Comparison of the Environmental Properties of Parasiticides and Harmonisation of the Basis for Environmental Assessment at the EU Level
Total Page:16
File Type:pdf, Size:1020Kb
Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety Project number: 3714 64 410 0 Report number: [entered by the UBA library] Comparison of the environmental properties of parasiticides and harmonisation of the basis for environmental assessment at the EU level by Jörg Römbke, Karen Duis, Philipp Egeler, Daniel Gilberg, Christine Schuh ECT Oekotoxikologie GmbH, Böttgerstr. 2-14, D-65439 Flörsheim Monika Herrchen, Dieter Hennecke Fraunhofer-Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, D-57392 Schmallenberg Ludwig E. Hölzle, Brigitte Heilmann-Thudium University of Hohenheim, Livestock Infectiology and Environmental Hygiene, Garbenstr. 30, D-70599 Stuttgart Manuel Wohde, Julia Wagner, Rolf-Alexander Düring Justus Liebig University, Institute for Soil Science and Soil Conservation, Heinrich Buff-Ring 26, D-35392 Gießen On behalf of the German Environment Agency Completion date: May 2018 Comparison of the environmental properties of parasiticides and harmonisation of the basis for environmental assessment at the EU level Abstract Avermectin and milbemycin parasiticides have a high toxicity to non-target organisms, are often per- sistent and may have a potential to bioaccumulate. The present project contributes to filling gaps in the database for a complete environmental risk assessment of these parasiticides. In addition, risk management strategies for parasiticides used in pasture animals were discussed. For ivermectin and selamectin, log POW values of 5.6 and 6.0 were derived, respectively. In studies with zebrafish, biocon- centration factors of 63–111 for ivermectin and 70–71 for doramectin (based on total radio-active residues, normalised to a 5% lipid content) were determined. Generally, about 90% of the avermectins and milbemycins applied to pasture animals are excreted within approx. 4–10 days after application, but the parasiticides can be detected for much longer in the faeces. Doramectin is most toxic to dung organisms, followed by ivermectin and eprinomectin having a similar toxicity, and moxidectin. The evaluated risk management strategies include sustainable approaches to control parasites, risk mitiga- tion measures (RMMs) and restrictions of use. Parasiticides are a central component of strategies to control parasites. Yet, their prudent use is generally recommended. Treatment frequencies should be reduced to the minimum required to sufficiently control parasitoses. Where indicated, selective or targeted selective treatments should be used instead of strategic treatments. Six RMMs were evaluated with regard to their efficacy to reduce the risk for dung or soil organisms, and their practicability. For most of these RMMs, data gaps were identified that have to be filled in order to sufficiently specify the measures and to fully evaluate their suitability and practicability. Since most of the RMMs have the potential to contribute to a reduction of the environment risk caused by avermectins and milbemycins, a further development / specification is recommended. Kurzbeschreibung Parasitizide aus den Gruppen der Avermectine und Milbemycine haben eine hohe Toxizität gegenüber Nichtzielorganismen, sind oft persistent und potenziell bioakkumulierend. Das vorliegende Projekt trägt dazu bei, Lücken in der Datenbasis für eine vollständige Umweltrisikobewertung dieser Parasiti- zide zu füllen. Außerdem wurden Risikomanagementstrategien für in Weidetieren eingesetzte Para- sitizide diskutiert. Für Ivermectin und Selamectin wurden log POW-Werte von 5,6 bzw. 6,0 bestimmt. In Tests mit Zebrabärblingen wurden Biokonzentrationsfaktoren von 63–111 für Ivermectin und 70–71 für Doramectin ermittelt (basierend auf der Gesamtradioaktivität, normalisiert auf einen Lipidgehalt von 5%). In Weidetieren werden im Allgemeinen etwa 90% der verabreichten Avermectine und Milbe- mycine innerhalb von ca. 4–10 Tagen nach Applikation ausgeschieden. Die Parasitizide sind jedoch deutlich länger in den Fäzes nachweisbar. Doramectin hat die höchste Toxizität gegenüber Dungorga- nismen, gefolgt von Ivermectin und Eprinomectin, deren Toxizität vergleichbar ist, und Moxidectin. Die evaluierten Risikomanagementstrategien umfassen nachhaltige Herangehensweisen zur Parasi- tenkontrolle, Risikominderungsmaßnahmen (RMM) und Anwendungsbeschränkungen. Parasitizide sind ein zentraler Bestandteil von Strategien zur Parasitenkontrolle. Sie sollten jedoch stets umsichtig eingesetzt werden. Behandlungsfrequenzen sollten auf das zur Kontrolle von Parasitosen notwendige Minimum reduziert werden. Soweit möglich sollten strategische Behandlungen durch selektive oder gezielte, selektive Behandlungen ersetzt werden. Sechs RMM wurden in Hinblick auf ihre Effektivität, das Risiko für Dung- bzw. Bodenorganismen zu reduzieren, und ihre Praktikabilität bewertet. Für die meisten dieser Maßnahmen wurden Datenlücken identifiziert, die gefüllt werden müssen, um die Maßnahmen ausreichend zu spezifizieren und anschließend ihre Effektivität und Praktikabilität voll- ständig bewerten zu können. Da die meisten RMM dazu beitragen können, durch Avermectine und Milbemycine verursachte Umweltrisiken zu reduzieren, wird eine Weiterentwicklung / Spezifizierung der RMM empfohlen. 