Eyes Horizontally Oval. Fins Strongly Falcate; First Dorsal Origin Over
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation. -
View/Download
CARCHARHINIFORMES (Ground Sharks) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 32.0 - 17 June 2021 Order CARCHARHINIFORMES Ground Sharks 9 families · 54 genera/subgenera · 295 species/subspecies Family PENTANCHIDAE Deepwater Cat Sharks 11 genera · 111 species Apristurus Garman 1913 a-, not; pristis, saw; oura, tail, referring to absence of saw-toothed crest of enlarged dermal denticles along upper edge of caudal fin as found in the closely related Pristiurus (=Galeus) Apristurus albisoma Nakaya & Séret 1999 albus, white; soma, body, referring to whitish color Apristurus ampliceps Sasahara, Sato & Nakaya 2008 amplus, large; -ceps, head, which, apparently, it is Apristurus aphyodes Nakaya & Stehmann 1998 whitish, referring to pale gray coloration Apristurus australis Sato, Nakaya & Yorozu 2008 southern, referring to distribution in the southern hemisphere around Australia Apristurus breviventralis Kawauchi, Weigmann & Nakaya 2014 brevis, short; ventralis, of the belly, referring to very short abdomen Apristurus brunneus (Gilbert 1892) brown, referring to “uniform warm brown” color above and below Apristurus bucephalus White, Last & Pogonoski 2008 bu, large; cephalus, head, referring to large, broad head Apristurus canutus Springer & Heemstra 1979 hoary, referring to dark gray coloration with minute white spots underneath denticles Apristurus exsanguis Sato, Nakaya & Stewart 1999 bloodless or lifeless, referring to characteristic pale coloration and flaccid body Apristurus fedorovi Dolganov 1983 in honor -
Brown Shark with Horizontally Oval Eyes and Internal Nictitating
click for previous page - 381 - Field Marks: A small, very slender, light grey or grey- brown shark with horizontally oval eyes and internal nictitating eyelids, nostrils with slender barbels but no nasoral grooves, mouth long, arched and reaching past anterior ends of eyes, labial furrows very long, small cuspidate teeth, two small, spineless, equal-sized dorsal fins and an anal fin, the first dorsal fin on the back between pectoral and pelvic fins, no precaudal pits, and the caudal fin without a strong ventral lobe or lateral undulations on its dorsal margin. Diagnostic Features: See family. Geographical Distribution : Eastern Atlantic: Mauritania upper and to Angola, possibly north to Morocco and Mediterranean. lower tooth underside of head Habitat and Biology : This is a small, common, inshore tropical shark of the West African continental shelf, found near the bottom at depths of 10 to 75 m. It is especially abundant off river mouths, prefers muddy bottoms. Water temperatures where it occurs range from 20 to 270 C; salinities from 35 to 360/oo; oxygen from 3 to 4 ppm. Nothing is known of the behaviour of this little shark, which apparently has never been kept in captivity. Its firm skin and muscles, long strong tail, rather short body cavity and small liver all suggest that it is an active swimmer rather like smooth-hounds (Mustelus, Family Triakidae). Viviparous, with a unique spherical or globular placenta; two females had litters of 7 young. Pregnant females are found with young from July to October off Senegal, with largest fetuses (up to 20 cm) occurring in October. -
And Their Functional, Ecological, and Evolutionary Implications
DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Spring 6-14-2019 Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications Phillip C. Sternes DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Sternes, Phillip C., "Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications" (2019). College of Science and Health Theses and Dissertations. 327. https://via.library.depaul.edu/csh_etd/327 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science June 2019 By Phillip C. Sternes Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois Table of Contents Table of Contents.............................................................................................................................ii List of Tables..................................................................................................................................iv -
Report of the Workshop on Deep-Sea Species Identification, Rome, 2–4 December 2009
