<<

arXiv:hep-ph/9710265v1 7 Oct 1997 struhlgtfrinanti- fermion light through is etyteeitn eut 4 ,6 ] npriua eas hn th think I because particular prese in the 7], of 6, aim 5, The [4, results Model. existing Standard the the dently in discu been vector has troweak processes mentioned in above th subprocess the of to are colliders subprocess of a types as the considered When is rescattered. scattering then and colo fermions new or top the like intermed [2]. an bosons model via vector bosons electroweak vector two and into turn gluons initial The fusion. t background vect a polarized usually longitudinally of is resonance. production and the is polarized exception transversely important mostly are that rdcinmcaim fvco oosfloe yterprl lep purely their by followed bosons vector of mechanisms production w famsls oe h e hsc utspl ere ffre of degrees supply must physics new the mode, W massless a of two ol rvd odwyt rb h neatoso h symmetry the of co interactions the longitudinal probe the to of way good interactions a the provide Therefore could bosons. vector and and n fteoe usin nhg nrypyisi h ehns fe of mechanism the is physics energy symmetry electroweak high breaks that in physics questions The (EWSB). open breaking the of One Introduction 1 1 nti ae aclt xc relvlsatrn mltdsof amplitudes scattering tree-level exact calculate I paper this In bos vector when process fusion vector- the is there Finally, in pairs boson vector longitudinal producing for mechanism second A and h neatosof interactions The -al [email protected] e-mail: Z Z h tnadMdlaecluae using calculated are Model Standard the discussed. flweeg hoesfrlniuial polarized longitudinally for theorems low-energy of → hi ass ic asv pnoepril a he polarizatio three has -one massive a Since masses. their Z etrBsnSatrn nteSadr oe – Model Standard the in Scattering Boson Vector relvlsatrn mltdso ogtdnlypolar longitudinally of amplitudes scattering Tree-level hs e ere ffedmaetelniuia polarizations longitudinal the are freedom of degrees new These . l + l hre nvriy oesvˇkah2 8 0Pau ,C 8, Holeˇsoviˇck´ach Prague V 00 University, 180 Charles 2, − ( l = ,µ e, ula ete aut fMteaisadPhysics, and Mathematics of Faculty Centre, Nuclear eateto hsc,TcnclUiest Liberec, University Technical Physics, of Department W ,rfre oa odpae hnes n ftepouto mec production the of One channels. gold-plated as to referred ), L and ´ loa6 6 7Lbrc zc republic Czech Liberec, 17 461 H´alkova 6, nOeve fFormulae of Overview an Z L nhg nrypoessaeuulysuidb en fdifferent of means by studied usually are processes energy high in i.e. Tom´aˇs Bahn´ık q q ¯ Abstract Mathematica or and e 1 + e − niiain hsyed etrbsnpairs boson vector yields This . 1 W package and zdeetoekvco oosin bosons vector electroweak ized Z Feyncalc olso.Sniiiyo different of Sensitivity collision. nteSadr oe are Model Standard the in pnnso h etrbosons vector the of mponents sdi eiso rils[3]. articles of series a in ssed ntepoeso etrboson vector of process the en srsosbefrgvn the giving for responsible is aesaeta ope oboth to couples that state iate dmt esalwdb the by swallowed be to edom tppri ocekindepen- check to is paper nt rbsn hog e vector new through bosons or r a enamnrerrin error minor a been has ere ogtdnlyplrzdelec- polarized longitudinally colliding by radiated are ons oi decays tonic e atce fatechnicolor a of red raigsco [1]. sector breaking h te rcse.The processes. other the o ehrepublic zech h modifications The . arncliesi is colliders hadron etoeksymmetry lectroweak s ahrta the than rather ns, W R-E 97/15 PRA-HEP L coe ,1997 2, October e.g. and W Z ± L hanism → fthe of l ± W ν an earlier paper [5]. As a consistency test I use the high-energy (E mW ) behaviour of a pure gauge amplitudes. Their quadratic growth ( E2) should be canceled≫ by introducing . ∼ It has been shown that some universal low-energy theorems (LET) for the scattering of lon- gitudinally polarized W and Z hold [8]. These theorems are valid below the scale ΛSB 1 TeV, ∼ provided that the symmetry breaking sector contains no particles much lighter than ΛSB. The derivation in [8] shows that in this case the LET are given by SU(2)L U(1)Y gauge interactions of vector bosons alone. The particle which modifies pure gauge amplit×udes (and LET) in the SM is the Higgs boson. To see this modifications, I plot the complete amplitudes for different values of Higgs boson mass and compare them with the pure gauge contributions.

