The Addition of Hydrogen Bromide to 3-Methylcyclohexene
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
Determination of Parent and Alkylated Polycyclic Aromatic Hydrocarbons (Pahs) in Biota and Sediment
ICES TECHNIQUES IN MARINE ENVIRONMENTAL SCIENCES NO. 45 NOVEMBER 2009 Determination of parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in biota and sediment L. WEBSTER • J. TRONCZYNSKI P. KORYTAR • K. BOOIJ • R. LAW International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44 – 46 DK‐1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Our cover photo was taken by N. Penny Holliday aboard the RRS “Discovery” in rough seas in the Rockall Trough. Recommended format for purposes of citation: Webster, L., Tronczynski, J., Korytar, P., Booij, K., and Law, R. 2010. Determination of parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in biota and sediment. ICES Techniques in Marine Environmental Sciences. No. 45. 26 pp. Series Editor: Paul D. Keizer For permission to reproduce material from this publication, please apply directly to the General Secretary. Correspondence concerning the details of any method or procedure should be directed to the author(s). This series presents detailed descriptions of methods and procedures relating to chemical and biological measurements in the marine environment. Most techniques described have been selected for documentation based on performance in ICES or other intercalibration or intercomparison exercises: they have been carefully evaluated and shown to yield good results when correctly applied. They have also been subject to review by relevant ICES working groups, but this is not to be construed as constituting official recommendation by the Council. ISBN 978-87-7482-074-1 978-87-7482-297-4 https://doi.org/10.17895/ices.pub.5070 ISSN 0903 – 2606 2707-6997 © 2010 International Council for the Exploration of the Sea ICES Techniques in Marine Environmental Sciences No. -
Supporting Information of Polycyclic Aromatic Hydrocarbons (Pahs) In
Supporting Information of Polycyclic aromatic hydrocarbons (PAHs) in aerosols over the central Himalayas along two south-north transects Peng Fei Chen1,5, Chao Liu Li1, Shi Chang Kang2,3*, Maheswar Rupakheti4, Arnico K Panday6, Fang Ping Yan2,5, Quan Lian Li2, Qiang Gong Zhang1,3, Jun Ming Guo1,5, Dipesh Rupakheti1,5, Wei Luo7 1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China 2State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou 730000, China 3Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China; 4Institute for Advanced Sustainability Studies, Potsdam 14467, Germany 5University of Chinese Academy of Sciences, Beijing 100039, China 6International Centre for Integrated Mountain Development, Kathmandu, Nepal 7State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Correspondence to: S. Kang ([email protected]) Text SI-1 Sample extraction and analysis Text SI-2 Quality control Table SI-1 Percentage contribution (%) of each species to total PAHs in the atmosphere over the Himalayas. Text SI-1 Sample extraction and analysis A quarter of each filter was cut into pieces, placed into a glass tube, and immersed in 20 mL of dichloromethane (DCM) and n-hexane (1:1). The extraction was performed by sonication twice for 30 min at 27 °C. Every single sample was spiked with deuterated PAHs (naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12) as recovery surrogates. -
Effect of Epoxide Content on the Vulcanizate Structure of Silica-Filled Epoxidized Natural Rubber (ENR) Compounds
