United States Patent (19) [11] 3,772,046 Knapp Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) [11] 3,772,046 Knapp Et Al United States Patent (19) [11] 3,772,046 Knapp et al. (45) Nov. 13, 1973 (54) TIO, SLURRIES HAVING A HIGH SOLIDS 3,674,528 7|1972 Bronson.............................. 106.1300 CONTENT 3,510,334 5/1970 Goodspeed.............. ... 106/300 3,506,466 4/1970 Bramekamp et al..... ... 106/300 75 Inventors: Donald Edward Knapp, Savannah, 2,933,408 4/1960 Dempster et al..... ... 106/300 Ga.; Lindo Paul Nageroni, Bound 3,702,773 1 1/1972 Hall et al............................ 1061300 Brook, N.J. (73) Assignee: American Chemical Company, Primary Examiner-Delbert E. Gantz Stamford, Conn. Assistant Examiner-James W. Hellwege 22 Filed: Jan. 17, 1972 Attorney-Roland A. Dexter (21) Appl. No.: 218,453 Related U.S. Application Data 57 ABSTRACT 63 Continuation-in-part of Ser. No. 55,286, July 15, Pigment slurries of 70% by weight solids contents are 1970, abandoned. shown to have long term stability even when exposed to typical paper making chemicals such as calcium (52) U.S. Cl................................................. 106.1300 carbonate. The aqueous slurries are formulated with (51 Int. Cl............................................... C09c 1/62 pigment containing a small but effective admixed 58) Field of Search..................................... 106/300 amount of polyhydric alcohol and an alkanolamine, and with water which contains a small but effective 56) References Cited amount of a second alkanol-amine which provides a UNITED STATES PATENTS slurry pH of at least 9. 3,649,323 3/1972 Roe et al............................ 106/300 5 Claims, No Drawings 3,772,046 2 TIO, SLURRIES HAVING A HIGH SOLIDS bonate which is frequently encountered in the produc CONTENT tion of paper. It is an object of the invention to overcome the fore This is a continuation-in-part of our copending U.S. going and related disadvantages of water dispersed pig Pat. application Ser. No. 55,286, filed July 15, 1970, 5 ment slurries of high solids content. now abandoned. It is a further object of the invention to obtain a high The present invention relates to stable titanium diox solids content pigment slurry which is viscosity stabi ide slurries of high solids content (70% by weight of lized, i.e., has resistance to flocculation and settling in pigment and higher). It particularly relates to pigment water, particularly in the presence of calcium carbon slurries which have stable, low viscosities as the result 10 atte. of the presence of a normal non-volatile polyhydric al It has been discovered that slurries derived from dry cohol in combination with a plurality of alkanolamines. titanium dioxide pigment particles which have been ad Titanium dioxide is at present the premier white pig mixed with a small amount of viscosity stabilizer such ment of commerce. It is generally produced by either as sorbitol and triethanolamine are materially im hydrolyzing an aqueous solution of a titanium salt such 15 proved in their dispersibility and resistance to floccula as a sulfate and calcining the hydrolysate at 750-1000 tion in water, particularly aqueous systems having high C. or oxidizing a titanium halide, e.g., titanium tetra calcium carbonate content when a second alkanola chloride, at elevated temperatures of 800° C. and mine is present. higher, followed by cooling to a temperature below The amount of the viscosity stabilizing agent carried 600 C. The product resulting from the calcination or by pigment of the U.S. Pat. No. 3,649,323 is small. The oxidation contains a substantial amount of oversized, minimum effective amount has not yet been deter gritty TiO, particles which are broken up by either wet mined, but the evidence is that this minimum is about or dry grinding. Drying, following wet grinding, fre 0.2% of the dry weight of the pigment. At the other ex quently causes cementation of agglomerates requiring treme, pigment carrying more than about 3% by weight a further milling treatment before a smooth textured 25 of the agent possesses closely similar properties to pigment product can be obtained. In the dry milling op those possessed by pigment carrying somewhat less eration, suspending agents and dispersing aids are often agent, so that the value of 3% is taken as the upper introduced during the milling to facilitate the reduction practical limit. In practice we find that the optimum of the pigment to fine, uniform-sized particles. An opti amount of agent occurs within the range of about 0.2% mum means for dry grinding is a fluid energy mill in 30 to 1%, and this range is accordingly preferred. The which the pigment particles are conveyed by a gaseous scope of the invention is not restricted by the above in fluid, such as air or steam, into the outer portion of an gredients. The viscosity stabilizing agent is a normal, inwardly spiralling vortex at high velocity and in a man nonvolatile polyhydric alcohol, which incluses