2 Scattering Amplitudes

Calculation of the scattering amplitudes of the gauge bosons by hand is a tedious task. The use of function SpecificPolarization of the Mathematica package FeynCalc [9] has substantially reduced algebraical manipulations. Longitudinal polarization picks up a specific direction in space. Thus the amplitudes writ- ten in terms of Mandelstam variables s,t,u do not describe scattering of longitudinally polarized particles in all Lorentz frames. For the process V (p1)+ V (p2) V (k1)+ V (k2) the function SpecificPolarization uses the following representation of the longitudinal→ polarization vectors ε(p,L)

µ µ ε (p1,L) = FL (p1, k1, k2) µ µ ε (p2,L) = FL (p2, k1, k2) µ µ ε (k1,L) = FL (k1, p1,p2) µ µ ε (k2,L) = FL (k2, p1,p2) (1) where rµ(b r + a r) (a + b)µr2 F µ(r, a,b)= · · − (2) L r2[(b r + a r)2 r2(b + a)2] · · − Using this function, we get the longitudinalp polarization only in the CM system, where p1 + p2 = k1 + k2 = 0. Table 1 summarizes tree-level contributions (contact graphs are not listed) to the scattering amplitudes of the gauge bosons in the SM in the U-gauge. Contributions to the process #n from

process # process s t u references − 1 W +W Z Z H W W [4, 5] 1 2 → 3 4 2 W +Z Z W + W W H [5] 1 2 → 3 4 3 W +W + W +W + Z,γ,H Z,γ,H [6] 1 2 → 3 4 − − 4 W +W W +W Z,γ,H Z,γ,H [7] 1 2 → 3 4

Table 1: Individual processes together with exchanged particles in different channels (s,t,u). W,Z,γ are electroweak gauge bosons and and H is the SM Higgs boson. Contact graphs contribute to each of the process and are not listed. graph with V -boson exchange in the k-channel are denoted as g g (n) = 1 2 A(n) (3) MkV −k m2 k − V and from the contact graph (n) = g A(n) (4) Mc c

2 with g1,g2 and g denoting relevant coupling constants. Amplitudes given by the low-energy the- (n) orems are denoted as LET . Note that in the paper of Bento and Llewellyn Smith [5] the WZ WZ amplitudeM is claimed to be (in the current notation) → (2) = (2) + (2) + (2) + (2) (wrong) M Mc MuH MuW MtW and is also calculated in this way. This is wrong, because W is exchanged in s and t (or u) channel2. Explicit formulae for the scattering amplitudes are somewhat difficult to read and are postponed to the appendix A. Table 2 summarizes relations among different A parts of gauge amplitudes as defined in (3) and (4). These relation are almost obvious, nevertheless they can be used as a check. (1) (2) (2) (1) Besides these relations we have AtW = AtW but AtW = AtW . Note that the mZ =mW − mZ =mW 6 −

process # exchange Contact graph

(1) (1) (1) 1 A (cos θcm)= A ( cos θcm) Ac tW uW − (2) (2) (2) 2 AsW , AtW Ac

(3) (1) (3) (1) 3 A = A Ac = Ac (t,u)(γ,Z) − (t,u)W mZ =mW mZ =mW (4) (2) (4) (2) 4 A = A Ac = Ac (s,t)(γ,Z) − (s,t)W mZ =mW mZ =mW

Table 2: Relations among the A parts of the scattering amplitudes.

(n) (n) α β Aγ = AZ because the longitudinal term in propagator ( q q ) does not contribute to the amplitudes with exchange of neutral gauge boson. ∼

2.1 W +(k )+ W −(k ) Z(k )+ Z(k ) 1 2 → 3 4 On the tree-level the pure gauge contributions are from W -exchange in t and u channels and the contact graph 2 2 g cos θW (1) = − A(1) k = t,u (5) MkW k m2 kW − W (1) 2 2 (1) = g cos θW A (6) Mc − c Complete gauge amplitude grows linearly with s

(1) = (1) + (1) + (1) Mgauge MtW MuW Mc (1 x2) 2cos2 θ ρ(1 + x2) m2 (1) g2 W O W = LET − 2 − 2 2 + (7) M − 2ρ cos θW (1 x ) s −   where g2 s m2 (1) , ρ W x θ . LET = 2 = 2 2 and cos cm M 4 ρmW mZ cos θW ≡ with θcm an angle between k1 and k3 in CMS. In the SM this growth is canceled by exchange of the Higgs boson in the s-channel

2 ∗ ∗ (1) g mW mZ (ε1 ε2)(ε3 ε4) sH = · 2 · (8) M − cos θW s m + imH ΓH − H (1) The amplitude sH has, for longitudinal polarizations, the high-energy (E mH ,mW ) expansion (for exact formulaeM see appendix) ≫

g2m m s g2√ρ (1) = W Z + O(s0) = s + O(s0) MsH − cos θ 4m2 m2 − 4m2 W  Z W  W 2There is the interchange t ↔ u in [5] in comparison with this paper.