polymers Article Effect of Epoxide Content on the Vulcanizate Structure of Silica-Filled Epoxidized Natural Rubber (ENR) Compounds Gyeongchan Ryu 1, Donghyuk Kim 1, Sanghoon Song 1, Kiwon Hwang 1, Byungkyu Ahn 2 and Wonho Kim 1,* 1 School of Chemical Engineering, Pusan National University, Busan 46241, Korea; [email protected] (G.R.); [email protected] (D.K.); [email protected] (S.S.); [email protected] (K.H.) 2 Hankook Tire & Technology Co., Ltd., R&D Center, 50 Yuseong-daero 935 beon-gil, Yuseong-gu, Daejeon 34127, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-51-510-3190 Abstract: The demand for truck–bus radial (TBR) tires with enhanced fuel efficiency has grown in recent years. Many studies have investigated silica-filled natural rubber (NR) compounds to address these needs. However, silica-filled compounds offer inferior abrasion resistance compared to carbon black-filled compounds. Further, the use of NR as a base rubber can hinder silanization and coupling reactions due to interference by proteins and lipids. Improved silica dispersion be achieved without the use of a silane coupling agent by introducing epoxide groups to NR, which serve as silica-affinitive functional groups. Furthermore, the coupling reaction can be promoted by facilitating chemical interaction between the hydroxyl group of silica and the added epoxide groups. Thus, this study evaluated the properties of commercialized NR, ENR-25, and ENR-50 compounds with or without an added silane coupling agent, and the filler–rubber interaction was quantitatively calculated using vulcanizate structure analysis. The increased epoxide content, when the silane coupling agent was not used, improved silica dispersion, abrasion resistance, fuel efficiency, and wet Citation: Ryu, G.; Kim, D.; Song, S.; grip. -
Organic Chemistry Name Formula Isomers Methane CH 1 Ethane C H
Organic Chemistry Organic chemistry is the chemistry of carbon. The simplest carbon molecules are compounds of just carbon and hydrogen, hydrocarbons. We name the compounds based on the length of the longest carbon chain. We then add prefixes and suffixes to describe the types of bonds and any add-ons the molecule has. When the molecule has just single bonds we use the -ane suffix. Name Formula Isomers Methane CH4 1 Ethane C2H6 1 Propane C3H8 1 Butane C4H10 2 Pentane C5H12 3 Hexane C6H14 5 Heptane C7H16 9 Octane C8H18 18 Nonane C9H20 35 Decane C10H22 75 Isomers are compounds that have the same formula but different bonding. isobutane n-butane 1 Naming Alkanes Hydrocarbons are always named based on the longest carbon chain. When an alkane is a substituent group they are named using the -yl ending instead of the -ane ending. So, -CH3 would be a methyl group. The substituent groups are named by numbering the carbons on the longest chain so that the first branching gets the lowest number possible. The substituents are listed alphabetically with out regard to the number prefixes that might be used. 3-methylhexane 1 2 3 4 5 6 6 5 4 3 2 1 Alkenes and Alkynes When a hydrocarbon has a double bond we replace the -ane ending with -ene. When the hydrocarbon has more than three carbon the position of the double bond must be specified with a number. 1-butene 2-butene Hydrocarbons with triple bonds are named basically the same, we replace the -ane ending with -yne. -
Stoichiometric and Catalytic Reactions Involving Si-H Bond Activations by Rh and Ir Complexes Containing a Pyridylindolide Ligand Dmitry Karshtedt,†,‡ Alexis T
Organometallics 2006, 25, 4471-4482 4471 Stoichiometric and Catalytic Reactions Involving Si-H Bond Activations by Rh and Ir Complexes Containing a Pyridylindolide Ligand Dmitry Karshtedt,†,‡ Alexis T. Bell,*,§,‡ and T. Don Tilley*,†,‡ Departments of Chemistry and Chemical Engineering, UniVersity of California, Berkeley, Berkeley, California 94720, and Chemical Sciences DiVision, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 ReceiVed June 5, 2006 New rhodium and iridium complexes containing the bidentate, monoanionic 2-(2′-pyridyl)indolide (PyInd) ligand were prepared. The bis(ethylene) complex (PyInd)Rh(C2H4)2 (3) reacted with triethylsilane at 60 °C to produce the 16-electron Rh(V) bis(silyl)dihydride complex (PyInd)RhH2(SiEt3)2 (4). Both 3 and 4 catalyzed the chloride transfer reaction of chlorobenzene and Et3SiH to give