Book of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Book of Abstracts United States Department of Fourth International Workshop on Agriculture Forest Service the Genetics of Host-Parasite Pacific Southwest Interactions in Forestry Research Station D E E P R A U R T LT MENT OF AGRICU Meeting Abstracts July 31 – August 5, 2011, Eugene, Oregon, USA The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of mul- tiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Disclaimer Papers were provided by the authors in camera-ready form for printing. Authors are responsible for the content and accuracy. Opinions expressed may not necessarily reflect the position of the U.S. Department of Agriculture. The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service. Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state or federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled properly. Use all pesti- cides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry July 30 – August 5, 2011 Eugene, Oregon, USA Meeting Abstracts Welcome ........................................................................................... 2 Conference Sponsors ..................................................................... 3 Program Overview ......................................................................... 4 Oral Presentation Abstracts ......................................................... 5 Poster Abstracts ............................................................................. 73 1 Welcome Welcome to the Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry. Your participation is greatly appreciated. This meeting is intended to provide a forum for information sharing and thought-provoking discussions among researchers from various disciplines as well as policy makers, industry representatives, regulators, and land managers. Presentations this week will provide an overview of the most current scientific information available on forest insect and disease resistance for a range of forest pests worldwide. Technical Committee • Richard Sniezko, USDA Forest Service, Dorena Genetic Resource Center, USA • Alvin Yanchuk, British Columbia Ministry of Forests and Range, Canada • Dan Herms, Ohio State University, USA • Everett Hansen, Oregon State University, USA • Jeff Stone, Oregon State University, USA • Anna Schoettle, USDA Forest Service, Rocky Mountain Research Station, USA • Susan Frankel, USDA Forest Service, Pacific Southwest Research Station, USA • Dana Nelson, USDA Forest Service, Southern Research Station, USA • Fred Hebard, The American Chestnut Foundation, USA • Acelino Couto Alfenas, Universidade Federal de Viçosa, Brazil • Arnaud Dowkiw, French National Institute for Agricultural Research (INRA Orléans), France • Luis Sampedro, Centro de Investigación Forestal de Lourizán at Galicia, Spain • Alberto Santini, Istituto per le Protezione delle Piante—National Research Council (CNR), Italy • Charles G. “Terry” Shaw, USDA Forest Service, Western Wildland Environmental Threat Assessment Center, USA • Dan Quiring, University of New Brunswick, Canada • Fred Hain, North Carolina State University, USA • Brian Stanton, GreenWood Resources, Inc., USA • Bohun B. Kinloch, USDA Forest Service, Pacific Southwest Research Station, Institute of Forest Genetics (retired), USA • Fikret Isik, Research Associate Professor of Quantitative Genetics, NCSU Cooperative Tree Improvement Program, North Carolina State University, Raleigh, North Carolina, USA 2 Local Organizing Committee • Richard Sniezko, USDA Forest Service, Dorena Genetic Resource Center, Oregon ▪ Workshop Chair • Katie Palmieri, University of California, Berkeley, California Oak Mortality Task Force • Janice Alexander, University of California, Cooperative Extension, Marin County, California Oak Mortality Task Force • Susan Frankel, USDA Forest Service, Pacific Southwest Research Station, California • Angelia Kegley, USDA Forest Service, Dorena Genetic Resource Center, Oregon • Sunny Lucas USDA Forest Service, Dorena Genetic Resource Center, Oregon • Michael Crawford, USDI Bureau of Land Management, Oregon • Larry Johnston, USDI Bureau of Land Management, Oregon Conference Sponsors IUFRO Working Parties: 7.03.11 (Resistance to Insects) and 2.02.15 (Breeding and Genetic Resources of Five-Needle Pines) USDA Forest Service: • Western Wildland Environmental Threat Assessment Center (WWETAC) • Eastern Wildland Environmental Threat Assessment Center (EWETAC) • Pacific Northwest Region (Forest Health Protection & Genetic Resource Programs) • Pacific Southwest Research Station (PSW) King Estate Winery University of California Cooperative Extension California Oak Mortality Task Force Futuragene Starker Forests 3 Program Overview Sunday, July 31 Early registration at Valley River Inn Welcome Reception Monday, August 1 Registration Symposium/Indoor Presentations Evening 2-Hour Statistics Workshop Tuesday, August 2 Registration Symposium/Indoor Presentations Evening Poster Session and Reception Wednesday, August 3 Field Trip • Dorena Genetic Resource Center • Plum Creek Timber Company • Bureau of Land Management, Tyrrell Orchard Complex • King Estate Winery, Reception Thursday, August 4 Symposium/Indoor Presentations Friday, August 5 Symposium/Indoor Presentations Meeting Adjourned 4 ABSTRACTS FROM THE FOURTH INTERNATIONAL WORKSHOP ON HOST-PARASITE INTERACTIONS IN FORESTRY Oral Presentation Abstracts (alphabetically by author’s last name) 5 PACIFIC SOUTHWEST RESEARCH STATION An Overview of Ecological and Evolutionary Research on Disease in Natural Systems Helen M. Alexander, Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045; [email protected] Plant diseases have obvious and serious ramifications for agriculture and forestry; as a consequence, most research on plant pathogens has logically focused on economically important diseases. However, pathogens are associated with nearly all plant species. In recent decades, there has been increasing interest in the role of pathogens interacting with a diverse range of natural plant populations, communities, and ecosystems. Truly “natural” plant populations of course no longer exist; human activity has influenced all corners of the world. One