sorbitol ner which will maintain the vortex at a high rotative and mannitol, and it is combined with an alkanolamine. speed and a relatively low inward speed whereby the 35 Representative of the alkanolamines are: mixed iso pigment aggregates may be fractured. propanolamines; diisopropanolamine; diisopropyle Triethanolamine alone and with aerogel has been thanol-amine; 2-amino-2-methyl-1,3-propanediol; suggested as a dispersion aid during grinding to en 2-amino-2-methyl-1-propanol; 2-amino-2-ethyl-1,3- hance the fineness and gloss of titanium dioxide pig propanediol; 2-dimethylamino-2-methyl-1-propanol; ments. It has also been suggested that water dispersible 40 aminoethanolamine; diethylethanolamine; N titanium dioxide pigments can be produced from cal methylethanolamine; methyldiethanolamine; cined pigment material which has been wet milled and N-aminopropyl-morpholine; digylcolamine; and trieth preferably hydro-separated by utilizing certain amines anolamine. as organic dispersants, which amines includes mono Of these alkanolamines, triethanolamine is preferred ethanolamine, morpholine and triethanolamine. Unfor 45 because of its unique slurry stabilization property when tunately, aqueous slurries of high solids content (70% used in combination with sorbitol and 2-amino-2- by weight and higher) of such pigments tend to settle methyl-1-propanol. All of these alkanolamines are and form, upon standing, a hard sediment which is diffi characterized by the unique property of providing sta cult to redisperse. bility to high solids content pigment slurries when ad It is also known that generally water-dispersible TiO, SO mixed with a normal, nonvolatile polydydric alcohol pigments form a deflocculated slurry in hard water and such as sorbitol. They can all be considered water solu consequently settle within 2-3 hours into a very coher ble in the contect of this invention. ent sediment which is extremely difficult to reincorpo As noted above in the present invention a second al rate to a uniform slurry. kanolamine is present in the slurry, however, not all al The sedementation characteristics of such aqueous 55 kanolamines are suitable. The suitable second alkanol dispersions of titanium dioxide particles have been im amines, characterized by exhibiting a pH at or above 9 proved by the presence of normal water soluble poly in aqueous slurry systems, include: monoethanolamine; ols, including sorbitol and mannitol. Unfortunately, aminoethylethanolamine; N-methylethanolamine; di such polyols frequently degrade when exposed to high ethanolamine; dimethylethanolamine; diisopropyle temperatures and cause noticeable discoloration. 60 thanolamine; methyldiethanolamine; monoisopropa A copending U.S. Pat. application, Ser. No. 857,583, nolamine; diisopropanolamine; morpholine; N-amino filed Sept. 12, 1969 now U.S. Pat. No. 3,649,323, propylmorpholine; 2-amino-2-methyl-1-propanol; 2 teaches that high solids content pigment slurries can be amino-1-butanol; 2-amino-2-methyl-1,3-propane diol; stabilized to useful viscosities by the presence of nor and tris-(hydroxymethyl) aminomethane. mal, non-volatile polyhydric alcohol in combination 65 The amount of the second alkanolamine present in with an alkanolamine. Unfortunately such slurries are the slurry may vary within the wide limits but an unstable in the presence of dry or slurried calcium car amount of at least 0.05% to 5.0% (based on the amount 3,772,046 3. 4. CaCOs Compatibility of the titanium dioxide present) is preferred. Below %AMP** initial 16 hr. 0.5% no useful enhancement of stabilization is discern Sample % TiO, Added Consistency Viscosity*** ible. Amounts in excess of 5% do not appear to give 730 0.0 Thick > 0 2 74.O. 0.25 Fluid 1790 sufficiently improved results to warrant the use of the 3 73.5 0.50 Fluid 1000 additional alkanolamine is such concentrations. 4 73.0 0.75 Fluid 1080 The titanium dioxide pigment, both anatase and ru 5 740 1.00 Fluid 970 References *, **, and *** are the same as in Table . tile, benefited by the present invention includes those h. This test procedure specifies that equal volumes of slurries of about grades which contain small amounts of alkali metal, al 70% by weight each of TiO, and “Snowflake Whiting" CaCO, are kaline earth metal salts and other cations as condition thoroughly hand mixed and the viscosity of the resultant mixture is ing agents. In addition the salts of other metals such as 10 then measured as a function of time. antimony and zinc as brighteners and rutile converters EXAMPLE 3 may be present. The amount of these salts and agents is usually less than 5% of the weight of the pigment; The second alkanolamine as noted is characterized but, is not restricted to that level. by providing a pH of at least 9 in aqueous high-solids Dry pigment described in copending application Ser. 15 content pigment siurry systems and will retain such a No. 857,853 can be prepared according to a number of pH over long periods of time, 4 weeks or longer.
