Comparison of the Environmental Properties of Parasiticides and Harmonisation of the Basis for Environmental Assessment at the EU Level

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of the Environmental Properties of Parasiticides and Harmonisation of the Basis for Environmental Assessment at the EU Level Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety Project number: 3714 64 410 0 Report number: [entered by the UBA library] Comparison of the environmental properties of parasiticides and harmonisation of the basis for environmental assessment at the EU level by Jörg Römbke, Karen Duis, Philipp Egeler, Daniel Gilberg, Christine Schuh ECT Oekotoxikologie GmbH, Böttgerstr. 2-14, D-65439 Flörsheim Monika Herrchen, Dieter Hennecke Fraunhofer-Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, D-57392 Schmallenberg Ludwig E. Hölzle, Brigitte Heilmann-Thudium University of Hohenheim, Livestock Infectiology and Environmental Hygiene, Garbenstr. 30, D-70599 Stuttgart Manuel Wohde, Julia Wagner, Rolf-Alexander Düring Justus Liebig University, Institute for Soil Science and Soil Conservation, Heinrich Buff-Ring 26, D-35392 Gießen On behalf of the German Environment Agency Completion date: May 2018 Comparison of the environmental properties of parasiticides and harmonisation of the basis for environmental assessment at the EU level Abstract Avermectin and milbemycin parasiticides have a high toxicity to non-target organisms, are often per- sistent and may have a potential to bioaccumulate. The present project contributes to filling gaps in the database for a complete environmental risk assessment of these parasiticides. In addition, risk management strategies for parasiticides used in pasture animals were discussed. For ivermectin and selamectin, log POW values of 5.6 and 6.0 were derived, respectively. In studies with zebrafish, biocon- centration factors of 63–111 for ivermectin and 70–71 for doramectin (based on total radio-active residues, normalised to a 5% lipid content) were determined. Generally, about 90% of the avermectins and milbemycins applied to pasture animals are excreted within approx. 4–10 days after application, but the parasiticides can be detected for much longer in the faeces. Doramectin is most toxic to dung organisms, followed by ivermectin and eprinomectin having a similar toxicity, and moxidectin. The evaluated risk management strategies include sustainable approaches to control parasites, risk mitiga- tion measures (RMMs) and restrictions of use. Parasiticides are a central component of strategies to control parasites. Yet, their prudent use is generally recommended. Treatment frequencies should be reduced to the minimum required to sufficiently control parasitoses. Where indicated, selective or targeted selective treatments should be used instead of strategic treatments. Six RMMs were evaluated with regard to their efficacy to reduce the risk for dung or soil organisms, and their practicability. For most of these RMMs, data gaps were identified that have to be filled in order to sufficiently specify the measures and to fully evaluate their suitability and practicability. Since most of the RMMs have the potential to contribute to a reduction of the environment risk caused by avermectins and milbemycins, a further development / specification is recommended. Kurzbeschreibung Parasitizide aus den Gruppen der Avermectine und Milbemycine haben eine hohe Toxizität gegenüber Nichtzielorganismen, sind oft persistent und potenziell bioakkumulierend. Das vorliegende Projekt trägt dazu bei, Lücken in der Datenbasis für eine vollständige Umweltrisikobewertung dieser Parasiti- zide zu füllen. Außerdem wurden Risikomanagementstrategien für in Weidetieren eingesetzte Para- sitizide diskutiert. Für Ivermectin und Selamectin wurden log POW-Werte von 5,6 bzw. 6,0 bestimmt. In Tests mit Zebrabärblingen wurden Biokonzentrationsfaktoren von 63–111 für Ivermectin und 70–71 für Doramectin ermittelt (basierend auf der Gesamtradioaktivität, normalisiert auf einen Lipidgehalt von 5%). In Weidetieren werden im Allgemeinen etwa 90% der verabreichten Avermectine und Milbe- mycine innerhalb von ca. 4–10 Tagen nach Applikation ausgeschieden. Die Parasitizide sind jedoch deutlich länger in den Fäzes nachweisbar. Doramectin hat die höchste Toxizität gegenüber Dungorga- nismen, gefolgt von Ivermectin und Eprinomectin, deren Toxizität vergleichbar ist, und Moxidectin. Die evaluierten Risikomanagementstrategien umfassen nachhaltige Herangehensweisen zur Parasi- tenkontrolle, Risikominderungsmaßnahmen (RMM) und Anwendungsbeschränkungen. Parasitizide sind ein zentraler Bestandteil von Strategien zur Parasitenkontrolle. Sie sollten jedoch stets umsichtig eingesetzt werden. Behandlungsfrequenzen sollten auf das zur Kontrolle von Parasitosen notwendige Minimum reduziert werden. Soweit möglich sollten strategische Behandlungen durch selektive oder gezielte, selektive Behandlungen ersetzt werden. Sechs RMM wurden in Hinblick auf ihre Effektivität, das Risiko für Dung- bzw. Bodenorganismen zu reduzieren, und ihre Praktikabilität bewertet. Für die meisten dieser Maßnahmen wurden Datenlücken identifiziert, die gefüllt werden müssen, um die Maßnahmen ausreichend zu spezifizieren und anschließend ihre Effektivität und Praktikabilität voll- ständig bewerten zu können. Da die meisten RMM dazu beitragen können, durch Avermectine und Milbemycine verursachte Umweltrisiken zu reduzieren, wird eine Weiterentwicklung / Spezifizierung der RMM empfohlen. 