can consider, however, characteristics of more natural systems in contrast to row crops of western agriculture or plantation forestry. For example, one can define natural systems as those in which plant species are genetically diverse and occur in multispecies communities with often complex spatial patterns. Further, in contrast to many human-managed plant populations, natural systems have linkage between genera- tions: hence, the seeds produced by plants at a particular site are the likely source of future plant generations. Research on disease in natural systems has a long history; for example, there has always been interest in searching for disease resistance genes in wild relatives of crop plants or considering wild plants as reservoirs for economically important pathogens. However, most researchers associated with ecology and evolutionary biology disciplines have historically ignored host-pathogen interactions. Starting in the 1980’s, this situation began to change and there are now rigorous research programs on host-pathogen interactions in diverse natural systems. Researchers, for example, have examined the factors determining spatial patterns of disease and the effect of disease on plant population growth. Others study patterns and roles of variation in plant resistance and pathogen virulence at spatial scales ranging from populations to continents. Community ecologists have addressed the importance of disease in altering the composition
Recommended publications
  • National Oak Gall Wasp Survey
    ational Oak Gall Wasp Survey – mapping with parabiologists in Finland Bess Hardwick Table of Contents 1. Introduction ................................................................................................................. 2 1.1. Parabiologists in data collecting ............................................................................. 2 1.2. Oak cynipid gall wasps .......................................................................................... 3 1.3. Motivations and objectives .................................................................................... 4 2. Material and methods ................................................................................................ 5 2.1. The volunteers ........................................................................................................ 5 2.2. Sampling ................................................................................................................. 6 2.3. Processing of samples ............................................................................................ 7 2.4. Data selection ........................................................................................................ 7 2.5. Statistical analyses ................................................................................................. 9 3. Results ....................................................................................................................... 10 3.1. Sampling success .................................................................................................
    [Show full text]
  • Fossil Oak Galls Preserve Ancient Multitrophic Interactions
    Edinburgh Research Explorer Fossil oak galls preserve ancient multitrophic interactions Citation for published version: Stone, GN, van der Ham, RWJM & Brewer, JG 2008, 'Fossil oak galls preserve ancient multitrophic interactions', Proceedings of the Royal Society B-Biological Sciences, vol. 275, no. 1648, pp. 2213-2219. https://doi.org/10.1098/rspb.2008.0494 Digital Object Identifier (DOI): 10.1098/rspb.2008.0494 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Proceedings of the Royal Society B-Biological Sciences Publisher Rights Statement: Free in PMC. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. Oct. 2021 Proc. R. Soc. B (2008) 275, 2213–2219 doi:10.1098/rspb.2008.0494 Published online 17 June 2008 Fossil oak galls preserve ancient multitrophic interactions Graham N. Stone1,*, Raymond W. J. M. van der Ham2 and Jan G. Brewer3 1Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK 2Nationaal Herbarium Nederland, Universiteit Leiden, PO Box 9514, 2300 RA Leiden, The Netherlands 3Hogebroeksweg 32, 8102 RK Raalte, The Netherlands Trace fossils of insect feeding have contributed substantially to our understanding of the evolution of insect–plant interactions.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Torymus Sinensis Against the Chestnut Gall Wasp Dryocosmus Kuriphilus in the Canton Ticino, Switzerland
    | January 2011 Evaluating the use of Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus in the Canton Ticino, Switzerland Authors Aebi Alexandre, Agroscope ART Schoenenberger Nicola, Tulum SA and Bigler Franz, Agroscope ART Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus | January 2011 1 Zürich/Caslano, January 2011 Authors’ affiliation: Alexandre Aebi and Franz Bigler Nicola Schoenenberger Agroscope Reckenholz-Tänikon TULUM SA Research Station ART Via Rompada 40 Biosafety 6987 Caslano Reckenholzstrasse 191 Switzerland 8046 Zürich Tel: +41 91 606 6373 Switzerland Fax: +41 44 606 6376 Tel: +41 44 377 7669 [email protected] Fax: +41 44 377 7201 [email protected] This work was financed by the Swiss Federal Office for the Environment (FOEN) This work was done in collaboration with B. Bellosi and E. Schaltegger (TULUM SA) Cover figure: Empty chestnut gall in Stabio, February 2010 (Picture:TULUM SA) All maps used in figures and appendices (except Fig. 6): ©swisstopo, license number: DV053809.1 Map in figure 6: © Istituto Geografico, De Agostini 1982–1988 ISBN 978-3-905733-20-4 © 2010 ART 2 Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus | January 2011 Table of contents Table of contents Abstract 5 1. Introduction 6 2. Mission and methods 7 3. Presence and degree of infestation of Dryocosmus kuriphilus in Switzerland 9 4. Invasion corridors of Dryocosmus kuriphilus towards Switzerland 11 5. Potential economic and ecological damage caused by Dryocosmus kuriphilus in Switzerland 14 6. Release of the parasitoid Torymus sinensis in the Piedmont Region, Italy 17 7. Potential benefits and damage due to the release of Torymus sinensis 18 8.