3 25

20 W+W- → Z Z 15

10

5 (1) M 0

-5 mH = 500 GeV

mH = 1500 GeV -10 (1) Mgauge M (1) -15 LET

200 400 600 800 1000 √s [GeV]

Figure 1: Tree-level amplitudes of the process WW ZZ as a function of √s for different values of → 2 mH . The Higgs boson width, ΓH , is set to zero, cos θcm = 0.5, ρ = 1, mZ = 91.2 GeV, sin θW = 0.231, 2 4παem . g = 2 = 0.42. sin θW so the cancellation occurs for ρ = 1. (1) (1) (1) Figure 1 shows dependence of the complete amplitude = gauge + sH on the Higgs M M (1) M (1) boson mass, mH , in the region mW < √s< 1TeV and compares it with gauge and LET . Note (1) (1) M M that gauge differs from LET in the limit s by a constant term. Numerical values of all parametersM are the same throughoutM the paper.→ ∞

2.2 W +(k )+ Z(k ) Z(k )+ W +(k ) 1 2 → 3 4 On the tree-level the pure gauge contributions are from W -exchange in s and t channels and the contact graph 2 2 g cos θW (2) = − A(2) k = s,t (9) MkW k m2 kW − W (2) 2 2 (2) = g cos θW A (10) Mc − c The asymptotic behaviour of the complete tree-level gauge amplitude is

(2) = (2) + (2) + (2) Mgauge MsW MtW Mc g2(2x(1 x)+ ρ cos2 θ (3+2x x2)) m2 (2) W O W = LET − 2 2 − + (11) M − 4ρ cos θW (1 x) s −   where a low-energy amplitude is usually defined as

2 2 (2) g u g s 0 LET = 2 = 2 (1 + cos θcm)+ O(s ) . M 4ρmW −8ρmW The exchange of the Higgs boson in the u-channel ∗ ∗ (2) 2 mW mZ (ε1 ε4) (ε2 ε3) uH = g · 2 · (12) M − cos θW u M − H has for longitudinal polarizations the high-energy expansion 2 2 (2) g √ρ 0 g √ρ 0 uH = 2 (1 + cos θcm) s + O(s )= 2 u + O(s ) . M 8mW − 4mW

4 0 W+ Z → Z W+ -2

-4 (2) -6 M

mH = 500 GeV m = 1500 GeV -8 H (2) Mgauge M (2) -10 LET

-12 200 400 600 800 1000 √s [GeV]

Figure 2: Tree-level amplitudes of the process W Z W Z. →

(2) (2) Figure 2 shows complete tree-level amplitude for different mH and compares it with gauge M M and (2) . MLET 2.3 W +(k )+ W +(k ) W +(k )+ W +(k ) 1 2 → 3 4 On the tree-level graphs with γ and Z exchange in t and u channels and contact graph contribute. In the Standard Model, Higgs boson exchange in t and u channels gives the desired high energy behaviour. 2 2 2 g cos θW e (3) = − A(3) (3) = − A(3) k = t, u . MkZ k m2 kZ Mkγ k kγ − Z Because longitudinal term in the Z boson propagator does not contribute we have

(3) (3) Akγ = AkZ .

Contact graph amplitude for longitudinally polarized gauge bosons has the form

2 (3) 2 (3) g s 2 2 c = g Ac = 4 ( 8 mW +3 s s cos θcm) (13) M 8 mW − − The gauge amplitude can be written as

(3) (3) (3) (3) (3) 2 2 AtZ AuZ 2 2 Atγ Auγ (3) = g cos θW + g sin θW + + (14) Mgauge − t m2 u m2 − t u Mc " − Z − Z # " # Expanding this expression in powers of s gives

2 2 (3) 2 2 3 cos θcm 2 3mZ 0 = g cos θW − s s + O(s ) Mgauge − 8m4 − 4m4  W W  2 2 2 3 cos θcm 2 0 g sin θW − s + O(s ) − 8m4  W  2 3 cos θcm s + g2 − s2 (15) 8m4 − m2  W W 

5 0

W+ W+ → W+ W+ -2

-4

(3) -6 M

-8

m = 500 GeV -10 H

mH = 1500 GeV M (3) -12 gauge (3) MLET -14 200 400 600 800 1000 √s [GeV]

Figure 3: Tree-level amplitudes of the process W +W + W +W +. →

Quadratic (in s) divergencies are canceled and including constant terms of the order O(s0) we get

2 2 2 2 2 3+ x ρ cos θW (6 4 ρ + 10x 12 ρ x m (3) = (3) g2 − − − + O W (16) gauge LET 2 2 2 2 M M − 2 ρ (1 x ) cos θW s −    where g2 s 3 (3) = 4 . (17) MLET −4m2 − ρ W   This linear divergence should be canceled by Higgs exchange in t and u channels (ε ε∗)(ε ε∗) (ε ε∗)(ε ε∗) (3) = g2m2 1 · 3 2 · 4 + 1 · 4 2 · 3 (18) MH − W t m2 u m2  − H − H  with high-energy expansion 2 (3) g s 0 H = 2 + O(s ) . (19) M 4mW Comparing (17) and (19) we see that ρ = 1 ensures desired cancellation.