3 Comparison of the environmental properties of parasiticides and harmonisation of the basis for environmental assessment at the EU level 4 Comparison of the environmental properties of parasiticides and harmonisation of the basis for environmental assessment at the EU level Table of Contents List of Figures .................................................................................................................................................... 7 List of Tables ..................................................................................................................................................... 9 List of Abbreviations ....................................................................................................................................... 12 Summary ......................................................................................................................................................... 14 Zusammenfassung .......................................................................................................................................... 19 1 Background and objective of the project ............................................................................................. 25 2 Parasiticides considered in the present project ................................................................................... 26 3 Laboratory tests to determine the octanol/water partition coefficients of ivermectin and selamectin ............................................................................................................................................. 27 4 Laboratory tests to determine bioconcentration of ivermectin and doramectin in fish ..................... 29 4.1 Available data on bioconcentration and fish toxicity of ivermectin and doramectin .................... 29 4.2 Differential analysis of 3H-ivermectin und 3H-doramectin ............................................................. 29 4.3 Bioconcentration of 3H-ivermectin in zebrafish ............................................................................. 31 4.4 Bioconcentration of 3H-doramectin in zebrafish............................................................................ 41 4.5 Discussion of the results of the bioconcentration studies with ivermectin and doramectin ..................................................................................................................................... 48 5 Overview of the use of macrocyclic lactones for the treatment of pasture animals ........................... 51 6 Anthelmintic resistances to macrocyclic lactones with a focus on avermectins and milbemycins used in pasture animals: overview and consequences for risk management strategies .............................................................................................................................................. 60 7 Evaluation of excretion of commercially available avermectins and milbemycins by pasture animals .................................................................................................................................................. 63 8 Effects of avermectins and milbemycins on dung organisms (dung flies and beetles) ........................ 77 8.1 Effects of avermectins on dung organisms .................................................................................... 77 8.2 Effects of milbemycins on dung organisms .................................................................................... 82 8.3 Summary: effects of avermectins and milbemycins on dung organisms ....................................... 83 9 Evaluation of risk management strategies for parasiticides used in pasture animals ......................... 85 9.1 Definitions ...................................................................................................................................... 85 9.2 Background ..................................................................................................................................... 85 9.3 Sustainable approaches to control parasites ................................................................................. 86 9.3.1 Optimised treatment regimes ................................................................................................