    [Show full text]
  • Вестник Нгау» – 2 (43)/2017 5 Содержание
    ISSN 2072-6724 MINISTRY OF AGRICULTURE RUSSIAN FEDERATION SCIENTIFIC JOURNAL OF THE NOVOSIBIRSK STATE AGRARIAN UNIVERSITY № 2(43)/2017 NOVOSIBIRSK 2017 Редакционный совет: ВЕСТНИК Денисов А. С. – д-р техн. наук, проф., ректор университета, председатель ре- дакционной коллегии, гл. редактор (Новосибирск, Россия) Новосибирского Ноздрин Г. А. – д-р вет. наук, проф., зам. главного редактора (Новосибирск, Россия) государственного Рудой Е. В. – д-р экон. наук, доц., проректор по научной работе (Новосибирск, Россия) аграрного Члены редколлегии: Вышегуров С. Х. – д-р с.-х. наук, проф., зав. кафедрой ботаники и ландшафтной архи- университета тектуры, проректор по экономике и социальной работе (Новосибирск, Россия) Гамзиков Г. П. – д-р биол. наук, акад. РАН, проф. кафедры почвоведения, агрохимии и земледелия (Новосибирск, Россия) Донченко А. С. – д-р вет. наук, акад. РАН, научный руководитель СФНЦА РАН, зав. кафедрой эпизоотологии и микробиологии (Новосибирск, Россия) Научный журнал Жучаев К. В. – д-р биол. наук, проф., зав. кафедрой частной зоотехнии и технологии животноводства, декан биолого-технологического факультета (Новосибирск, Россия) Кашеваров Н. И. – д-р с.-х. наук, акад. РАН, временно исполняющий обязанности ди- ректора СФНЦА РАН (Новосибирск, Россия) № 2 (43) Магер С. Н. – д-р биол. наук, проф., зав. кафедрой хирургии и внутренних незаразных апрель – июнь 2017 болезней (Новосибирск, Россия) Морузи И. В. – д-р биол. наук, проф., зав. кафедрой биологии, биоресурсов и аквакуль- туры (Новосибирск, Россия) Наплекова Н. Н. – д-р биол. наук, проф. кафедры почвоведения, агрохимии и земледелия Учредитель: (Новосибирск, Россия) ФГБОУ ВО Петухов В. Л. – д-р биол. наук, проф., зав. кафедрой ветеринарной генетики и биотех- нологии (Новосибирск, Россия) «Новосибирский Пичугин А. П. – д-р техн. наук, проф., зав.