FAO Fisheries and Aquaculture Report No. 947 FIRF/R947 (En) ISSN 2070-6987 Report of the WORKSHOP ON DEEP-SEA SPECIES IDENTIFICATION Rome, Italy, 2–4 December 2009 Cover photo: An aggregation of the hexactinellid sponge Poliopogon amadou at the Great Meteor seamount, Northeast Atlantic. Courtesy of the Task Group for Maritime Affairs, Estrutura de Missão para os Assuntos do Mar – Portugal. Copies of FAO publications can be requested from: Sales and Marketing Group Office of Knowledge Exchange, Research and Extension Food and Agriculture Organization of the United Nations E-mail: [email protected] Fax: +39 06 57053360 Web site: www.fao.org/icatalog/inter-e.htm FAO Fisheries and Aquaculture Report No. 947 FIRF/R947 (En) Report of the WORKSHOP ON DEEP-SEA SPECIES IDENTIFICATION Rome, Italy, 2–4 December 2009 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 The designations employed and the presentation of material in this Information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. -
The Sharks and Rays of the Solomon Islands: a Synthesis of Their Biological Diversity, Values and Conservation Status
CSIRO PUBLISHING Pacific Conservation Biology, 2017, 23, 324–334 Review https://doi.org/10.1071/PC17012 The sharks and rays of the Solomon Islands: a synthesis of their biological diversity, values and conservation status S. HyltonA,B,D, W. T. WhiteC and A. ChinB AMarine Science Program, School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA. BCentre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia. CCSIRO Australian National Fish Collection, GPO Box 1538, Hobart, Tas. 7018, Australia. DCorresponding author. Email: [email protected] Abstract. Sharks and rays are facing increasing anthropogenic pressure globally, including in the Pacific. However, data on their status and biodiversity are lacking for many Pacific Large Ocean Island States. This study aimed to construct a species checklist for the sharks and rays occurring in the Solomon Islands, review the human interactions with these species, and present a synthesis of their conservation status. Given the paucity of available data, a wide range of data sources were used including fisheries data, citizen science, and ethnobiological studies. Results were validated through a review process involving expert informants. Fifty sharks and rays were identified from the Solomon Islands, of which 20 are assessed as Vulnerable or Endangered on the IUCN Red List, 10 in the Convention on International Trade in Endangered Species, and 11 in the Convention for Migratory Species. The checklist also presents an eastwards range extension for the Endangered dwarf sawfish Pristis clavata. Fishing appears to be the main impact, though impacts from habitat loss and degradation are possible. -
Deep-Sea Fishing for Chondrichthyan Resources and Sustainability Concerns— a Case Study from Southwest Coast of India
Indian Journal of Geo-Marine Sciences Vol. 40(3), June 2011, pp. 347-355 Deep-sea fishing for chondrichthyan resources and sustainability concerns— a case study from southwest coast of India K. V. Akhilesh*, U. Ganga, N. G. K. Pillai, E. Vivekanandan, K. K. Bineesh, C. P. R. Shanis & M. Hashim Central Marine Fisheries Research Institute, P.B. No. 1603, Ernakulam North PO, Cochin- 682 018, Kerala, India. *[E-mail: [email protected]] Received7 May 2010; revised 26 May 2010 Elasmobranchs comprising sharks, skates and rays have traditionally formed an important fishery along the Indian coast. Since 2000, Indian shark fishermen are shifting their fishing operations to deeper/oceanic waters by conducting multi- day fishing trips, which has resulted in considerable changes in the species composition of the landings vis- a-vis those reported during the 1980’s and 1990’s. A case study at Cochin Fisheries Harbour (CFH), southwest coast of India during 2008-09 indicated that besides the existing gillnet–cum- hooks & line and longline fishery for sharks, a targeted fishery at depths >300-1000 m for gulper sharks (Centrophorus spp.) has emerged. In 2008, the chondrichthyan landings (excluding batoids) were mainly constituted by offshore and deep-sea species such as Alopias superciliosus (24.2%), Carcharhinus limbatus (21.1%), Echinorhinus brucus (8.2%), Galeocerdo cuvier (5.4%), Centrophorus spp. (7.3%) and Neoharriotta pinnata (4.2%) while the contribution by the coastal species such as Sphyrna lewini (14.8%), Carcharhinus sorrah (1.4%) and other Carcharhinus spp. has reduced. Several deep-sea sharks previously not recorded in the landings at Cochin were also observed during 2008-09. -
Australia's Coral