Recommended publications
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • An Evaluation of Eprinomectin Extended-Release Injectable (Longrange®) on the Performance of Yearling Cattle on Pasture in Western Canada
    PEER REVIEWED © Copyright American Association American© Copyright ofBovine Practitioners; open access distribution. An evaluation of eprinomectin extended-release injectable (LongRange®) on the performance of yearling cattle on pasture in western Canada Ryan D. Rademacher, BSc, DVM; Eric J. Behlke, BSc, MSc, PhD, DVM; Sandi L. Parr, BSc, MSc, PhD; Sherry J. Hannon, DVM, MVetSc, PhD; Christina M. Williams, BSc, MSc; R. Kent Fenton, DVM; G. Kee Jim, DVM; Calvin W. Booker, DVM, MVetSc Feedlot Health Management Services Ltd., PO Box 140, Okotoks, Alberta, Canada T1S 2A2 Corresponding author: Dr. Calvin Booker; Tel: (403) 938-5151; Fax: (403) 938-5175; [email protected] Abstract sous forme injectable a la dose de 0.45 mg/lb (1.0 mg/kg) d'unite de poids corporel (PC) dans la partie lache de la peau During the pre-shipment handling procedures at each devant l'epaule. Les animaux dans le groupe IVER (1524 ani­ of 2 feedlots of origin, mixed-breed beef steers were weighed, maux) ont re<;u a l'allocation une application d'ivermectine sur stratified into weight blocks, and simultaneously randomized le long de la ligne superieure du garrot jusqu’a l’attache de la within weight block to 1 of 2 experimental groups (LONG or queue a la dose de 0.23 mg/lb (0.5 mg/kg) d’unite de PC. Apres IVER) prior to shipment to pasture. Animals in the LONG l’allocation, les animaux des deux groupes experimentaux ont group (1523 animals) received a subcutaneous injection of ete amalgames a l'interieur de chaque bloc de poids et selon le eprinomectin extended-release injectable at a dosage of 0.45 pare d'alimentation d’origine et sont restes dans ces groupes mg/lb (1.0 mg/kg) body weight (BW) in the loose skin in front amalgames pendant toute la duree de l’etude.
    [Show full text]
  • Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock
    Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock 1 Identification of Petitioned Substance* 2 3 Chemical Names: 48 Ivermectin: Heart Guard, Sklice, Stomectol, 4 Moxidectin:(1'R,2R,4Z,4'S,5S,6S,8'R,10'E,13'R,14'E 49 Ivomec, Mectizan, Ivexterm, Scabo 6 5 ,16'E,20'R,21'R,24'S)-21',24'-Dihydroxy-4 50 Thiabendazole: Mintezol, Tresaderm, Arbotect 6 (methoxyimino)-5,11',13',22'-tetramethyl-6-[(2E)- 51 Albendazole: Albenza 7 4-methyl-2-penten-2-yl]-3,4,5,6-tetrahydro-2'H- 52 Levamisole: Ergamisol 8 spiro[pyran-2,6'-[3,7,1 9]trioxatetracyclo 53 Morantel tartrate: Rumatel 9 [15.6.1.14,8.020,24] pentacosa[10,14,16,22] tetraen]- 54 Pyrantel: Banminth, Antiminth, Cobantril 10 2'-one; (2aE, 4E,5’R,6R,6’S,8E,11R,13S,- 55 Doramectin: Dectomax 11 15S,17aR,20R,20aR,20bS)-6’-[(E)-1,2-Dimethyl-1- 56 Eprinomectin: Ivomec, Longrange 12 butenyl]-5’,6,6’,7,10,11,14,15,17a,20,20a,20b- 57 Piperazine: Wazine, Pig Wormer 13 dodecahydro-20,20b-dihydroxy-5’6,8,19-tetra- 58 14 methylspiro[11,15-methano-2H,13H,17H- CAS Numbers: 113507-06-5; 15 furo[4,3,2-pq][2,6]benzodioxacylooctadecin-13,2’- Moxidectin: 16 [2H]pyrano]-4’,17(3’H)-dione,4’-(E)-(O- Fenbendazole: 43210-67-9; 70288-86-7 17 methyloxime) Ivermectin: 59 Thiabendazole: 148-79-8 18 Fenbendazole: methyl N-(6-phenylsulfanyl-1H- 60 Albendazole: 54965-21-8 19 benzimidazol-2-yl) carbamate 61 Levamisole: 14769-72-4 20 Ivermectin: 22,23-dihydroavermectin B1a +22,23- 21 dihydroavermectin B1b 62 Morantel tartrate: 26155-31-7 63 Pyrantel: 22204-24-6 22 Thiabendazole: 4-(1H-1,3-benzodiazol-2-yl)-1,3- 23 thiazole
    [Show full text]
  • Sheet1 Page 1 a Abamectin Acetazolamide Sodium Adenosine-5-Monophosphate Aklomide Albendazole Alfaxalone Aloe Vera Alphadolone A
    Sheet1 A Abamectin Acetazolamide sodium Adenosine-5-monophosphate Aklomide Albendazole Alfaxalone Aloe vera Alphadolone Acetate Alpha-galactosidase Altrenogest Amikacin and its salts Aminopentamide Aminopyridine Amitraz Amoxicillin Amphomycin Amphotericin B Ampicillin Amprolium Anethole Apramycin Asiaticoside Atipamezole Avoparcin Azaperone B Bambermycin Bemegride Benazepril Benzathine cloxacillin Benzoyl Peroxide Benzydamine Bephenium Bephenium Hydroxynaphthoate Betamethasone Boldenone undecylenate Boswellin Bromelain Bromhexine 2-Bromo-2-nitropan-1, 3 diol Bunamidine Buquinolate Butamisole Butonate Butorphanol Page 1 Sheet1 C Calcium glucoheptonate (calcium glucoheptogluconate) Calcium levulinate Cambendazole Caprylic/Capric Acid Monoesters Carbadox Carbomycin Carfentanil Carnidazole Carnitine Carprofen Cefadroxil Ceftiofur sodium Centella asiatica Cephaloridine Cephapirin Chlorine dioxide Chlormadinone acetate Chlorophene Chlorothiazide Chlorpromazine HCl Choline Salicylate Chondroitin sulfate Clazuril Clenbuterol Clindamycin Clomipramine Clopidol Cloprostenol Clotrimazole Cloxacillin Colistin sulfate Copper calcium edetate Copper glycinate Coumaphos Cromolyn sodium Crystalline Hydroxycobalamin Cyclizine Cyclosporin A Cyprenorphine HCl Cythioate D Decoquinate Demeclocycline (Demethylchlortetracycline) Page 2 Sheet1 Deslorelin Desoxycorticosterone Pivalate Detomidine Diaveridine Dichlorvos Diclazuril Dicloxacillin Didecyl dimethyl ammonium chloride Diethanolamine Diethylcarbamazine Dihydrochlorothiazide Diidohydroxyquin Dimethylglycine
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0143956A1 Cady Et Al