    [Show full text]
  • Master Thesis
    Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Uppsala 2011 Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Iuliia Kyiashchenko Master‟ thesis, 30 hec Ecology Master‟s programme SLU, Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Iuliia Kyiashchenko Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Uppsala 2011 Supervisors: Prof. Jonathan Yuen, Dept. of Forest Mycology and Plant Pathology Anna Berlin, Dept. of Forest Mycology and Plant Pathology Examiner: Anders Dahlberg, Dept. of Forest Mycology and Plant Pathology Credits: 30 hp Level: E Subject: Biology Course title: Independent project in Biology Course code: EX0565 Online publication: http://stud.epsilon.slu.se Key words: rust fungi, aecia, aeciospores, morphology, barberry, DNA sequence analysis, phylogenetic analysis Front-page picture: Barberry bush infected by Puccinia spp., outside Trosa, Sweden. Photo: Anna Berlin 2 3 Content 1 Introduction…………………………………………………………………………. 6 1.1 Life cycle…………………………………………………………………………….. 7 1.2 Hyphae and haustoria………………………………………………………………... 9 1.3 Rust taxonomy……………………………………………………………………….. 10 1.3.1 Formae specialis………………………………………………………………. 10 1.4 Economic importance………………………………………………………………... 10 2 Materials and methods……………………………………………………………... 13 2.1 Rust and barberry
    [Show full text]
  • Commodity Risk Assessment of Black Pine (Pinus Thunbergii Parl.) Bonsai from Japan
    SCIENTIFIC OPINION ADOPTED: 28 March 2019 doi: 10.2903/j.efsa.2019.5667 Commodity risk assessment of black pine (Pinus thunbergii Parl.) bonsai from Japan EFSA Panel on Plant Health (EFSA PLH Panel), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Andrea Battisti, Anna Maria Vettraino, Renata Leuschner, Olaf Mosbach-Schulz, Maria Chiara Rosace and Roel Potting Abstract The EFSA Panel on Plant health was requested to deliver a scientific opinion on how far the existing requirements for the bonsai pine species subject to derogation in Commission Decision 2002/887/EC would cover all plant health risks from black pine (Pinus thunbergii Parl.) bonsai (the commodity defined in the EU legislation as naturally or artificially dwarfed plants) imported from Japan, taking into account the available scientific information, including the technical information provided by Japan. The relevance of an EU-regulated pest for this opinion was based on: (a) evidence of the presence of the pest in Japan; (b) evidence that P. thunbergii is a host of the pest and (c) evidence that the pest can be associated with the commodity. Sixteen pests that fulfilled all three criteria were selected for further evaluation. The relevance of other pests present in Japan (not regulated in the EU) for this opinion was based on (i) evidence of the absence of the pest in the EU; (ii) evidence that P.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Crittendenia Gen. Nov., a New Lichenicolous Lineage in The
    The Lichenologist (2021), 53, 103–116 doi:10.1017/S002428292000033X Standard Paper Crittendenia gen. nov., a new lichenicolous lineage in the Agaricostilbomycetes (Pucciniomycotina), and a review of the biology, phylogeny and classification of lichenicolous heterobasidiomycetes Ana M. Millanes1, Paul Diederich2, Martin Westberg3 and Mats Wedin4 1Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, E-28933 Móstoles, Spain; 2Musée national d’histoire naturelle, 25 rue Munster, L-2160 Luxembourg; 3Museum of Evolution, Norbyvägen 16, SE-75236 Uppsala, Sweden and 4Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden Abstract The lichenicolous ‘heterobasidiomycetes’ belong in the Tremellomycetes (Agaricomycotina) and in the Pucciniomycotina. In this paper, we provide an introduction and review of these lichenicolous taxa, focusing on recent studies and novelties of their classification, phylogeny and evolution. Lichen-inhabiting fungi in the Pucciniomycotina are represented by only a small number of species included in the genera Chionosphaera, Cyphobasidium and Lichenozyma. The phylogenetic position of the lichenicolous representatives of Chionosphaera has, however, never been investigated by molecular methods. Phylogenetic analyses using the nuclear SSU, ITS, and LSU ribosomal DNA mar- kers reveal that the lichenicolous members of Chionosphaera form a monophyletic group in the Pucciniomycotina, distinct from Chionosphaera and outside the Chionosphaeraceae. The new genus Crittendenia is described to accommodate these lichen-inhabiting spe- cies. Crittendenia is characterized by minute synnemata-like basidiomata, the presence of clamp connections and aseptate tubular basidia from which 4–7 spores discharge passively, often in groups. Crittendenia, Cyphobasidium and Lichenozyma are the only lichenicolous lineages known so far in the Pucciniomycotina, whereas Chionosphaera does not include any lichenicolous taxa.