2.4 W +(k )+ W −(k ) W +(k )+ W −(k ) 1 2 → 3 4 In this case we have to consider Z, γ and Higgs boson exchange in s and t channels and contact graph. As in the previous sections we write

2 2 2 g cos θW e (4) = − A(4) (4) = − A(4) k = s,t MkZ k m2 kZ Mkγ k kγ − Z The results for the A parts of the amplitude can be obtained directly from corresponding formulae + + for the process W Z W Z by setting mZ = mW → A(4) = A(2) (s,t)(Z,γ) − (s,t)W mZ =mW (4) (3) (4) (4) or we can also notice that AtZ = AtZ . Again we have AkZ = Akγ . In the case of longitudinally polarized gauge bosons −

2 (4) 2 (4) g s 2 2 2 c = g Ac = 4 (8 mW 3 s 24 mW x +6 s x + s x ) (20) M 16 mW − −

6 25

20 + - → + - 15 W W W W

10

5 (4)

M 0

-5

-10 mH = 500 GeV

mH = 1500 GeV -15 (4) Mgauge -20 (4) MLET -25 200 400 600 800 1000 √s [GeV]

− − Figure 4: Tree-level amplitudes of the process W +W W +W . →

Let us examine high-energy expansion of gauge amplitude

(4) (4) (4) (4) (4) 2 2 AsZ AtZ 2 2 Asγ Atγ (4) = g cos θW + g sin θW + + . (21) Mgauge − s m2 t m2 − s t Mc " − Z − Z # " #

2 2 2 2 2 (4) 2 2 x 2 mZ x x +2x 3 2 3mZ 16mW x + mZ x = g cos θW s + s + − s + − s Mgauge − 4m4 4m4 16m4 8m4  W W W W  2 2 2 x 2 x +2x 3 2 2x 0 g sin θW s + − s s + O(s ) − 4m4 16m4 − m2  W W W  x2 +6x 3 1 3x + g2 − s2 + − s (22) 16m4 2m2  W W  After simplification and including terms of order O(s0) we get

(4) = (4) Mgauge MLET (3 + x2 ρ cos2 θ (12 12 ρ + 12 x 16 ρ x 8 x2 + 12 ρ x2)) g2 W + − −2 2− − 4 ρ (1 x) cos θW − m2 + O W s   where as in the case of the process #1 I denote g2u 3 (4) = 4 MLET −4m2 − ρ W   in accordance with [8]. High-energy expansion of the Higgs boson contribution (ε ε )(ε∗ ε∗) (ε ε∗)(ε∗ ε∗) (4) = g2M 2 1 · 2 3 · 4 + 1 · 3 2 · 4 (23) MH − W s m2 t m2  − H − H  is 2 2 (4) g s 0 g u 0 H = 2 (1 + cos θcm)+ O(s )= 2 + O(s ) M −8mW 4mW

7 A Exact formulae

The following Feynman rules and notation is used (all momenta are outgoing) [10]

− + γ(Z),ρ W , σ W ,ν

q ✻ ■ ✒ ♣ ♣ 2 ie(ig cos θW )Vνµρ(k,p,q) ig Vµνλσ ✠ k ❘ p ✠ ❘

− W +, µ W ,ν W +, µ W −, λ

Z,σ Z,ν H

♣ ♣ 2 ig cos θW Vνσµλ igmW gµν −

+ − W +, µ W −, λ W , µ W ,ν

H

♣ ig mZ g cos θW µν

Z,µ Z,ν

where Vλµν (k,p,q) = (k p)ν gλµ + (p q)λ gµν + (q k)µ gλν , k + p + q = 0 (24) − − − Vµνρσ =2gµν gρσ gµρgνσ gνρgµσ . − − Propagators of the gauge bosons are

αβ qαqβ g + 2 αβ αβ αβ m P (q) g Pγ Dαβ(q)= − V V ,Dαβ = − . V q2 m2 ≡ q2 m2 γ q2 ≡ q2 − V − V Mandelstam variables are defined as

2 2 s = (k1 + k2) = (k3 + k4) t = (k k )2 = (k k )2 1 − 3 4 − 2 u = (k k )2 = (k k )2 1 − 4 3 − 2 The expression containing polarization vectors has in all amplitudes the form

∗ ∗ µνρσ = εµ εν ε ρ ε σ E 1 2 3 4

where εi = ε(ki). I use the abbreviation x = cos θcm, where θcm is the angle between k1 a k3 in CMS.