Recommended publications
  • 779 Part 770—Interpretations
    Pt. 770 15 CFR Ch. VII (1–1–21 Edition) in the item that qualitatively affect the per- roller bearings and parts). This applies formance of the U.S. and foreign items; to separate shipments of anti-friction (vi) Evidence of the interchangeability of bearings or bearing systems and anti- U.S. and foreign items; friction bearings or bearing systems (vii) Patent descriptions for the U.S. and foreign items; shipped with machinery or equipment (viii) Evidence that the U.S. and foreign for which they are intended to be used items meet a published industry, national, or as spares or replacement parts. international standard; (2) An anti-friction bearing or bear- (ix) A report or eyewitness account, by ing system physically incorporated in a deposition or otherwise, of the foreign item’s segment of a machine or in a complete operation; machine prior to shipment loses its (x) Evidence concerning the foreign manu- identity as a bearing. In this scenario, facturers’ corporate reputation; (xi) Comparison of the U.S. and foreign end the machine or segment of machinery item(s) made from a specific commodity, containing the bearing is the item sub- tool(s), device(s), or technical data; or ject to export control requirements. (xii) Evidence of the reputation of the for- (3) An anti-friction bearing or bear- eign item including, if possible, information ing system not incorporated in a seg- on maintenance, repair, performance, and ment of a machine prior to shipment, other pertinent factors. but shipped as a component of a com- plete unassembled (knocked-down) ma- SUPPLEMENT NO.
    [Show full text]
  • Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard
    Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Laurent Verdier, René Fournet, Pierre-Alexandre Glaude To cite this version: Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Laurent Verdier, René Fournet, Pierre-Alexandre Glaude. Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas. Journal of Physical Chemistry A, American Chemical Society, 2017, 121 (17), pp.3254-3262. 10.1021/acs.jpca.7b01238. hal-01708219 HAL Id: hal-01708219 https://hal.archives-ouvertes.fr/hal-01708219 Submitted on 13 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas Juan-Carlos Lizardo-Huerta†, Baptiste Sirjean†, Laurent Verdier‡, René Fournet†, Pierre-Alexandre Glaude†,* †Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville BP 20451 54001 Nancy Cedex, France ‡DGA Maîtrise NRBC, Site du Bouchet, 5 rue Lavoisier, BP n°3, 91710 Vert le Petit, France *corresponding author: [email protected] Abstract The destruction of stockpiles or unexploded ammunitions of nitrogen mustard (tris (2- chloroethyl) amine, HN-3) requires the development of safe processes.