Et3SiCl and benzene i in the absence of base. In the presence of LiN Pr2, catalytic C-Si coupling was observed, to produce Et3SiPh. Analogous Ir complexes of the type (PyInd)IrH2(SiR3)2, where R3 ) Et3 (6a), Me2Ph (6b), Ph2Me (6c), or Ph3 (6d), were not catalytically active in this chloride transfer chemistry. The molecular structure of 6c, determined by X-ray crystallography, may be described as having a highly unusual bicapped tetrahedral geometry. DFT calculations indicate that this distortion is associated with the d4 electron count and the presence of highly trans-influencing silyl ligands. The reaction of 6a with PMe3 (5 equiv) produced (PyInd)IrH(SiEt3)(PMe3)2 (7), while the reaction with PPh3 (1 equiv) generated a mixture of isomers that was converted to (PyInd)IrH(SiEt3)(PPh3)(8) upon heating in benzene at 80 °C. -
Addition of Hydrogen Bromide to Unsymmetrical Olefins
AN ABSTRACT OF TH TESIS OF Charles runior Rogers for the Ph.D. in Chemistry (Name) (Degree) (Lajor1 Date thesis is presented August 22, 1952 - Title ADDITION OF HYDROGEN BROMIDE Abstract approved Redacted for privacy (Ljr Pro'essor) (j In this investigation the addition o1 hydrogen bromide to 3-methylcyclohexene has been studied in order to see if the theory of hyperconjugation could be extended to include olefins of' this type. Since the olefin has an equal number of hydrogens on both carbons carrying the double bond, a mixture o± bromides was expected in the addition product. The bromides expected were cis-2- or trans-2-bromomethyl- cyclobexane or a mixture of the isomers and ois-3- or trans-3-broraomethylcyclohexane or a mixture or those isomers. An infrared method ol' analyzing the addition product was used. To use this method it was necessary to make up 1own mixtures of the compounds expected in the addition product. In order to prepare some of the isomeric bromides, trams-2- and trans-3-rnethylcyclohexanol were prepared. Then, because no good. methods could be found in the literature for the conversion of isomeric alcohols to isonieric bromides, the alcohols were not used. Instead, the Imown mixtures for the infrared work were prepared from 2-bromo- and 3-bromo- methylcyclohexanes, both containing unknown amounts of the cis-trans isomers. The 3-methylcyclohexene used in the hydrogen bromide addition was prepared from. 3-bromom.ethylcyclohexene and methylnìagnesium iodide. The addition of hydrogen bromide was conducted at 0°C and at room temperature using glacial acetic acid as a solvent. -
Stability Studies of Selected Polycyclic Aromatic Hydrocarbons in Different Organic Solvents and Identification of Their Transformation Products
Polish J. of Environ. Stud. Vol. 17, No. 1 (2008), 17-24 Original Research Stability Studies of Selected Polycyclic Aromatic Hydrocarbons in Different Organic Solvents and Identification of Their Transformation Products D. Dąbrowska1, A. Kot-Wasik2, J. Namieśnik*2 1Polish geological institute, Central Chemical laboratory, warsaw, Poland 2Department of Analytical Chemistry, gdansk university of technology, ul. Narutowicza 11/12, 80-892 gdańsk, Poland Received: May 7, 2007 Accepted: October 1, 2007 Abstract one of the problems in an hPlC laboratory is the preservation of samples and extracts prior to analysis without any changes. It has been found that degradation processes cannot be eliminated entirely, but they can be slowed down considerably. Photodegradation kinetics of fluorene, anthracene and benzo(a)pyrene were studied in various organic solvents. Solvents known as good media to store PAhs for a long time were selected with respect to avoid degradation. in the case of fluorene, 9-fluorenone and 9-hydroxyfluorene were detected as main photoproducts. Formation of anthraquinone and 1,8-dihydroxyanthraquinone during the degradation of anthracene was observed. Benzo(a)pyrene-4,5-dihydrodiol and one of the isomers of hydroxy-BaP-dione as products of benzo(a)pyrene