A.1 W +(k )+ W −(k ) Z(k )+ Z(k ) 1 2 → 3 4

(1) (1) (1) 2 2 AtW AuW (1) (1) = g cos θW + + A + M − t m2 u m2 c MsH " − W − W #

8 (1) αβ µνρσ A = Vµαρ( k ,q,k ) Vβνσ( q, k , k )P (q) tW − 1 3 − − 2 4 W E (1) αβ µνρσ A = Vµασ ( k ,q,k ) Vβνρ( q, k , k )P (q) uW − 1 4 − − 2 3 W E (1) µνρσ A = Vρσµν c E After contraction (1) ∗ ∗ ∗ ∗ AtW = 4 (k1 ε3) (k2 ε4) (ε1 ε2)+4(k1 ε3) (k4 ε2) (ε1 ε4) · ∗ · · ∗ · · ∗ · ∗ + 4 (k2 ε4) (k3 ε1) (ε2 ε3)+4(k3 ε1) (k4 ε2) (ε3 ε4) · · · ∗ ∗ · · ∗ · ∗ 2 (k4 ε2) ((k1 + k3) ε4) (ε1 ε3) 2 (k2 ε4) ((k1 + k3) ε2) (ε1 ε3) − · ∗ · · ∗ − · · ∗ · ∗ 2 (k1 ε3) ((k2 + k4) ε1) (ε2 ε4) 2 (k3 ε1) ((k2 + k4) ε3) (ε2 ε4) − 2 · 2 2 · · − · · · (mW mZ ) ∗ ∗ ∗ ∗ + −2 (ε1 ε3) (ε2 ε4) + (s u) (ε1 ε3) (ε2 ε4). (25) mW · · − · ·

A(1) = A(1) (3 4,u t) uW tW ↔ → A(1) = 2 (ε ε ) (ε∗ ε∗) (ε ε∗) (ε ε∗) (ε ε∗) (ε ε∗) c 1 · 2 3 · 4 − 1 · 4 2 · 3 − 1 · 3 2 · 4 Replacing all polarization vectors εi by εi(L) given in (1) we get amplitudes for longitudinally polarized gauge bosons in CMS

(1) 1 4 4 2 6 4 2 2 4 AtW (s, x) = 4 2 [ 96 mW mZ + 32 mW mZ +8 mW mZ s + 16 mW mZ s 32 mW mZ − 6 4 2 2 2 2 4 2 2 3 8 mZ s 4 mW s 10 mW mZ s +2 mZ s +3 mW s − 4 − 2 − 4 2 2 2 2 + 16 mW mZ βW βZ s x + 12 mW βW βZ s x + 24 mW mZ βW βZ s x 4 2 2 3 6 2 4 mZ βW βZ s x 5 mW βW βZ s x + 32 mW s x − 4 2 2 − 2 4 2 4 2 2 + 96 mW mZ s x + 32 mW mZ s x 16 mW s x 2 2 2 2 4 2 2 −2 3 2 2 3 3 22 m m s x +2 m s x + m s x + m βW βZ s x ] (26) − W Z Z W W A(1) (s, x)= A(1) (s, x) uW tW − and 2 2 2 (1) s ( 4 mW 4 mZ +3 s s x ) Ac = − − 2 2 − 8 mW mZ Kinematical variables are related by

2 2 s s t = m + m + βW βZ cos θcm W Z − 2 2 2 2 s s u = m + m βW βZ cos θcm W Z − 2 − 2 where 2 2 4mW 4mZ βW = 1 βZ = 1 r − s r − s 2 2 2 (1) (1) g mZ cos θW C gauge = 4 (1) M 4 mW J

C(1) = 96 m4 m2 32 m2 m4 48 m4 s +8 m2 m2 s W Z − W Z − W W Z + 8 m4 s +4 m2 s2 6 m2 s2 + s3 + 128 m6 x2 + 32 m4 s x2 Z W − Z W W 64 m2 m2 s x2 +8 m2 s2 x2 +6 m2 s2 x2 s3 x2 − W Z W Z −

J (1) = 4 m4 4 m2 s + s2 16 m2 m2 x2 Z − Z − W Z + 4 m2 s x2 +4 m2 s x2 s2 x2 W Z − For the Higgs boson amplitude (8) we have

2 2 2 (1) g mW mZ (2mW s) (2mZ s) sH = 2 2 − 2 − M − cos θW 4m m (s m + imH ΓH ) W Z − H

9 A.2 W +(k )+ Z(k ) Z(k )+ W +(k ) 1 2 → 3 4

(2) (2) (2) 2 2 AsW AtW (2) (2) = g cos θW + + A + M − s m2 t m2 c MuH " − W − W #