3 Comparison of the environmental properties of parasiticides and harmonisation of the basis for environmental assessment at the EU level 4 Comparison of the environmental properties of parasiticides and harmonisation of the basis for environmental assessment at the EU level Table of Contents List of Figures .................................................................................................................................................... 7 List of Tables ..................................................................................................................................................... 9 List of Abbreviations ....................................................................................................................................... 12 Summary ......................................................................................................................................................... 14 Zusammenfassung .......................................................................................................................................... 19 1 Background and objective of the project ............................................................................................. 25 2 Parasiticides considered in the present project ................................................................................... 26 3 Laboratory tests to determine the octanol/water partition coefficients of ivermectin and selamectin ............................................................................................................................................. 27 4 Laboratory tests to determine bioconcentration of ivermectin and doramectin in fish ..................... 29 4.1 Available data on bioconcentration and fish toxicity of ivermectin and doramectin .................... 29 4.2 Differential analysis of 3H-ivermectin und 3H-doramectin ............................................................. 29 4.3 Bioconcentration of 3H-ivermectin in zebrafish ............................................................................. 31 4.4 Bioconcentration of 3H-doramectin in zebrafish............................................................................ 41 4.5 Discussion of the results of the bioconcentration studies with ivermectin and doramectin ..................................................................................................................................... 48 5 Overview of the use of macrocyclic lactones for the treatment of pasture animals ........................... 51 6 Anthelmintic resistances to macrocyclic lactones with a focus on avermectins and milbemycins used in pasture animals: overview and consequences for risk management strategies .............................................................................................................................................. 60 7 Evaluation of excretion of commercially available avermectins and milbemycins by pasture animals .................................................................................................................................................. 63 8 Effects of avermectins and milbemycins on dung organisms (dung flies and beetles) ........................ 77 8.1 Effects of avermectins on dung organisms .................................................................................... 77 8.2 Effects of milbemycins on dung organisms .................................................................................... 82 8.3 Summary: effects of avermectins and milbemycins on dung organisms ....................................... 83 9 Evaluation of risk management strategies for parasiticides used in pasture animals ......................... 85 9.1 Definitions ...................................................................................................................................... 85 9.2 Background ..................................................................................................................................... 85 9.3 Sustainable approaches to control parasites ................................................................................. 86 9.3.1 Optimised treatment regimes ................................................................................................