    [Show full text]
  • Monoethanolamine Diethanolamine Triethanolamine DSA9781.Qxd 1/31/03 10:21 AM Page 2
    DSA9781.qxd 1/31/03 10:21 AM Page 1 ETHANOLAMINES Monoethanolamine Diethanolamine Triethanolamine DSA9781.qxd 1/31/03 10:21 AM Page 2 CONTENTS Introduction ...............................................................................................................................2 Ethanolamine Applications.........................................................................................................3 Gas Sweetening ..................................................................................................................3 Detergents, Specialty Cleaners, Personal Care Products.......................................................4 Textiles.................................................................................................................................4 Metalworking ......................................................................................................................5 Other Applications...............................................................................................................5 Ethanolamine Physical Properties ...............................................................................................6 Typical Physical Properties ....................................................................................................6 Vapor Pressure of Ethanolamines (Figure 1).........................................................................7 Heat of Vaporization of Ethanolamines (Figure 2)................................................................7 Specific
    [Show full text]
  • Study of Various Aqueous and Non-Aqueous Amine Blends for Hydrogen Sulfide Removal from Natural Gas
    processes Article Study of Various Aqueous and Non-Aqueous Amine Blends for Hydrogen Sulfide Removal from Natural Gas Usman Shoukat , Diego D. D. Pinto and Hanna K. Knuutila * Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; [email protected] (U.S.); [email protected] (D.D.D.P.) * Correspondence: [email protected] Received: 8 February 2019; Accepted: 8 March 2019; Published: 15 March 2019 Abstract: Various novel amine solutions both in aqueous and non-aqueous [monoethylene glycol (MEG)/triethylene glycol(TEG)] forms have been studied for hydrogen sulfide (H2S) absorption. The study was conducted in a custom build experimental setup at temperatures relevant to subsea operation conditions and atmospheric pressure. Liquid phase absorbed H2S, and amine concentrations were measured analytically to calculate H2S loading (mole of H2S/mole of amine). Maximum achieved H2S loadings as the function of pKa, gas partial pressure, temperature and amine concentration are presented. Effects of solvent type on absorbed H2S have also been discussed. Several new solvents showed higher H2S loading as compared to aqueous N-Methyldiethanolamine (MDEA) solution which is the current industrial benchmark compound for selective H2S removal in natural gas sweetening process. Keywords: H2S absorption; amine solutions; glycols; desulfurization; aqueous and non-aqueous solutions 1. Introduction Natural gas is considered one of the cleanest forms of fossil fuel. Its usage in industrial processes and human activities is increasing worldwide, providing 23.4% of total world energy requirement in 2017 [1]. Natural gas is half of the price of crude oil and produces 29% less carbon dioxide than oil per unit of energy output [2].
    [Show full text]
  • TR-449: Triethanolamine (CASRN 102-71-6) in F344 Rats and B6c3f1mice (Inhalation Studies)
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF TRIETHANOLAMINE (CAS NO. 102-71-6) IN F344/N RATS AND B6C3F1 MICE (DERMAL STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 November 1999 NTP TR 449 NIH Publication No. 00-3365 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Ethanolamines Storage Guide Dow Manufactures Ethanolamines for A
    DSA9782.qxd 1/29/03 2:34 PM Page 1 DSA9782.qxd 1/29/03 2:34 PM Page 2 DSA9782.qxd 1/29/03 2:34 PM Page 3 Contents PAGE Introduction 2 Product Characteristics 3 Occupational Health 3 Reactivity 3 Oxidation 4 Liquid Thermal Stability 4 Materials of Construction 5 Pure Ethanolamines 5 Aqueous Ethanolamines 6 Gaskets and Elastomers 7 Transfer Hose 8 Preparation for Service 9 Thermal Insulation Materials 10 Typical Storage System 11 Tank and Line Heating 11 Drum Thawing 11 Special Considerations 14 Vent Freezing 14 Color Buildup in Traced Pipelines 14 Thermal Relief for Traced Lines 14 Product Unloading 15 Unloading System 15 Shipping Vessel Descriptions 16 General Unloading Procedure 17 Product Handling 18 Personal Protective Equipment 18 Firefighting 18 Equipment Cleanup 18 Product Shipment 19 Environmental Considerations 19 Product Safety 20 1 DSA9782.qxd 1/29/03 2:34 PM Page 4 Ethanolamines Storage and Handling The Dow Chemical Company manufactures high-quality ethanolamines for a wide variety of end uses. Proper storage and handling will help maintain the high quality of these products as they are delivered to you. This will enhance your ability to use these products safely in your processes and maximize performance in your finished products. Ethanolamines have unique reactivity and solvent properties which make them useful as intermediates for a wide variety of applications. As a group, they are viscous, water-soluble liquids. In their pure, as-delivered state, these materials are chemically stable and are not corrosive to the proper containers. Ethanolamines can freeze at ambient temperatures.
