Infantile Spasms: an Update on Pre-Clinical Models and EEG Mechanisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Therapeutic Class Overview Anticonvulsants
Therapeutic Class Overview Anticonvulsants INTRODUCTION Epilepsy is a disease of the brain defined by any of the following (Fisher et al 2014): ○ At least 2 unprovoked (or reflex) seizures occurring > 24 hours apart; ○ 1 unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after 2 unprovoked seizures, occurring over the next 10 years; ○ Diagnosis of an epilepsy syndrome. Types of seizures include generalized seizures, focal (partial) seizures, and status epilepticus (Centers for Disease Control and Prevention [CDC] 2018, Epilepsy Foundation 2016). ○ Generalized seizures affect both sides of the brain and include: . Tonic-clonic (grand mal): begin with stiffening of the limbs, followed by jerking of the limbs and face . Myoclonic: characterized by rapid, brief contractions of body muscles, usually on both sides of the body at the same time . Atonic: characterized by abrupt loss of muscle tone; they are also called drop attacks or akinetic seizures and can result in injury due to falls . Absence (petit mal): characterized by brief lapses of awareness, sometimes with staring, that begin and end abruptly; they are more common in children than adults and may be accompanied by brief myoclonic jerking of the eyelids or facial muscles, a loss of muscle tone, or automatisms. ○ Focal seizures are located in just 1 area of the brain and include: . Simple: affect a small part of the brain; can affect movement, sensations, and emotion, without a loss of consciousness . Complex: affect a larger area of the brain than simple focal seizures and the patient loses awareness; episodes typically begin with a blank stare, followed by chewing movements, picking at or fumbling with clothing, mumbling, and performing repeated unorganized movements or wandering; they may also be called “temporal lobe epilepsy” or “psychomotor epilepsy” . -
Epilepsy and Communication
fasic England Gloss ry Epilepsy and communication Epilepsy is a chronic disorder of the brain • Temporal Lobe epilepsy characterised by recurrent seizures, which affects • Dravet syndrome people worldwide (WHO, 2016). The World Health Organisation deKnes a seizure as a transient loss of There are a range of communication difficulties function of all or part of the brain due to excessive associated with epilepsy. For some people, electrical discharges in a group of brain cells. Physical, communication difficulties can become more sensory or other functions can be temporarily lost. pronounced at times immediately before, during or after seizure activity. Epilepsy affects 1 in 177 young people under the age of 25 so there are around 112,000 young people with Communication difficulties may include: epilepsy in the UK (Joint Epilepsy Council, 2011). In 75% • Comprehension difficulties: Children may Knd it of people, seizures are well controlled with medication hard to understand what others are saying to but 25% continue to have seizures despite treatment. them or what is expected of them, and may struggle to understand environmental cues, daily Epilepsy can be linked with learning, behavioural and routines or activity sequences. speech and language difficulties. This is increasingly • Attention and listening difficulties: Children recognised and the risks are greater if epilepsy occurs may have difficulties in attending to spoken before 2 years of age. Parkinson (1994) found that language, or to an activity. from a small study of children referred for assessment of their epilepsy, 40% had undiagnosed language • Expressive difficulties: It may be hard for impairment of varying degrees of severity. -
14582 IBE Newsletter 2003
International Bureau for Epilepsy Annual Report 2003 Setting the Standard From Our Vision IBE has a vision of the world where everywhere ignorance and fear about epilepsy are replaced by understanding and care. Our Mission IBE exists to improve the social condition and quality of life of people with epilepsy and those who care for them. Our Goals • ORGANISATION To provide an international umbrella organisation for national epilepsy organisations whose primary purpose is to improve the social condition and quality of life of people with epilepsy and those who care for them. • SUPPORT To provide a strong global network to support the development of new Chapters, to support existing Chapters to develop to their fullest potential and to encourage co-operation and contact between Chapters. • COMMUNICATION To promote the facts about epilepsy and to communicate IBE’s vision, mission and messages to the widest possible audience. • EDUCATION To increase understanding and knowledge of epilepsy. • REPRESENTATION To provide an international and global platform for the representation of epilepsy. 2 International Bureau for Epilepsy Foreward During my fifteen years working, first in the British Parliament and Government and now in the European Parliament, I have seen and welcomed an ever-increasing awareness of the importance and benefits of strong partnerships. Networks and alliances are more than just “buzz words” – they are proven methods of achieving desired goals. They may not be easy to achieve, but, once in place, they make it simpler for patients, carers, professionals and academics to explain health needs and options for action and they make it easier for policy-makers to listen and to understand what is needed. -