(2) αβ µνρσ A = Vµαν ( k , q, k ) Vβσρ( q, k , k )P (q) sW − 1 − 2 − 4 3 W E (2) αβ µνρσ A = Vµαρ( k ,q,k ) Vβσν ( q, k , k )P (q) tW − 1 3 − 4 − 2 W E (2) µνρσ A = Vµσνρ c E After contraction

(2) ∗ ∗ ∗ ∗ AsW = 4 (k1 ε2) (k3 ε4) (ε1 ε3) 4 (k1 ε2) (k4 ε3) (ε1 ε4) · · ∗ · ∗ − · · ∗ · ∗ 4 (k2 ε1) (k3 ε4) (ε2 ε3)+4(k2 ε1) (k4 ε3) (ε2 ε4) − · ∗ · · ∗ · · ∗ · ∗ 2 (k3 ε4) (ε1 ε2) ((k1 k2) ε3)+2(k4 ε3) (ε1 ε2) ((k1 k2) ε4) − · ∗ · ∗ − · · ∗ · ∗ − · 2 (k1 ε2) (ε3 ε4) ((k3 k4) ε1)+2(k2 ε1) (ε3 ε4) ((k3 k4) ε2) − 2 · 2 2· − · · · − · (mW mZ ) ∗ ∗ ∗ ∗ + −2 (ε1 ε2) (ε3 ε4) + (u t) (ε1 ε2) (ε3 ε4) (27) mW · · − · ·

∗ A(2) = A(2) (k k ,ε ε ) tW − sW 2 ↔− 3 2 ↔ 3

A(2) = 2 (ε ε∗) (ε ε∗) (ε ε∗) (ε ε∗) (ε ε ) (ε∗ ε∗) c 1 · 4 2 · 3 − 1 · 3 2 · 4 − 1 · 2 3 · 4 2 2 2 2 2 s (mZ mW ) 2 t = m + m + − +2 k cos θcm W Z − 2 2s 2 u = 2k (1 + cos θcm) − where in CMS

2 1 2 2 2 2 2 2 2 k = s + (m m ) 2s (m + m ) = ki i =1, 2, 3, 4 4s W − Z − W Z | |   g2 m2 cos θ 2 C(2) (2) = Z W Mgauge 8 m4 s (s m2 ) J (2) W − W

C(2) = 3 m10 12 m8 m2 + 18 m6 m4 12 m4 m6 +3 m2 m8 W − W Z W Z − W Z W Z + 17 m8 s 32 m6 m2 s + 10 m4 m4 s +8 m2 m6 s W − W Z W Z W Z 3 m8 s + 26 m6 s2 + 32 m4 m2 s2 30 m2 m4 s2 − Z W W Z − W Z + 4 m6 s2 50 m4 s3 + 16 m2 m2 s3 +2 m4 s3 +3 m2 s4 Z − W W Z Z W 4 m2 s4 + s5 +6 m10 x 24 m8 m2 x + 36 m6 m4 x − Z W − W Z W Z 24 m4 m6 x +6 m2 m8 x 16 m8 s x + 36 m6 m2 s x − W Z W Z − W W Z 28 m4 m4 s x + 12 m2 m6 s x 4 m8 s x + 20 m6 s2 x − W Z W Z − Z W 44 m4 m2 s2 x 20 m2 m4 s2 x + 12 m6 s2 x 16 m4 s3 x − W Z − W Z Z − W 4 m2 m2 s3 x 12 m4 s3 x +6 m2 s4 x +4 m2 s4 x +3 m10 x2 − W Z − Z W Z W 12 m8 m2 x2 + 18 m6 m4 x2 12 m4 m6 x2 +3 m2 m8 x2 − W Z W Z − W Z W Z 33 m8 s x2 + 68 m6 m2 s x2 38 m4 m4 s x2 +4 m2 m6 s x2 − W W Z − W Z W Z m8 s x2 + 122 m6 s2 x2 + 12 m4 m2 s2 x2 6 m2 m4 s2 x2 − Z W W Z − W Z + 34 m4 s3 x2 4 m2 m2 s3 x2 +2 m4 s3 x2 +3 m2 s4 x2 s5 x2 W − W Z Z W −

J (2) = m4 2 m2 m2 + m4 +2 m2 s s2 + m4 x 2 m2 m2 x W − W Z Z Z − W − W Z + m4 x 2 m2 s x 2 m2 s x + s2 x Z − W − Z

