Paleontological Resources Preservation; Final Rule
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ischigualasto Formation. the Second Is a Sile- Diversity Or Abundance, but This Result Was Based on Only 19 of Saurid, Ignotosaurus Fragilis (Fig
This article was downloaded by: [University of Chicago Library] On: 10 October 2013, At: 10:52 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Vertebrate Paleontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ujvp20 Vertebrate succession in the Ischigualasto Formation Ricardo N. Martínez a , Cecilia Apaldetti a b , Oscar A. Alcober a , Carina E. Colombi a b , Paul C. Sereno c , Eliana Fernandez a b , Paula Santi Malnis a b , Gustavo A. Correa a b & Diego Abelin a a Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan , España 400 (norte), San Juan , Argentina , CP5400 b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina c Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology , University of Chicago , 1027 East 57th Street, Chicago , Illinois , 60637 , U.S.A. Published online: 08 Oct 2013. To cite this article: Ricardo N. Martínez , Cecilia Apaldetti , Oscar A. Alcober , Carina E. Colombi , Paul C. Sereno , Eliana Fernandez , Paula Santi Malnis , Gustavo A. Correa & Diego Abelin (2012) Vertebrate succession in the Ischigualasto Formation, Journal of Vertebrate Paleontology, 32:sup1, 10-30, DOI: 10.1080/02724634.2013.818546 To link to this article: http://dx.doi.org/10.1080/02724634.2013.818546 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. -
Alfred Traverse
DR. PUGH'S HERBARIUM Alfred Traverse Curator ofPAC, Emeritus Professor ofPalynology Departments of Biology and Geosciences The Pennsylvania State University University Park, Pennsylvania 16802, U.S.A. [email protected] ABSTRACT bvan Pugh, a younj^and lalenced agricuhurat chemist from Pennsylvania, producfd imporiam discoveries on the role of plants in the fixa• tion of atmospheric nitrogen during three years of study and research, conducted in England from 1856-59. He then returned home as the first president of what is now the Pennsylvania .State University, not only ihe youngest, hut alsti the most talented president the inslilution has ever had. .Arriving in 1859 to take up his new duties, he brought with him plant specimens he had collected during a several months' visit to the Heidelberg area of dermany in 1856. and also much of the herbarium of Professor G.W. Bischttff of Heidelberg, which hcboughl while there. It is clear that Pugh wanted the new college to become an important center for agricultural research and thought a herbarium was an essential asset for such research, Pugh died in 1864, but W.A. Buckhout, a student of Asa ("irayat Harvard, look over botany, horlicullure and the responsibility for the Pugh herbarium al rVun Stale in 1872, The intimate connection belweeii thai herbarium and the founding of a university is uni(]tie. RESUMFN Evan Pugh, un inlellgente joven quimieo agricola de Pensilvania, produjo imporianles descuhrimieiilos en el papel se las planias en la fi- Jacion del nitrogeno aimosferico en tres anos de csiudio e invcsiigacion, realizada en Inglalerra duranic 1856-59, Hntonces regresti como el primer presidente de lo C|Ue ahora es la Universidad Esiatal de Pensilvania, sicildo no solo el mas joven, sino tambien el presidenie mas in- icligente que la inslilucion haya lenido. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
The Global Museum: Natural History Collections and the Future of Evolutionary Science and Public Education
A peer-reviewed version of this preprint was published in PeerJ on 28 January 2020. View the peer-reviewed version (peerj.com/articles/8225), which is the preferred citable publication unless you specifically need to cite this preprint. Bakker FT, Antonelli A, Clarke JA, Cook JA, Edwards SV, Ericson PGP, Faurby S, Ferrand N, Gelang M, Gillespie RG, Irestedt M, Lundin K, Larsson E, Matos- Maraví P, Müller J, von Proschwitz T, Roderick GK, Schliep A, Wahlberg N, Wiedenhoeft J, Källersjö M. 2020. The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ 8:e8225 https://doi.org/10.7717/peerj.8225 The Global Museum: natural history collections and the future of evolutionary biology and public education Freek T. Bakker Corresp., 1 , Alexandre Antonelli 2 , Julia Clarke 3 , Joseph A Cook 4 , Scott V Edwards 5 , Per GP Ericson 6 , Søren Faurby 7 , Nuno Ferrand 8 , Magnus Gelang 9 , Rosemary G Gillespie 10 , Martin Irestedt 6 , Kennet Lundin 9 , Ellen Larsson 7 , Pável Matos-Maraví 11 , Johannes Müller 12 , Ted von Proschwitz 9 , George K Roderick 10 , Alexander Schliep 13 , Niklas Wahlberg 14 , John Wiedenhoeft 13 , Mari Källersjö 15 1 Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands 2 Department of Science, Royal Botanic Gardens, Kew, Richmond, United Kingdom 3 Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, United States 4 Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States 5 Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, United States 6 Dept. -
IUCN Policy Statement on Research Involving Species at Risk of Extinction”, with Special Reference to Scientific Collecting of Threatened Species