Epilepsy in Childhood
Psychogenic Non-epileptic Seizures Dr Katharina Junejo Consultant Child and Adolescent Psychiatrist Aim Overview of basic principles in childhood epilepsy PNES Diagnosis of epilepsy Every child’s brain is capable of generating seizures with certain pro-convulsive drugs, acute metabolic disturbance, CNS infection, acute head trauma Risk of epilepsy after acute and provoked seizure is 3-5% Emotional stress is not considered provoking factor Henri Gastaut and colleagues proposed a classification of seizures: “all attempts at classification of seizures are hampered by our limited knowledge of the underlying pathological processes within the brain and that any classification must of necessity be a tentative one and will be subject to change with every advance in scientific understanding of epilepsy” (Gastaut et al 1964). Epilepsy has variable clinical presentations Convulsions (tonic- Staring spells clonic seizures) (absences) Period with confusion with or without Variants of automatism (complex paroxysmal events partial seizures) during sleep (common frontal lobe seizures) Limb or body jerk movements (myoclonus) Loss of speech/decline in Spasms (infantile or social, cognitive function Falls or drops epileptic spasms) (Landau-Kleffner (atonic but also syndrome) tonic seizures) ILAE Revised Terminology for Organization of Seizures and Epilepsies 2011 ‐ 2013 Classification of seizures: generalised and focal seizures Electroclinical syndromes and other epilepsies grouped by specificity of diagnosis (arranged by typical age of onset) Major conceptual changes: using aetiological classification of epilepsy-genetic, metabolic, immune, infectious and unknown causes Changes in terminology Operational diagnosis of epilepsy: occurrence of 2 or more unprovoked seizures, irrespective of seizure type (as recurrence risk is 80-90%) Careful history is only diagnostic test as many paroxysmal disorders that mimic epileptic seizures (most common vasovagal syncope or reflex anoxic seizure) Limitations of EEG: approx. -
Prognostic Utility of Hypsarrhythmia Scoring in Children with West
Clinical Neurology and Neurosurgery 184 (2019) 105402 Contents lists available at ScienceDirect Clinical Neurology and Neurosurgery journal homepage: www.elsevier.com/locate/clineuro Prognostic utility of hypsarrhythmia scoring in children with West syndrome T after ketogenic diet ⁎ Yunjian Zhang1, Lifei Yu1, Yuanfeng Zhou, Linmei Zhang, Yi Wang, Shuizhen Zhou Department of Pediatric Neurology, Children’s Hospital of Fudan University, China ARTICLE INFO ABSTRACT Keywords: Objective: The aim of this study was to evaluate the clinical efficacy and electroencephalographic (EEG) changes West syndrome of West syndrome after ketogenic diet (KD) therapy and to explore the correlation of EEG features and clinical Ketogenic diet efficacy. EEG Patients and methods: We retrospectively studied 39 patients with West syndrome who accepted KD therapy from Hypsarrhythmia May 2011 to October 2017. Outcomes including clinical efficacy and EEG features with hypsarrhythmia severity scores were analyzed. Results: After 3 months of treatment, 20 patients (51.3%) had ≥50% seizure reduction, including 4 patients (10.3%) who became seizure-free. After 6 months of treatment, 4 patients remained seizure free, 12 (30.8%) had 90–99% seizure reduction, 8 (20.5%) had a reduction of 50–89%, and 15 (38.5%) had < 50% reduction. Hypsarrhythmia scores were significantly decreased at 3 months of KD. They were associated with seizure outcomes at 6 months independent of gender, the course of disease and etiologies. Patients with a hypsar- rhythmia score ≥8 at 3 months of therapy may not be benefited from KD. Conclusion: Our findings suggest a potential benefit of KD for patients with drug-resistant West syndrome. Early change of EEG after KD may be a predictor of a patient’s response to the therapy. -
Best Practice Guidelines for Training