Australia’s Coral Sea: A Biophysical Profile 2011 Dr Daniela Ceccarelli 2011 Dr Daniela Ceccarelli Coral Sea: A Biophysical Profile Australia’s Australia’s Coral Sea A Biophysical Profile Dr. Daniela Ceccarelli August 2011 Australia’s Coral Sea: A Biophysical Profile Photography credits Author: Dr. Daniela M. Ceccarelli Front and back cover: Schooling great barracuda © Jurgen Freund Dr. Daniela Ceccarelli is an independent marine ecology Page 1: South West Herald Cay, Coringa-Herald Nature Reserve © Australian Customs consultant with extensive training and experience in tropical marine ecosystems. She completed a PhD in coral reef ecology Page 2: Coral Sea © Lucy Trippett at James Cook University in 2004. Her fieldwork has taken Page 7: Masked booby © Dr. Daniela Ceccarelli her to the Great Barrier Reef and Papua New Guinea, and to remote reefs of northwest Western Australia, the Coral Sea Page 12: Humphead wrasse © Tyrone Canning and Tuvalu. In recent years she has worked as a consultant for government, non-governmental organisations, industry, Page 15: Pink anemonefish © Lucy Trippett education and research institutions on diverse projects requiring field surveys, monitoring programs, data analysis, Page 19: Hawksbill turtle © Jurgen Freund reporting, teaching, literature reviews and management recommendations. Her research and review projects have Page 21: Striped marlin © Doug Perrine SeaPics.com included studies on coral reef fish and invertebrates, Page 22: Shark and divers © Undersea Explorer seagrass beds and mangroves, and have required a good understanding of topics such as commercial shipping Page 25: Corals © Mark Spencer impacts, the effects of marine debris, the importance of apex predators, and the physical and biological attributes Page 27: Grey reef sharks © Jurgen Freund of large marine regions such as the Coral Sea. -
TRIAK Hypo 1 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY
click for previous page TRIAK Hypo 1 1983 FAO SPECIES IDENTIFICATION SHEETS FAMILY: TRIAKIDAE FISHING AREA 51 (W. Indian Ocean) Hypogaleus hyugaensis (Miyosi, 1939) OTHER SCIENTIFIC NAMES STILL IN USE: Hypogaleus zanzibariensis (Smith, 1957) Galeorhinus (Hypogaleus) zanzibariensis Smith, 1957 VERNACULAR NAMES: FAO : En - Blacktip tope Fr - Requin-hâ élégant Sp - Cazón elegante NATIONAL: DISTINCTIVE CHARACTERS: A small to moderate-sized shark with an elongated body. Head flattened above and below, snout relatively long and narrowly rounded; nostrils with very small nasal flaps, not formed as barbels or greatly expanded, without nasoral grooves; 5 gill slits, the last 2 above pectoral fin bases; eyes horizontally oval on sides of head, with well- differentiated nictitating lower eyelids entirely, or almost entirely, inside the eye underside of head openings; spiracles very small; mouth angular, with moderately long labial furrows that do not reach front of mouth; teeth small, alike in both jaws, compressed, bladelike; lateral teeth with short, oblique cusps and outer cusplets only; anterior teeth more symmetrical, smaller, with both inner and outer cusplets. First dorsal fin on back between pectoral and pelvic fin bases, its origin just behind free rear tips of pectoral fins, base of fin closer to pectoral than to pelvic fin bases; second dorsal fin about 2/3 as large as first dorsal and twice as large as anal fin, its origin anterior to origin of latter; caudal fin with a strong loner lobe and a moderately long terminal lobe about 1/3 as long as upper edge of fin. Interdorsal ridge absent; caudal peduncle without keels or precaudal pits. -
Adnet 20070044.Vp
New fossil triakid sharks from the early Eocene of Prémontré, France, and comments on fossil record of the family SYLVAIN ADNET and HENRI CAPPETTA Adnet, S. and Cappetta, H. 2008. New fossil triakid sharks from the Eocene of Prémontré, France and comments on fossil record of the family. Acta Paleontologica Polonica 53 (3): 433–448. During the last two decades, an abundant selachian assemblage has been collected from the late Ypresian (NP12) fossiliferous sands of Prémontré (Aisne, northern France) but has received little attention. Sharks of the family Triakidae (Carcharhiniformes) are particularly well represented and all are described and figured herein. Among them, two new species of the genus Galeorhinus are described: G. duchaussoisi sp. nov. and G. louisi sp. nov.; these are compared to the common Paleogene G. ypresiensis which is refigured. Another triakid taxon, the genus Gomphogaleus gen. nov., is de− scribed. Most of the triakids have been recorded elsewhere in the North Atlantic region, suggesting a wider distribution than expected for these small sharks during the Paleogene. The present paper updates the list of selachians from Prémontré, bringing the number of taxa from 19 to 33 (including 22 sharks and 11 batoids) and improving our knowledge of the ancient North Atlantic Ypresian selachian fauna. Despite this vastly improved record, it is clear that fossil data are still very incomplete and insufficient for calibrating phylogenetic hypotheses of living forms. Review of the Prémontré fauna shows that the Triakidae were much more diverse and broadly distributed than at present, suggesting that the lim− ited distribution and low diversity of living forms is probably a recent phenomenon. -
