Nexus Q-Report
Total Page:16
File Type:pdf, Size:1020Kb
Universität Stuttgart Sonderforschungsbereich 627 Umgebungsmodelle für mobile kontextbezogene Systeme SFB 627 Bericht Nr. 2010/02 Reference Model for the Quality of Context Information Datum: 11. Februar 2010 Autor(en): Susanne Becker, Andrè Blessing, Frank Dürr, Lars Geiger, Matthias Großmann, Andreas Gutscher, Kai Häussermann, Jessica Heesen, Uwe-Philipp Käppeler, Ralph Lange, Michael Peter, Oliver Siemoneit, Harald Weinschrott, Oliver Zweigle, Paul Levi, Kurt Rothermel CR Klassifikation: G.1.2, G.3, H.3.1, H.3.3, I.2.6 (c) 2010 Susanne Becker, Andrè Blessing, Frank Dürr, Lars Geiger, Center of Excellence 627 Matthias Großmann, Andreas Gutscher, Spatial World Models for Kai Häussermann, Jessica Heesen, Mobile Cont ext-Aware Applications Uwe-Philipp Käppeler, Ralph Lange, Michael Peter, Oliver Siemoneit, Harald Weinschrott, Oliver Zweigle, Paul Levi, Kurt Rothermel Sprecher des SFB: Prof. Dr. Kurt Rothermel Institut für Parallele und Verteilte Systeme Universitätsstraße 38 70569 Stuttgart Deutschland NEXUS www.nexus.uni-stuttgart.de 3 Abstract Context-aware applications require context information for their oper- ation. However, context information is inherently associated with un- certainties, which need to be taken into account when processing such information. This Quality of Context Information (QoC) comprises nu- merous aspects, such as the uncertainty of sensed data, transmission and update protocols, consistency between data from several providers, or the trust placed into the information from individual providers. Because of the technical and economical challenges, it is our vision that a federation integrates many context models from different providers into a global context model. This model is then shared by a number of applications. Such a federated context management poses additional challenges with regard to QoC. Therefore, a universal QoC model is needed, which covers and integrates the different aspects of QoC on all abstraction levels. To enable a federated context management system such as Nexus to incorporate QoC, we present a QoC reference model in this document. Specifically, it consists of five main parts: 1. Abstract framework for quality aspects: This framework distin- guishes three abstraction levels of context information – sensor information, observable context, and high-level context –, as well as three fundamental quality aspects – degradation, consistency, and trust. 2. Degradation model: Sensed data is typically inaccurate due to physical limitations of sensors or the employed update protocols. 3. Consistency model: Context information – even with degradation information – may be inconsistent to the physical world or between different providers. 4. Trust model: With arbitrary context providers, a comprehensive approach for assessing the reliability and trustworthiness of each provider is necessary. 5. Integrated QoC-aware processing model: We propose a universal QoC-aware processing model for queries on context information. It incorporates the specific models for degradation, consistency, and trust and their dependencies. 4 Contents 1 Introduction 11 2 Overview to Reference Model 15 2.1 Requirements and Challenges...................... 15 2.2 Abstraction Layers of Context Information.............. 16 2.3 Quality Aspects of Context Information................ 17 2.4 Abstract Framework for Quality of Context.............. 18 3 Degradation Model 21 3.1 Universal Model for the Quality of Sensor Data............ 22 3.1.1 Modeling Quality of Sensor Data................ 22 3.1.2 Reliable updates for information in environmental models us- ing sensors............................ 25 3.2 Generic Uncertainty Model for Position Information......... 30 3.2.1 Introduction........................... 30 3.2.2 Survey of Uncertainty Models.................. 32 3.2.3 Mathematical Generalization for Time-dependent Point Data 33 3.2.4 Uncertainty-aware Query Interface for Position Information. 35 3.2.5 Related Work........................... 39 3.2.6 Summary............................. 40 3.3 Uncertainty Model for 3D Geodata................... 40 3.4 Uncertainty-Aware Situation Detection with Bayesian Networks... 43 3.4.1 Introduction........................... 43 3.4.2 Situation Template Model.................... 43 3.4.3 Parameter-Adaption....................... 47 3.4.4 Summary............................. 51 3.5 Degradation of high-level context derived from sensor data...... 52 4 Consistency Model 57 4.1 Inconsistency on the Context Information Layer............ 57 4.1.1 Discrete Domain......................... 58 4.1.2 Continuous Domain with Pdf.................. 58 4.1.3 Continuous Domain without Pdf................ 59 4.1.4 3D-Domain............................ 