Best practice guidelines for training professional carers in the administration of Buccal (Oromucosal) Midazolam for the treatment of prolonged and / or clusters of epileptic seizures in the community Safe & Effective | Kind & Caring | Exceeding Expectation Epilepsy Nurses Association (ESNA) June 2019 1. Foreword One of the most important components of epilepsy care is the pre-hospital community management of prolonged or repeated seizures, which, if untreated, can increase the risk of status epilepticus. Convulsive status epilepticus is a medical emergency requiring admission to hospital and has a mortality rate of up to 20 per cent. Effective management of seizures in the community in people at high risk of status epilepticus could significantly reduce mortality, morbidity and emergency health care utilisation. The Joint Epilepsy Council issued guidance until it was disbanded in 2015, leaving a vacuum in the review and update of clinical guidelines. Unfortunately, the clinical processes ensuring the safety and consistency of buccal midazolam usage demonstrates considerable heterogeneity. There are no current guidelines, standards or pathways to ensure the safety of all involved in the process i.e. patient, carer or professional. ESNA is an organisation principally formed by nurses with an interest in epilepsy. Most ESNA members support or complete training for buccal midazolam to ensure core competencies are up to date and patient safety is protected. ESNA is joined by the International League Against Epilepsy (British Chapter) and the Royal College of Psychiatrists (ID Faculty) as the other principal specialist clinical stakeholders with an interest to ensure governance in this complex care area is addressed robustly. ESNA has collaborated with the ILAE and the Royal College of Psychiatrists to produce updated buccal midazolam guidance. -
Fenfluramine Hydrochloride for the Treatment of Seizures in Dravet Syndrome: a Randomised, Double-Blind, Placebo-Controlled Trial
Articles Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: a randomised, double-blind, placebo-controlled trial Lieven Lagae*, Joseph Sullivan*, Kelly Knupp, Linda Laux, Tilman Polster, Marina Nikanorova, Orrin Devinsky, J Helen Cross, Renzo Guerrini, Dinesh Talwar, Ian Miller, Gail Farfel, Bradley S Galer, Arnold Gammaitoni, Arun Mistry, Glenn Morrison, Michael Lock, Anupam Agarwal, Wyman W Lai, Berten Ceulemans, for the FAiRE DS Study Group Summary Background Dravet syndrome is a rare, treatment-resistant developmental epileptic encephalopathy characterised by Published Online multiple types of frequent, disabling seizures. Fenfluramine has been reported to have antiseizure activity in December 17, 2019 observational studies of photosensitive epilepsy and Dravet syndrome. The aim of the present study was to assess the https://doi.org/10.1016/ S0140-6736(19)32500-0 efficacy and safety of fenfluramine in patients with Dravet syndrome. See Online/Comment https://doi.org/10.1016/ Methods In this randomised, double-blind, placebo-controlled clinical trial, we enrolled children and young adults S0140-6736(19)31239-5 with Dravet syndrome. After a 6-week observation period to establish baseline monthly convulsive seizure *Contributed equally frequency (MCSF; convulsive seizures were defined as hemiclonic, tonic, clonic, tonic-atonic, generalised tonic- Department of Paediatric clonic, and focal with clearly observable motor signs), patients were randomly assigned through an interactive web Neurology, University of response system in a 1:1:1 ratio to placebo, fenfluramine 0·2 mg/kg per day, or fenfluramine 0·7 mg/kg per day, Leuven, Leuven, Belgium (Prof L Lagae MD); University of added to existing antiepileptic agents for 14 weeks. -
Pediatric Disorders
Neurological Disorder Part 3 - Pediatric Disorders CDKL5 Disorder • Characteristics: • Rare x-linked genetic disorder • CDLK5 mutations cause deficiencies in the protein needed for normal brain development • More common in females; however males with the disorder are affected much more severely than females © Trusted Neurodiagnostics Academy CDKL5 Disorder • Characteristics • CDKL5D mutations can be found in children who have been diagnosed with infantile spasms, Lennox Gastaut syndrome, Rett Syndrome, West Syndrome and autism © Trusted Neurodiagnostics Academy CDKL5 Disorder • Symptoms: • Infantile spasms beginning the first 3 - 6 months of life • Neurodevelopmental impairment • Patients cannot walk, talk, or feed themselves • Repetitive hand movements (stereotypies) © Trusted Neurodiagnostics Academy CDKL5 Disorder • Seizures: • Early onset • Infantile spasms, myoclonic, tonic, tonic-clonic seizures • Status epilepticus and non convulsive status epilepticus can occur © Trusted Neurodiagnostics Academy CDKL5 Disorder • Diagnosis: • Genetic blood testing to confirm the change or mutation on the CDKL5 gene • EEG © Trusted Neurodiagnostics Academy CDKL5 Disorder • EEG Findings: • Early in the disorder • EEG may be normal or slightly abnormal • During progression of the disorder • Some background activity is slow and epileptic discharges can be seen in one or more areas • Burst Suppression • Atypical hypsarrhythmia © Trusted Neurodiagnostics Academy CDKL5 Disorder © Trusted Neurodiagnostics Academy CDKL5 Disorder • Treatment: • Seizures -