    [Show full text]
  • Covalent Protein Adduction of Nitrogen Mustards and Related Compounds Vanessa R
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 2-28-2014 Covalent Protein Adduction of Nitrogen Mustards and Related Compounds Vanessa R. Thompson Florida International University, [email protected] DOI: 10.25148/etd.FI14040835 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Amino Acids, Peptides, and Proteins Commons, and the Analytical Chemistry Commons Recommended Citation Thompson, Vanessa R., "Covalent Protein Adduction of Nitrogen Mustards and Related Compounds" (2014). FIU Electronic Theses and Dissertations. 1152. https://digitalcommons.fiu.edu/etd/1152 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida COVALENT PROTEIN ADDUCTION OF NITROGEN MUSTARDS AND RELATED COMPOUNDS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY by Vanessa Thompson 2014 To: Dean Kenneth G. Furton College of Arts and Sciences This dissertation, written by Vanessa Thompson, and entitled Covalent Protein Adduction of Nitrogen Mustards and Related Compounds, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Fenfei Leng _______________________________________ Watson Lees _______________________________________ Dietrich Lorke _______________________________________ Bruce McCord _______________________________________ Anthony DeCaprio, Major Professor Date of Defense: February 27, 2014 The dissertation of Vanessa Thompson is approved.
    [Show full text]
  • Degradation of Amine-Based Solvents in CO2 Capture Process by Chemical Absorption
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Heriot Watt Pure Degradation of amine-based solvents in CO2 capture process by chemical absorption F. Vega1, 2, A. Sanna2, B. Navarrete1, M.M. Maroto-Valer2, V. Cortés1 1Chemical and Environmental Engineering Department, School of Engineering, University of Seville, C/ Camino de los Descubrimientos s/n 41092 Sevilla, Spain, Phone: 954481397, [email protected] 2Centre for Innovation in Carbon Capture and Storage (CICCS), School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK ABSTRACT Carbon dioxide capture and storage (CCS) technologies have been proposed as promising alternative to reduce CO2 emissions from fossil-fuel power plants with post- combustion capture. Absorption by aqueous amine-solutions is considered the most mature and industrially developed technology for post-combustion capture. One of the most significant issues hindering a large deployment of this technology is potential amine degradation. Amines degrade in presence of O2, CO2, NOx, SO2 and heat resulting in solvent loss, equipment corrosion and generation of volatile degradation compounds. Two types of degradation have been identified in the literature, namely oxidative and thermal degradation. A review of the amine-based solvents, its main degradation products, the apparatus and analytical methods most widely used, as well as the mechanism proposed and kinetic studies are presented and discussed here. Moreover, amines emissions from CO2 capture units can react in the atmosphere via photo-oxidation and also via NOX reactions to give nitrosamines and nitramines, which are potentially harmful to the human health and the environment. A discussion of the recent works on atmospheric degradation of amine solvents is also included in this review.
    [Show full text]
  • Final Amended Report on the Safety Assessment of Ethanolamine And
    Final Amended Report On the Safety Assessment of Ethanolamine and Ethanolamine Salts as Used in Cosmetics March 27, 2012 The 2012 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is F. Alan Andersen, Ph.D. This report was prepared by Monice M. Fiume, Senior Scientific Analyst/Writer, and Bart Heldreth, Ph.D., Chemist, CIR. Cosmetic Ingredient Review 1101 17th Street, NW, Suite 412 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] ABSTRACT: The CIR Expert Panel assessed the safety of ethanolamine and 12 salts of ethanolamine as used in cosmetics, finding that these ingredients are safe in the present practices of use and concentrations (rinse-off products only) when formulated to be non-irritating. These ingredients should not be used in cosmetic products in which N- nitroso compounds may be formed. Ethanolamine functions as a pH adjuster. The majority of the salts are reported to function as surfactants; the others are reported to function as pH adjusters, hair fixatives, or preservatives. The Panel reviewed available animal and clinical data, as well as information from previous relevant CIR reports. Since data were not available for each individual ingredient, and since the salts dissociate freely in water, the Panel extrapolated from those previous reports to support safety.