Guidelines on the Implementation of the “IUCN Policy Statement on Research Involving Species at Risk of Extinction”, with special reference to Scientific Collecting of Threatened Species Version 1.0 (July 2011) [updated October 2016] This is Annex 2 of the “Guidelines for Appropriate Uses of IUCN Red List Data. Incorporating, as Annexes, the 1) Guidelines for Reporting on Proportion Threatened (ver. 1.1); 2) Guidelines on Scientific Collecting of Threatened Species (ver. 1.0); and 3) Guidelines for the Appropriate Use of the IUCN Red List by Business (ver1.0). Version 3.0” Adopted by the IUCN Red List Committee in October 2016. THE IUCN RED LIST OF THREATENED SPECIES™ Guidelines on the Implementation of the “IUCN Policy Statement on Research Involving Species at Risk of Extinction”1, with special reference to Scientific Collecting of Threatened Species (Version 1.0) The IUCN Policy Statement on Research Involving Species at Risk of Extinction2 was approved at the 27th Meeting of IUCN Council, June 1989, and encourages basic and applied research on threatened species that contributes to the likelihood of their survival. The current guidelines were called for in Resolution 3.013 "The Uses of the IUCN Red List of Threatened Species" of the 3rd World Conservation Congress in Bangkok in 2004, and Resolution 4.015 “Guidelines regarding research and scientific collecting of threatened species" of the 4th World Conservation Congress in Barcelona in 2008. These motions were tabled in response to an awareness that a) some governments are prohibiting the scientific collection of species included in the IUCN Red List and which may, in turn, be detrimental to the conservation of those particular species; and b) that many scientists are increasingly reluctant to provide data to the Red List process, due to the risk that the listing of a species in one of the threat categories will, in some cases, lead to government restrictions on scientific collecting or a requirement for expensive research permits. -
Raymond M. Alf Museum of Paleontology EDUCATOR's GUIDE
Raymond M. Alf Museum of Paleontology EDUCATOR’S GUIDE Dear Educator: This guide is recommended for educators of grades K-4 and is designed to help you prepare students for their Alf Museum visit, as well as to provide resources to enhance your classroom curriculum. This packet includes background information about the Alf Museum and the science of paleontology, a summary of our museum guidelines and what to expect, a pre-visit checklist, a series of content standard-aligned activities/exercises for classroom use before and/or after your visit, and a list of relevant terms and additional resources. Please complete and return the enclosed evaluation form to help us improve this guide to better serve your needs. Thank you! Paleontology: The Study of Ancient Life Paleontology is the study of ancient life. The history of past life on Earth is interpreted by scientists through the examination of fossils, the preserved remains of organisms which lived in the geologic past (more than 10,000 years ago). There are two main types of fossils: body fossils, the preserved remains of actual organisms (e.g. shells/hard parts, teeth, bones, leaves, etc.) and trace fossils, the preserved evidence of activity by organisms (e.g. footprints, burrows, fossil dung). Chances for fossil preservation are enhanced by (1) the presence of hard parts (since soft parts generally rot or are eaten, preventing preservation) and (2) rapid burial (preventing disturbance by bio- logical or physical actions). Many body fossils are skeletal remains (e.g. bones, teeth, shells, exoskel- etons). Most form when an animal or plant dies and then is buried by sediment (e.g. -
La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles. -
Curitiba, Southern Brazil
data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M. -
Recommendations on Scientific Collections As Research Infrastructures
wissenschaftsrat wr Drs. 10464-11 Berlin 28 January 2011 Recommendations on Scientific Collections as Research Infrastructures Contents Preamble 5 Summary 7 A. Scientific collections as research infrastructures 10 A.I Introduction 10 A.II Research based on scientific collections 11 A.III Definition of the subject matter 14 A.IV Definitions 15 A.V Aim of this statement 18 B. Critical analysis: status and function of scientific collections as research infrastructures 19 B.I Structural features 19 I.1 University collections 20 I.2 Non-university collections 23 B.II Resources 27 II.1 Finance 27 II.2 Accomodation 28 II.3 Human resources 29 B.III Use 30 III.1 Functions of scientific collections 30 III.2 Use for research 32 III.3 Intensity of use 33 B.IV Usability 33 IV.1 Management and quality assurance 34 IV.2 Care 35 IV.3 Access 35 IV.4 Documentation, indexing, digitisation 36 B.V Financial support options 39 B.VI Networking and coordination between institutions 41 C. Recommendations on the further development of scientific collections as research infrastructures 45 C.I Determining the status of a scientific collection 47 C.II Development of collection concepts 48 C.III Requirements for scientific collections as research infrastructure 50 III.1 Organisation and management 50 III.2 Resources 52 III.3 Indexing, accessibility, digitisation 53 C.IV Networking and organisation of scientific collections 55 C.V Financing and grants for scientific collections and collection-based research 57 Annexes 60 List of abbreviations 67 5 Preamble Scientific collections are a significant research infrastructure. -
Unit- V Paleobotany