60 4.2 Situation Recognition.......................... 62 5 Trust Model 65 5.1 Introduction................................ 65 5 Contents 5.2 Related Work and Fundamentals.................... 66 5.2.1 Trust, Trustworthiness and Reputation............. 66 5.2.2 Modeling Trust.......................... 69 5.2.3 Classification of Reputation Systems.............. 71 5.2.4 Reasoning with Trust Relations................. 72 5.2.5 Computation of Reputation Values............... 73 5.3 Model of Trust and Authenticity Statements.............. 78 5.4 Trust Values............................... 79 5.4.1 Representation of Discrete and Continuous Trust Values... 80 5.4.2 Deterministic Operators..................... 81 5.5 Inference Rules.............................. 85 5.5.1 Transitive Trust Inference Rule................. 85 5.5.2 Trust in Entities, Keys and Descriptions............ 85 5.5.3 Local Authenticity Inference Rule............... 87 5.5.4 Authenticity Inference with Authenticity Confirmation.... 87 5.5.5 Uniqueness Conditions...................... 87 5.6 Trust Value Computation........................ 87 5.6.1 Probabilistic Model for the Trust Value Computation.... 88 5.6.2 Approximation and Exact Computation Algorithms..... 89 5.7 Evaluation of the Proposed Trust Model................ 95 5.7.1 Computation Time of the Proposed Computation Algorithms 95 5.7.2 Comparison with Other Trust Models............. 98 5.7.3 Trade-offs and Limitations.................... 99 5.8 Reliability of Context Information................... 99 5.9 Summary................................. 101 6 Reference Model 103 6.1 Interdependencies between Uncertainty, Consistency, and Trust... 103 6.2 Integrated Quality-Aware Processing Model.............. 104 6.2.1 The Nexus System........................ 105 6.2.2 Three Aspects of Quality of Data................ 106 6.2.3 Query Processing......................... 107 6.2.4 Processing Model......................... 109 6.2.5 Revisiting the Example Scenario................ 112 7 Conclusions 115 Bibliography 117 6 List of Figures 2.1 3 × 3 framework for quality of context.................. 19 3.1 Singular behavior: Absolute deviations in a simulation of 1000 nego- tiations.................................. 28 3.2 1000 consecutive simulated negotiations with 5 agents. The deviation of one sensor is artificially set to 0 in negotiation 400......... 29 3.3 1000 consecutive simulated negotiations with 5 agents. Artificially noise is added to the measurements of one sensor from negotiation 400 onward................................. 30 3.4 Taxonomy of major classes of the existing uncertainty models..... 34 3.5 Mathematical generality of the major uncertainty models....... 34 3.6 Distance query evaluation......................... 36 3.7 2D normal distribution.......................... 37 3.8 Range query evaluation.......................... 37 3.9 Uncertainty region of a plane (from [Haa96]).............. 41 3.10 Exemplary Nexus applications using uncertainty information of a 3D building model. Left: Inside query based on a global uncertainty value of the building. Middle: Range query based on local uncertainty measures. Right: Navigation task based on local error descriptions.. 42 3.11 Situation Template: SAT-Structure................... 47 3.12 Screenshot of Template Designer..................... 48 4.1 Temperature specified by probability density functions........ 59 4.2 Uncertain areas and corresponding probabilities............ 59 4.3 Clockwise: Inconsistencies of OpenStreetMap model, generalized model and city model from airborne data collection in comparison to the city model from terrestrial data collection (upper left).... 62 4.4 Structure of a meta-template...................... 63 5.1 Exemplification of trust types and categories (trust context “landing a plane”)................................. 68 5.2 Reputation System............................ 68 5.3 Different possibilities to represent trust values............. 70 5.4 Classification of reputation systems................... 71 5.5 Operator-based reputation computation................ 74 5.6 Deterministic conjunction, disjunction and negation operators (Bald- win, Jøsang)................................ 74 5.7 Recommendation operator (Jøsang).................. 75 7 List of Figures 5.8 Jøsang’s (top), Dempster-Shafer’s (middle) and Yager’s (bottom) con- sensus operators............................. 75 5.9 Probability theoretical reputation computation............ 77 5.10 Our deterministic conjunction, disjunction and negation operators. 82 5.11 Consensus, recommendation and authentication operator truth tables 83 5.12 Example for application of the transitive trust inference rule..... 86 5.13 Scenario and possible worlds table of the Trust Example 1...... 90 5.14 Scenario of the Trust