    US 2013.0143956A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0143956A1 Cady et al. (43) Pub. Date: Jun. 6, 2013 (54) LONG-ACTING INJECTABLE MOXIDECTIN (22) Filed: Nov.30, 2012 FORMULATIONS AND NOVEL MOXDECTIN CRYSTAL FORMS Related U.S. Application Data (71) Applicants: Susan Mancini Cady, Yardley, PA (US); (60) Provisional application No. 61/566,336, filed on Dec. Baoqing Ma, Kendall Park, NJ (US); 2, 2011. Robert Clark Chapman, Downingtown, Publication Classification PA (US); Chunhua Yang, Edison, NJ (US); Uday Jain, Plainsboro, NJ (US) (51) Int. Cl. A6IK3I/365 (2006.01) (72) Inventors: Susan Mancini Cady, Yardley, PA (US); (52) U.S. Cl. Baoqing Ma, Kendall Park, NJ (US); CPC .................................... A61 K3I/365 (2013.01) Robert Clark Chapman, Downingtown, USPC ............................ 514/450; 549/264; 264/145 PA (US); Chunhua Yang, Edison, NJ (US); Uday Jain, Plainsboro, NJ (US) (57) ABSTRACT This invention provides for novel antiparasitic and pesticidal forms of moxidectin, including a long-acting polymeric (73) Assignee: Merial Limited, Duluth, GA (US) implant. The resulting compounds may be used in veterinary compositions which are used in treating, controlling and pre (21) Appl. No.: 13/690,185 Venting of endo- and ectoparasite infections in animals. Patent Application Publication Jun. 6, 2013 Sheet 1 of 33 US 2013/0143956 A1 FIG. I. Six: Restivati Masaaaaaaaaaaaaaaaaaaaaaaaaaaa estivate 83 3 R33 Patent Application Publication Jun. 6, 2013 Sheet 2 of 33 US 2013/0143956 A1 FIG 2A Conventional DSC of Moxidectin lot SO9060: ... -- ; : f; : : ^ ‘s 1119°C f ---. f - “r-. f a. -: ; Agree 18649°Cs f 2) skirt" ----.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,173.403 B2 Rosentel, Jr
    USOO9173403B2 (12) United States Patent (10) Patent No.: US 9,173.403 B2 Rosentel, Jr. et al. (45) Date of Patent: Nov. 3, 2015 (54) PARASITICIDAL COMPOSITIONS FOREIGN PATENT DOCUMENTS COMPRISING MULTIPLE ACTIVE AGENTS, BR PIO403620 A 3, 2006 METHODS AND USES THEREOF EP 83.6851 A 4f1998 GB 2457734 8, 2009 (75) Inventors: Joseph K. Rosentel, Jr., Johns Creek, WO WO 98,17277 4f1998 GA (US); Monica Tejwani, Monmouth WO WO O2/O94233 11, 2002 WO WO2004/O16252 2, 2004 Junction, NJ (US); Arima Das-Nandy, WO WO 2007/O18659 2, 2007 Titusville, NJ (US) WO WO 2008/O3O385 3, 2008 WO 2008/136791 11, 2008 (73) Assignee: MERLAL, INC., Duluth, GA (US) WO WO 2009/O18198 2, 2009 WO WO 2009/027506 3, 2009 WO 2009/112837 9, 2009 (*) Notice: Subject to any disclaimer, the term of this WO WO 2010/026370 3, 2010 patent is extended or adjusted under 35 WO WO2010.109214 9, 2010 U.S.C. 154(b) by 100 days. OTHER PUBLICATIONS (21) Appl. No.: 13/078,496 Notice of Opposition in the matter of New Zealand Patent Applica (22) Filed: Apr. 1, 2011 tion 595934 in the name of Norbrook Laboratories Limited and Opposition thereto by Merial Limited dated Jun. 28, 2014. (65) Prior Publication Data First Supplementary Notice of Opposition in the matter of New Zealand Patent Application 595934 in the name of Norbrook Labo US 2011 FO245191 A1 Oct. 6, 2011 ratories Limited and Opposition thereto by Merial Limited dated Aug. 28, 2014. Second Supplementary Notice of Opposition in the matter of New Related U.S.