18MBO21C-U5 PAPER – IV PLANT DIVERSITY - II (PTERIDOPHYTES, GYMNOSPERMS AND PALEOBOTANY) Unit- V Paleobotany Dr. A. SANKARAVADIVOO, Assistant Professor, Department of Botany Government Arts College(Autonomous), Coimbatore-641018. Mobile:9443704273 GEOLOGICAL TIME SCALE Fossilization The method by which fossils are formed is termed as fossilization. Optimal conditions for fossilization are that an organism is buried very soon after its death and in the absence of bacterial or fungal decay, that mineral-rich waters and sediments surround the site, and the immediate environment is cool and hypoxic. The root of the word fossil derives from the Latin verb ‘to dig’ (fodere). A fossil is the mineralized partial or complete form of an organism, or of an organism’s activity, that has been preserved as a cast, impression or mold. A fossil gives tangible, physical evidence of ancient life and has provided the basis of the theory of evolution in the absence of preserved soft tissues. A Pectinatites Mould of a bivalve ammonite, shell Preserved insect trapped in amber Fossil recod . The totality of fossils - their placement in fossiliferous, rock formations, sedimentary layers (strata) . Fossil record - important functions of the science of paleontology - vary in size . A fossil normally preserves only a portion of the deceased organism, bones and teeth of vertebrates, the chitinous or calcareous exoskeletons of invertebrates. The oldest human fossil, where human refers to Homo erectus, Homo ergaster, and Homo georgicus, was a set of five skulls found in Dmanisi in Georgia between 1999 and 2005. These date back to approximately 1.8 million years ago. The oldest fossil remains depict five different species of microbe, preserved in a 3.5-billion-year-old rock in Australia. -
Mineralogy of Non-Silicified Fossil Wood
Article Mineralogy of Non-Silicified Fossil Wood George E. Mustoe Geology Department, Western Washington University, Bellingham, WA 98225, USA; [email protected]; Tel: +1-360-650-3582 Received: 21 December 2017; Accepted: 27 February 2018; Published: 3 March 2018 Abstract: The best-known and most-studied petrified wood specimens are those that are mineralized with polymorphs of silica: opal-A, opal-C, chalcedony, and quartz. Less familiar are fossil woods preserved with non-silica minerals. This report reviews discoveries of woods mineralized with calcium carbonate, calcium phosphate, various iron and copper minerals, manganese oxide, fluorite, barite, natrolite, and smectite clay. Regardless of composition, the processes of mineralization involve the same factors: availability of dissolved elements, pH, Eh, and burial temperature. Permeability of the wood and anatomical features also plays important roles in determining mineralization. When precipitation occurs in several episodes, fossil wood may have complex mineralogy. Keywords: fossil wood; mineralogy; paleobotany; permineralization 1. Introduction Non-silica minerals that cause wood petrifaction include calcite, apatite, iron pyrites, siderite, hematite, manganese oxide, various copper minerals, fluorite, barite, natrolite, and the chromium- rich smectite clay mineral, volkonskoite. This report provides a broad overview of woods fossilized with these minerals, describing specimens from world-wide locations comprising a diverse variety of mineral assemblages. Data from previously-undescribed fossil woods are also presented. The result is a paper that has a somewhat unconventional format, being a combination of literature review and original research. In an attempt for clarity, the information is organized based on mineral composition, rather than in the format of a hypothesis-driven research report. -
Natural History Collections
Exploring Natural History Collections Museum Collections Vol. 1 Wonder Workbook ©2020 Chicago Academy of Sciences / Peggy Notebaert Nature Museum About Natural History Collections Specimens in a collection are like a physical snapshot in time, containing irreplaceable information. Often, the knowledge that can be obtained through careful study of these authentic artifacts was not anticipated when the specimen was collected. Through such natural history specimens, we have a physical, empirical record of the past. We can use these specimens to interpret our present place in history which then allows us to anticipate future conditions. This power to hold the past, understand the context of the present, and predict the future makes natural history collections an important and unique human resource. The number of specimens in each collection varies. Here is a “by the numbers” snapshot that just scratches the surface of the Chicago Academy of Sciences / Peggy Notebaert Nature Museum collections: • 13,900 birds • 11,200 bird eggs and nests • 5,200 mammals • 23,200 amphibian and reptiles • 71,100 insects and spiders • 113,300 mollusks • 15,600 plants • 500 linear feet of manuscripts and other paper records • 1,300 motion picture films • 2,300 cultural artifacts • 100,000 photographic images • 23,200 fossils • 11,100 geologic specimens © Chicago Academy of Sciences / Peggy Notebaert Nature Museum 1 Collections FAQs What kind of information does the Academy have about its collections? The data vary between different types of collections, but a specimen should always include a data tag with the common and scientific name, where, when, and who collected the specimen, a description of the specimen’s habitat, and some basic measurements of the specimen such as weight in grams and length in millimeters.