Using Viviparous Sharks As a Model to Understand Vertebrate Placental Evolution
Marine and Freshwater Research, 2019, 70, 908–924 © CSIRO 2019 https://doi.org/10.1071/MF18076 Supplementary material Evolution of placentotrophy: using viviparous sharks as a model to understand vertebrate placental evolution Alice L. BuddleA, James U. Van DykeB, Michael B. ThompsonA, Colin A. SimpfendorferC and Camilla M. WhittingtonD,E AThe University of Sydney, School of Life and Environmental Sciences, Heydon-Laurence Building (A08), NSW 2006, Australia. BCharles Sturt University, School of Environmental Sciences, Institute for Land, Water and Society, Albury, NSW 2640, Australia. CJames Cook University, College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, Townsville, Qld 4811, Australia. DThe University of Sydney, Sydney School of Veterinary Science, Camperdown, NSW 2006, Australia. ECorrespondence. Email: [email protected] Page 1 of 23 Marine and Freshwater Research © CSIRO 2019 https://doi.org/10.1071/MF18076 Table S1. Table of known parity mode, mode of embryonic nutrition, and other reproductive parameters of extant shark species Viviparous reproductive modes were assigned to species based on evidence of maternal contributions during pregnancy: lecithotrophic (embryos are reliant on yolk stores), lecithotrophic with histotrophy (embryos absorb maternal secretions in the form of histotroph), placental (development of a placental connection between the embryo and mother during pregnancy; note that placental nutrient transport has not necessarily been shown), oophagy (embryos ingest ova produced by the mother), and adelphophagy (embryos ingest sibling in utero). It should be noted that all viviparous species are initially lecithotrophic Order Family Species Parity mode Mode of Size at Litter size Gestation References embryonic birth range period nutrition (cm) (mean) Carcharhiniformes Carcharhinidae Carcharhinus acronotus Viviparous placental 31–36 1–5 (3.53) 11 months Hamlett 2005; Driggers et al. -
5Th Meeting of the Scientific Committee SC5-DW09 Rev1
5th Meeting of the Scientific Committee Shanghai, China, 23 - 28 September 2017 SC5-DW09_rev1 Ecosystem approach considerations: Deepwater chondrichthyans (sharks, rays and chimaeras) in the Western SPRFMO Area Clinton Duffy1, Shane Geange1 & Tiffany Bock2 1 Department of Conservation 2 Ministry for Primary Industries 1 23 Aug 2017 SC5-DW09_rev1 1. Purpose of paper This paper provides a characterisation of the catch of chondrichthyans in New Zealand bottom fisheries in the SPRFMO Area and information on potential risks to deepwater chondrichthyan species from SPRFMO bottom fishing. Chondrichthyans, particularly those which predominantly occur or complete most of their lifecycle below 200 m depth, are known to have life history characteristics which make them especially vulnerable to fishing pressure. 2. Background About half of chondrichthyans are considered deepwater species, of which around half are sharks (predominantly squaloid dogfishes, Order Squaliformes, and catsharks, Order Carcharhiniformes, Families Pentanchidae and Scyliorhinidae)), with the remainder being skates (predominantly Arhynchobatidae, Rajidae, and Anacanthobatidae), and holocephalans (Kyne & Simpfendorfer 2007). There are currently 177 species reported from the SPRFMO Area that are known to regularly occur below 200 m depth (Appendix 1). Chondrichthyans generally exhibit relatively slow growth rates, late age at maturity, low fecundity and low natural mortality. Knowledge of the growth and reproductive parameters of most deepwater species is generally poor or completely lacking. For the limited number of deepwater species for which sufficient life history data is available, their estimated intrinsic rebound potential values (i.e., ability of a species to recover from fishing pressure) fall at the lower end of the chondrichthyan productivity scale, and include the lowest levels observed (Kyne & Simpfendorfer 2007).