    [Show full text]
  • Plant Galls and Evolution (II): Natural Selection, DNA, and Intelligent Design
    1 Back to Internet Library Wolf-Ekkehard Lönnig 10 and 21 August 2020 (Minor corrections 22 August 2020) Plant Galls and Evolution (II): Natural Selection, DNA, and Intelligent Design Or: The proof that complex structures of thousands of species have been formed for the exclusive good of other species thus annihilating Darwin’s theory If it could be proved that any part of the structure of any one species had been formed for the exclusive good of another species, it would annihilate my theory for such could not have been produced through natural selection. Charles Darwin 1859, p. 201 Galls have not received the attention they deserve. They are often seen as quaint oddities rather than as indicators of interesting happenings in the world of plants and their biotic interactions. Marion O. Harris and Andrea Pitzschke 2020, p. 1854 Plant galls belong to the widespread biological phenomena “that have not been seriously addressed to date from an evo-devo perspective. …Plant galls have very seldom been considered as products of developmental processes, something they seriously deserve.” However, the hypothesis that these processes “are adaptive, as a result of selection, is hard to apply”. Alessandro Minelli 2018, p. 339 and 2017, p. 102 Even those strongly skeptical about teleological interpretations cannot contest the fact that plant galls are constructions promoting a parasite thus benefiting a foreign organism, devices which already by this support are detrimental to the host plant. Ernst Küster 1917, p. 5671 But how are we to understand the appearance of entirely new formations that are completely absent from normal host plants? How did the plants achieve potentials for totally new structures [exclusively] serving other beings? [Co-option can explain only a portion of the facts – W.-E.
    [Show full text]
  • Ecological Impact of the Insects That Are Harmful to the Oak Forests of the Doamnei River Upper Drainage Basin
    Available online at http://journals.usamvcluj.ro/index.php/promediu ProEnvironment ProEnvironment 11 (2018) 37 - 40 Original Article Ecological Impact of the Insects That Are Harmful to the Oak Forests of the Doamnei River Upper Drainage Basin RETEVOI Gheorghe Romeo* University of Sciences, Piteşti, Târgul din vale St., No. 1, 110040, Piteşti, Romania Received 14 January 2018; received and revised form 29 January 2018; accepted 18 February 2018 Available online 30 March 2018 Abstract This article presents the effects of harmful insects on the oak forests of the Doamnei river upper drainage basin. The impact of pest insects corroborated with anthropic and climatic factors, as well as with fungal attacks (Microsphaera alphitoides) have negative effects on the oak forest and can cause the alteration of the specific structure. Andricus foecundatrix, Andricus kollari, Andricus quercuscalicis, Neuroterus numismali. Tischeria complanella have attacked the oak forest particularly on its edge. Keywords: Andricus foecundatrix, Andricus kollari, Andricus quercuscalicis, Neuroterus numismalis, Tischeria complanella. 1. Introduction The research regarding harmful insects was conducted in the hills of the Pietroşani commune (Arges County – the forest range of Domnești) in 2016. The clusters of oak species are surrounded by beech trees.In the sample area of approximately 10 ha the following species of gall wasps were identified: Andricus foecundatrix, Andricus kollari, Andricus quercuscalicis, Neuroterus numismalis, as well as the leaf-mining moth Tischeria complanella. Andricus foecundatrix is a gall wasp that prefers species of young Q. robur on which they form galls Figure 1. Andricus kollari similar to the shape of an artichoke [1, 7]. Andricus kollari (Fig.
    [Show full text]
  • Cecidology 33.1 Page 5: Plant Galls at Brocks Hill Country Park Oadby Leicestershire (Chris Leach)
    Cecidology 33.1 page 5: Plant Galls at Brocks Hill Country Park Oadby Leicestershire (Chris Leach) List of Gall causing species found in Brocks Hill Park 2003-2017 * species cited in the text Host Host (common name) Gall Gall causer Organism Comment Acer campestre Maple (Field/hedge) warty growth on twigs Aceria heteronyx a mite Acer campestre small rounded pustules, usually red Aceria myriadeum a mite Acer campestre rounded pustules usually 1-10 per leaf Aceria macrochela a mite Acer campestre small pimple on leaves, depression below Acericecis campestris a mite Acer campestre felt on underside of leaves Aceria eriobia a mite Acer campestre wrinkled leaves with thick veins Dasineura irregularis a midge Acer campestre pale blister in leaves Dasineura tympani* a midge a new comer, first seen 2015 Acer pseudoplatanus Sycamore small rounded pustules, usually red Aceria cephalonea a mite Acer pseudoplatanus felt on underside of leaves Aceria pseudoplatani a mite Aesculus hippocastanum Horse-chestnut tufts of hairs in angle of leaf veins Aculus hippocastani a mite Alnus glutinosa Alder felt with bulge above on leaves Acalitus brevitarsus a mite Alnus glutinosa bulges in vein angles Aceria nalepai a mite Alnus glutinosa small bulges scattered on leaves Eriophyes laevis a mite Alnus glutinosa leaf margin rolled Dasineura tortilis a midge Alnus glutinosa "tongues" emerging from female catkins Taphrina alni* a fungus Alnus glutinosa incurved, much enlarged leaves, brittle Taphrina tosquinetii a fungus Alnus glutinosa enlarged leaves, bright yellow
    [Show full text]