    [Show full text]
  • Alpaca and Llama Parasite Treatment
    Alpaca and Llama Parasite Treatment Albendazole (Valbazen) 10mg/kg Do not recommend in pregnancy or for young crias! Much better for killing tapeworms than Fenbendazole. Give orally - 6cc/100 pounds of body weight. Give one dose once per day for three days in a row (max). May need to repeat in two weeks depending on parasite load. May also have an ovacidal effect – meaning that it kills eggs and thus prevents pasture contamination – therefore it is good for isolation pens. Doramectin (Dectomax) 1cc/50 pounds of body weight every 8 weeks. Or give 1cc/70 pounds of body weight every 6 weeks. Give SubQ. (Recommend 20 gauge needle) Primarily for Meningeal Worm prevention. May kill some strongyles. Probably ineffective against most Nematodirus and Trichuris. Ivermectin (Ivomec) 1cc/70 pounds of body weight for Meningeal Worm prevention. Note that efficacy lasts for no more than 4 weeks max! Excellent for mange treatment: Dose at 1cc/50 pounds for mange – 3 days in row, and then repeat one dose in one week. Do not give mange treatment to pregnant females within first 60 days of pregnancy! Give SubQ. (Recommend 20 gauge needle) Probably ineffective in llamas and alpacas for Trichuris, Nematodirus, Moniezia, some strongyles, and liver flukes. You can purchase Ivomec Plus to kill liver flukes. Fenbendazole (Panacur or Safeguard) 20mg/kg or 1cc/10 pounds of body weight Give orally three days in row for Nematodirus. Give orally 5 days in a row and repeat in 2 weeks for Trichuris and Moneizia (tapeworms). This is a very safe drug, even for very young crias and newly pregnant females! Levamisole 8mg/kg Oral drug is safer than the injectible version.
    [Show full text]
  • Addendum A: Antiparasitic Drugs Used for Animals
    Addendum A: Antiparasitic Drugs Used for Animals Each product can only be used according to dosages and descriptions given on the leaflet within each package. Table A.1 Selection of drugs against protozoan diseases of dogs and cats (these compounds are not approved in all countries but are often available by import) Dosage (mg/kg Parasites Active compound body weight) Application Isospora species Toltrazuril D: 10.00 1Â per day for 4–5 d; p.o. Toxoplasma gondii Clindamycin D: 12.5 Every 12 h for 2–4 (acute infection) C: 12.5–25 weeks; o. Every 12 h for 2–4 weeks; o. Neospora Clindamycin D: 12.5 2Â per d for 4–8 sp. (systemic + Sulfadiazine/ weeks; o. infection) Trimethoprim Giardia species Fenbendazol D/C: 50.0 1Â per day for 3–5 days; o. Babesia species Imidocarb D: 3–6 Possibly repeat after 12–24 h; s.c. Leishmania species Allopurinol D: 20.0 1Â per day for months up to years; o. Hepatozoon species Imidocarb (I) D: 5.0 (I) + 5.0 (I) 2Â in intervals of + Doxycycline (D) (D) 2 weeks; s.c. plus (D) 2Â per day on 7 days; o. C cat, D dog, d day, kg kilogram, mg milligram, o. orally, s.c. subcutaneously Table A.2 Selection of drugs against nematodes of dogs and cats (unfortunately not effective against a broad spectrum of parasites) Active compounds Trade names Dosage (mg/kg body weight) Application ® Fenbendazole Panacur D: 50.0 for 3 d o. C: 50.0 for 3 d Flubendazole Flubenol® D: 22.0 for 3 d o.
    [Show full text]
  • Evaluation of the Efficacy of Doramectin in the Control Of
    Evaluation of the Efficacy of Doramectin in the Control of Strongyle (Strongylidae, Cyathostominae) Infestation in Horses Prokulewicz, A., Pilarczyk, B.* and Tomza-Marciniak, A. Department of Animal Reproduction Biotechnology and Environmental Hygiene, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin Doktora Judyma St. 6, 71-466 Szczecin, Poland. *Corresponding author: Dr. hab. Bogumiła Pilarczyk, Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology, Szczecin. Tel: +48 91 449 67 91. Email: [email protected]. ABSTRACT The aim of the study was to evaluate the efficacy of doramectin (Dectomax) in the control of strongyle (Strongylidae, Cyathostominae) infestations in horses. The research involved 24 horses of various breeds (stallions and mares), aged 1.5 to19 years of age. The prevalence and intensity of infestation were determined based on coproscopic examination using Willis-Schlaf and Mc-Master methods. Drug resistance was determined by fecal egg count reduction test (FECRT). Horses were injected subcutaneously with doramectin at a dose of 0.2 mg/kg bodyweight. Doramectin had an efficacy of 99.6% on day 14 and strongyles reappeared 2 months after doramectin administration. Subcutaneously injected doramectin proved highly effective in the control of strongyle (Strongylidae, Cyathostominae) infestations in horses. Keywords: Horses,equine, Strongylidae, Cyathostominae, Dectomax, Doramectin, drug resistance. INTRODUCTION in horses includes drug under-dosing, alternating admin- Diseases caused by parasites are still among the most com- istration of drugs belonging to the same class of chemical mon illnesses in equine populations despite great advances compounds, parasites coming into frequent contact with the in anti-parasite drug development and use (1-4).
