herman E. Schroeder, interview by Raymond C. Ferguson at Greenville, Delaware, 30 December 1986 and 12 January 1987 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0063). Chemical Heritage Foundation Oral History Program 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. HERMAN E. SCHROEDER 1915 Born in Brooklyn, New York on 6 July Education 1936 A.B., chemistry, Harvard University 1937 A.M., chemistry, Harvard University
    [Show full text]
  • Design Guide for Bonding Rubber and Thermoplastic Elastomers Design Guide for Bonding Rubber and Thermoplastic Elastomers
    Design Guide for Bonding Rubber and Thermoplastic Elastomers Design Guide for Bonding Rubber and Thermoplastic Elastomers Volume 3 2011 Volume 3 Volume U.S.A. CANADA Henkel Corporation Henkel Corporation Henkel Canada Corporation Engineering Adhesives Engineering Adhesives Engineering Adhesives One Henkel Way 2225 Meadowpine Blvd. LT-2662A www.henkelna.com/loctite Rocky Hill, Connecticut 06067 Mississauga, Ontario L5N 7P2 Tel: 1.800.LOCTITE (562.8483) Tel: 1.800.263.5043 (within Canada) www.loctite.com Tel: 860.571.5100 Tel: 905.814.6511 Fax: 860.571.5465 Fax: 905.814.5391 Except as otherwise noted, all marks used are trademarks and/or registered trademarks of Henkel and/or its affiliates in the U.S. and elsewhere. ® = registered in the U.S. Patent and Trademark Office. ASTM is a certification mark of the American Society for Testing and Materials. Instron is a trademark of Instron Corporation. © Henkel Corporation, 2011. All rights reserved. 7183/LT-2662A (5/11) Table of Contents Section 1 Why Bond Elastomers With Loctite® Brand Adhesives? ................................. 2 Section 2 How to Use This Guide ............................................................ 3 Section 3 Adhesive Joint Design ............................................................ 4 Section 4 Adhesive Review................................................................. 7 Acrylics, Two-Step ......................................................................................... 7 Acrylics, Two-Part .........................................................................................
    [Show full text]