10 Higgs boson amplitude (12)

2 (2) (2) g CuH uH = (2) M 8 mW mZ cos θW s JuH

C(2) = m8 4 m6 m2 +6 m4 m4 4 m2 m6 + m8 4 m6 s +4 m4 m2 s uH W − W Z W Z − W Z Z − W W Z + 4 m2 m4 s 4 m6 s +6 m4 s2 +4 m2 m2 s2 +6 m4 s2 4 m2 s3 W Z − Z W W Z Z − W 4 m2 s3 + s4 +2 m8 x 8 m6 m2 x + 12 m4 m4 x − Z W − W Z W Z 8 m2 m6 x +2 m8 x 4 m6 s x +4 m4 m2 s x +4 m2 m4 s x 4 m6 s x − W Z Z − W W Z W Z − Z + 4 m4 s2 x 8 m2 m2 s2 x +4 m4 s2 x W − W Z Z 4 m2 s3 x 4 m2 s3 x +2 s4 x + m8 x2 4 m6 m2 x2 +6 m4 m4 x2 − W − Z W − W Z W Z 4 m2 m6 x2 + m8 x2 2 m4 s2 x2 +4 m2 m2 s2 x2 2 m4 s2 x2 + s4 x2 − W Z Z − W W Z − Z

J (2) = m4 2 m2 m2 + m4 +2 m2 s 2 m2 s 2 m2 s + s2 + m4 x uH W − W Z Z H − W − Z W 2 m2 m2 x + m4 x 2 m2 s x 2 m2 s x + s2 x − W Z Z − W − Z A.3 W +(k )+ W +(k ) W +(k )+ W +(k ) 1 2 → 3 4

(3) (3) (3) (3) (3) 2 2 AtZ AuZ 2 2 Atγ Auγ 2 (3) (3) (3) = g cos θW + g sin θW + + g A + + . M − t m2 u m2 − t u c MtH MuH " − Z − Z # " #

(3) αβ µνρσ A = Vµρα( k , k , q) Vνσβ ( k , k , q, )P (q) tZ,γ − 1 3 − 2 4 − Z,γ E (3) αβ µνρσ A = Vµσα( k , k , q) Vνρβ ( k , k , q)P (q) uZ,γ − 1 4 − 2 3 − Z,γ E

(3) µνρσ A = Vµνρσ . c E Kinematical variables are given by s s t =2 m2 (1 x) u =2 m2 (1 + x) W − 4 − W − 4    

A(3) = 2 (k ε∗) ((k ε ) + (k ε )) (ε ε∗) 4 (k ε∗) (k ε∗) (ε ε ) tZ 2 · 4 1 · 2 3 · 2 1 · 3 − 1 · 3 2 · 4 1 · 2 + 2 ((k ε∗) + (k ε∗)) (k ε ) (ε ε∗) 4 (k ε∗) (k ε ) (ε ε∗) 1 · 4 3 · 4 4 · 2 1 · 3 − 1 · 3 4 · 2 1 · 4 + 2 (k ε∗) ((k ε ) + (k ε )) (ε ε∗) 4 (k ε∗) (k ε ) (ε ε∗) 1 · 3 2 · 1 4 · 1 2 · 4 − 2 · 4 3 · 1 2 · 3 + 2 (k ε ) ((k ε∗) + (k ε∗)) (ε ε∗) 3 · 1 2 · 3 4 · 3 2 · 4 (s u) (ε ε∗) (ε ε∗) 4 (k ε ) (k ε ) (ε∗ ε∗) . (28) − − 1 · 3 2 · 4 − 3 · 1 4 · 2 3 · 4 A(3) = A(3)(3 4) uZ tZ ↔ (3) (3) A(t,u)γ = A(t,u)Z For relations among different As see table 2 and below.

(3) 1 6 4 2 2 3 6 AtZ (s, x)= 4 ( 64 mW 16 mW s + 12 mW s 3 s + 64 mW x (32 mW ) − − + 112 m4 s x 52 m2 s2 x +5 s3 x 160 m4 s x2 W − W − W + 36 m2 s2 x2 s3 x2 +4 m2 s2 x3 s3 x3) (29) W − W − A(3) (s, x)= A(3)(s, x) uZ tZ −

11 2 2 2 2 2 (3) 2 2 (3) g s 8 m +3 s s x g cos θ C g sin θ Cγ (3) = − W − + W Z W Mgauge 8 m4 8 m4 (3) − 8 m4 (3) W  W JZ W Jγ

C(3) = 256 m8 128 m6 m2 128 m6 s + 32 m4 m2 s + 64 m4 s2 Z W − W Z − W W Z W 24 m2 m2 s2 24 m2 s3 +6 m2 s3 +3 s4 + 256 m8 x2 − W Z − W Z W 256 m6 s x2 + 320 m4 m2 s x2 16 m4 s2 x2 − W W Z − W 72 m2 m2 s2 x2 + 32 m2 s3 x2 +2 m2 s3 x2 − W Z W Z 4 s4 x2 + 16 m4 s2 x4 8 m2 s3 x4 + s4 x4 − W − W J (3) = 4 m2 2 m2 s 4 m2 x + s x 4 m2 +2 m2 + s 4 m2 x + s x Z W − Z − − W − W Z − W   C(3) = 64 m6 16 m4 s + 12 m2 s2 3 s3 + 64 m6 x2 γ W − W W − W 48 m4 s x2 16 m2 s2 x2 +4 s3 x2 +4 m2 s2 x4 s3 x4 − W − W W − J (3) = s 4 m2 x2 1 γ − W − Higgs boson amplitude (18)   C(3) (3) = g2 H MH (3) JH