    [Show full text]
  • 4164-01-P Department of Health and Human Services
    This document is scheduled to be published in the Federal Register on 09/28/2018 and available online at https://federalregister.gov/d/2018-21146, and on govinfo.gov 4164-01-P DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Parts 510, 520, 522, 524, 529, 556, and 558 [Docket No. FDA-2018-N-0002] New Animal Drugs; Approval of New Animal Drug Applications; Withdrawal of Approval of New Animal Drug Applications; Changes of Sponsorship; Change of a Sponsor's Name AGENCY: Food and Drug Administration, HHS. ACTION: Final rule; technical amendments. SUMMARY: The Food and Drug Administration (FDA or we) is amending the animal drug regulations to reflect application-related actions for new animal drug applications (NADAs) and abbreviated new animal drug applications (ANADAs) during January, February, and March 2018. FDA is informing the public of the availability of summaries of the basis of approval and of environmental review documents, where applicable. The animal drug regulations are also being amended to reflect the withdrawal of approval of applications, changes of sponsorship of applications, and a change of a sponsor's name, and to make technical amendments to improve the accuracy of the regulations. DATES: This rule is effective [INSERT DATE OF PUBLICATION IN THE FEDERAL REGISTER], except for amendatory instructions 7 to 21 CFR 520.580, 18 to 21 CFR 520.905d, 20 to 21 CFR 520.1182, 29 to 21 CFR 520.1840, 33 to 21 CFR 520.2380a, 37 to 21 CFR 522.1182, 51 to 21 CFR 524.900, 62 to 21 CFR 558.185, 68 to 21 CFR 558.365, and 70 to 21 CFR 558.485, which are effective [INSERT DATE 10 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER].
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • 01 Front.Pdf (2.451Mb)
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. VETERINARY ANTHELMINTICS: THEIR EFFICACY AND EFFECTS ON ABOMASAL PHYSIOLOGY A thesis presented in partial fulfilment of the requirements for the degree of MASTER OF VETERINARY SCIENCE in Veterinary Clinical Pharmacology at Massey University NICHOLAS CHARLES WHELAN March 1998 For Pauline, with all my love iii ABSTRACT PART 1. A Review of the Veterinary Anthelmintic Literature A comprehensive review was undertaken of the pharmacology, efficacy, side effects and toxicity of veterinary anthelmintics used against nematode parasites. Anthelmintics reviewed for use in cattle, sheep, goats, horses, dogs and cats include copper, nicotine, arsenic, tetrachlorethylene, phenothiazine, diethylcarbamazine, piperazine, toluene, cyacethydrazide, bephenium, thenium, organophosphates, and methyridine. The review was limited to cattle for the benzimidazoles, pyrantel, morantel, tetramisole, levamisole, avermectin and milbemycins anthelmintics. Efficacy data is provided in a tabular format which classifies each anthelmintic according to method of administration and dose. PART2 Efficacy of two formulations of moxidectin pour-on and the effects of treatment on serum pepsinogen and gastrin levels and tissue gastrin in cattle Three groups of eight yearling Friesian bulls were used to compare the efficacy of two 5 g/L pour-on formulations of moxidectin applied at 1ml/10kg (500 mcg moxidectin per kg bodyweight) in removing naturally acquired gastrointestinal parasites. At slaughter, 14-16 days after treatment, the burdens of Ostertagia spp. and Trichostrongylus axei were significantly lower in both the treated groups versus the controls (P<0.01 ).
    [Show full text]