    [Show full text]
  • Triethanolamine
    TECHNICAL BULLETIN 19 Motivation Dve Wangara, WA, 6065 AUSTRALIA T +61 8 9302 4000 | FREE 1800 999 196 | F +61 8 9302 5000 TRIETHANOLAMINE TEA MATERIAL & FUNCTION Triethanolamine, often abbreviated as TEA, is an organic chemical compound which is both a tertiary amine and a triol. Other names are: 2,2’,2”-Nitrilotriethanol; Tris(2-hydroxyethyl)amine, 2,2',2"-Trihydroxy- triethylamine, triethylolamine; 2,2,2-Trihydroxytriethylamine; Trihydroxyethylamine; Tris(beta- hydroxyethyl)amine. The IUPAC name is 2,2',2"-Nitrilotriethanol. CAS number 102-71-6 EC number 203-049-8 PROPERTIES Appearance: Transparent colourless to pale amber liquid with mild ammoniacal odour. Formula: N(CH2CH2OH)3 Molecular Weight: 149.19 Boiling Point: 335.4ºC Melting Point: 12 - 21.6ºC Vapour Pressure: < 1kPa Specific Gravity: 1.126 (water = 1) Flash Point: Closed Cup 190-208 pH: 10.5 Solubility in water: Infinitely soluble Flammability Limits (as percentage volume in air): not applicable Percent volatiles = 0.06 Vapour density (air = 1) = 5.1 Evaporation rate (Butyl acetate = 1): < 0.01 Autoignition Temperature: 375ºC. Flash Point: 216ºC Viscosity: 450 cP APPLICATIONS Uses: Fatty acid soaps used in dry cleaning, cosmetics, household detergents and emulsions. Wool scouring, textile antifume agent and water-repellent, dispersion agent, corrosion inhibitor, softening agent, emulsifier, humectant and plasticiser, chelating agent, rubber accelerator, pharmaceutical alkalising agent. SYNTHESIS Triethanolamine is produced from the reaction of ethylene oxide with aqueous ammonia, also produced are ethanolamine and diethanolamine. Typically, technical grade Triethanolamine contains Triethanolamine >60%, Diethanolamine 30-60%, and Ethanolamine <10% DIRECTION FOR USE Triethanolamine is used primarily as an emulsifier and surfactant.
    [Show full text]
  • Interagency Committee on Chemical Management
    DECEMBER 14, 2018 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 13-17 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction .......................................................................................................................... 3 II. Recommended Statutory Amendments or Regulatory Changes to Existing Recordkeeping and Reporting Requirements that are Required to Facilitate Assessment of Risks to Human Health and the Environment Posed by Chemical Use in the State ............................................................................................................................ 5 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories....... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories ........................................................................................................... 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ....................................................................................................... 12 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern ..............................................................................................................................
    [Show full text]
  • Equilibrium Constants of Triethanolamine in Major Seawater Salts
    Equilibrium constants of triethanolamine in major seawater salts I. Brandariz, , P. Castro, M. Montes, F. Penedo, M.E. Sastre de Vicente Departamento de Química Física e Ingeniería Química I, Facultad de Ciencias, Campus da Zapateira, c. Alejandro de la Sota 1, E-15008 A Coruña, Spain Marine Chemistry Volume 102, Issues 3–4, 5 December 2006, Pages 291–299 Received 26 April 2006, Accepted 30 May 2006, Available online 12 July 2006 doi:10.1016/j.marchem.2006.05.005 Abstract Acid–base equilibrium constants of triethanolamine (TEA) have been determined by potentiometric titrations with a glass electrode, at 25 °C. Ionic strength was kept constant with only one electrolyte (using one of these salts: NaCl, KCl, MgCl2 or CaCl2), with binary mixtures of MgCl2 and CaCl2, and finally, in a solution with a composition approximately similar to that of natural seawater without sulfate. Equilibrium constants have been expressed in function of ionic strength by means of Pitzer equations and interaction parameters proposed in this theory have been obtained. It has been found that acid–base behaviour of TEA depends greatly on the salt used: basicity of TEA is decreased by CaCl2, while it is increased by the other electrolytes used in this work. Keywords Pitzer model; Triethanolamine; Potentiometry; Ionic strength; Seawater; Acid–base equilibrium; Stoichiometric constants 1. Introduction In many cases, the method used by industries to prevent the release of large amounts of CO2 into the atmosphere, involves CO2 removal by chemical absorption/desorption processes with alkanolamine solutions. Triethanolamine (TEA) is one of the most commonly used alkanolamines in these industrial treatments (Horng and Li, 2002).
    [Show full text]