C(3) = 32 m2 m4 64 m6 16 m2 m2 s + 48 m4 s H H W − W − H W W + 2 m2 s2 12 m2 s2 + s3 32 m4 s x2 +2 m2 s2 x2 H − W − W H + 12 m2 s2 x2 s3 x2 (30) W − J (3) =4 m2 2 m2 4 m2 + s +4 m2 x s x 2 m2 4 m2 + s 4 m2 x + s x H W H − W W − H − W − W   A.4 W +(k )+ W −(k ) W +(k )+ W −(k ) 1 2 → 3 4

(4) (4) (4) (4) (4) 2 2 AsZ AtZ 2 2 Asγ Atγ 2 (4) (4) (4) = g cos θW + g sin θW + + g A + + . M − s m2 t m2 − s t c MsH MtH " − Z − Z # " #

(4) αβ µνρσ A = Vµνα( k , k , q) Vσρβ (k , k , q, )P (q) sZ,γ − 1 − 2 4 3 − Z,γ E (4) αβ µνρσ A = Vµρα( k , k , q) Vσνβ (k , k , q)P (q) tZ,γ − 1 3 4 − 2 − Z,γ E (4) 2 µνρσ A = g Vµσρν . c E

g2 s 8 m2 3 s 24 m2 x +6 s x + s x2 (4) = W − − W gauge m4 M 16 W  (4) (4) (4) (4) 2 2 CtZ 2 2 Ctγ + + g cos θW g sin θW MsZ Msγ − (4) − (4) JtZ Jtγ

2 2 2 (4) 2 2 4 mW s 2 mW + s x = g cos θW − MsZ − 4 m4 (m2 s) W Z −  2 2 (4) 2 2 4 mW x s x = g sin θW 3 x + Msγ − − − s 4 m4  W 

C(4) = 64 m6 + 16 m4 s 12 m2 s2 +3 s3 64 m6 x 112 m4 s x + 52 m2 s2 x tZ − W W − W − W − W W 5 s3 x + 160 m4 s x2 36 m2 s2 x2 + s3 x2 4 m2 s2 x3 + s3 x3 − W − W − W

12 J (4) = 16 m4 4 m2 2 m2 s 4 m2 x + s x tZ W W − Z − − W (4) (4) (4) (4) C = C J = J m  tγ tZ tγ tZ | Z =0 Higgs boson amplitude (23) C(4) (4) = g2 H MH (4) JH

C(4) = 32 m2 m4 32 m6 24 m2 m2 s + 24 m4 s H H W − W − H W W + 5 m2 s2 8 m2 s2 + s3 + 32 m6 x +8 m2 m2 s x H − W W H W 40 m4 s x 2 m2 s2 x +8 m2 s2 x + m2 s2 x2 s3 x2 − W − H W H − J (4) =8 m2 m2 s 2 m2 4 m2 + s +4 m2 x s x H W H − H − W W −  

References

[1] M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B261 (1985) 379 [2] J. Bagger, S. Dawson and G. Valencia, Phys. Rev. Lett. 67 (1991) 2256 [3] H.-J. He and Y.-P. Kuang and C.-P. Yuan, Phys. Rev. D55 (1997) 3038; J. Bagger, V. Barger, K. Cheung, J. Gunion, T. Han, G.A. Ladinsky, R. Rosenfeld and C.-P. Yuan, hep-ph/9504426; M. Golden, T. Han and G. Valencia, hep-ph/9611206; A. Dobado, M.J. Herrero, J.R. Pelez, E.R. Morales and M.T. Urdiales, hep-ph/9502309 [4] B. Dutta and S. Nandi, Mod. Phys. Lett. A9 (1994) 1025; [5] C.H. Llewellyn Smith and M.C. Bento, Nucl. Phys. B289 (1987) 36; [6] T. Han. V. Barger, K. Cheung and R.J.N. Philips, Phys. Rev. D42 (1990) 3052; [7] G.L. Kane, M.J. Duncan and W.W. Repko, Nucl. Phys B272 (1986) 517; [8] M. Chanowitz, M. Golden and H. Georgi, Phys. Rev. Lett. 57 (1986) 2344 and Phys. Rev. D36 (1987) 1490 [9] R. Mertig, Feyncalc, 1992 [10] J. Hoˇrejˇs´ı,Introduction to Electroweak Unification – Standard Model from Tree Unitarity, World Scientific, 1994

13