photodegradation have been identified. Keywords: polycyclic aromatic hydrocarbons, photodegradation, degradation products, sample stability Introduction 4 or more rings and their metabolites, have a variety of mutagenic and carcinogenic effects on microorganisms, Polycyclic aromatic hydrocarbons (PAhs) are ubiq- plants and animals, and are classified as compounds with uitous contaminants originating from natural and anthro- significant human health risks [6]. pogenic pyrolysis of organic matter such as forest fires, In the environment, primary removal processes of low automobile exhaust, coal and oil refining processes.t heir molecular weight PAhs are microbial degradation and abundance and persistence in several polluted environ- evaporation. -
INVESTIGATION of POLYCYCLIC AROMATIC HYDROCARBONS (Pahs) on DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS
INVESTIGATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) ON DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ping Sun, M.S. ***** The Ohio State University 2004 Dissertation Committee: Approved by Professor Linda Weavers, Adviser Professor Harold Walker Professor Patrick Hatcher Adviser Professor Yu-Ping Chin Civil Engineering Graduate Program ABSTRACT The primary goal of this research was to examine polycyclic aromatic hydrocarbons (PAHs) on dry FGD by-products to determine environmentally safe reuse options of this material. Due to the lack of information on the analytical procedures for measuring PAHs on FGD by-products, our initial work focused on analytical method development. Comparison of the traditional Soxhlet extraction, automatic Soxhlet extraction, and ultrasonic extraction was conducted to optimize the extraction of PAHs from lime spray dryer (LSD) ash (a common dry FGD by-product). Due to the short extraction time, ultrasonic extraction was further optimized by testing different organic solvents. Ultrasonic extraction with toluene as the solvent turned out to be a fast and efficient method to extract PAHs from LSD ash. The possible reactions of PAHs under standard ultrasonic extraction conditions were then studied to address concern over the possible degradation of PAHs by ultrasound. By sonicating model PAHs including naphthalene, phenanthrene and pyrene in organic solutions, extraction parameters including solvent type, solute concentration, and sonication time on reactions of PAHs were examined. A hexane: acetone (1:1 V/V) ii mixture resulted in less PAH degradation than a dichloromethane (DCM): acetone (1:1 V/V) mixture. -
Organic Nomenclature: Naming Organic Molecules
Organic Nomenclature: Naming Organic Molecules Mild Vegetable Alkali Aerated Alkali What’s in a name? Tartarin Glauber's Alkahest Alkahest of Van Helmot Fixed Vegetable Alkali Russian Pot Ash Cendres Gravellees Alkali Mild Vegetable Oil of Tartar Pearl Ash Tartar Alkahest of Reapour K2CO3 Alkali of Reguline Caustic Sal Juniperi Potassium Carbonate Ash ood Alkali of Wine Lees Salt of Tachenius W Fixed Sal Tartari Sal Gentianae Alkali Salt German Ash Salt of Wormwood Cineres Clavellati Sal Guaiaci exSal Ligno Alkanus Vegetablis IUPAC Rules for naming organic molecules International Union of Pure and Applied Chemists 3 Name Molecular Prefix Formula Methane CH4 Meth Ethane C2H6 Eth Alkanes Propane C3H8 Prop Butane C4H10 But CnH2n+2 Pentane C5H12 Pent Hexane C6H14 Hex Heptane C7H16 Hept Octane C8H18 Oct Nonane C9H20 Non Decane C10H22 Dec 4 Structure of linear alkanes propane butane pentane hexane heptane octane nonane decane 5 Constitutional Isomers: molecules with same molecular formula but differ in the way in which the atoms are connected to each other 6 Physical properties of constiutional isomers 7 Isomers n # of isomers 1 1 2 1 The more carbons in a 3 1 molecule, the more 4 2 possible ways to put 5 3 them together. 6 5 7 9 8 18 9 35 10 75 15 4,347 25 36,797,588 8 Naming more complex molecules hexane C6H14 9 Naming more complex molecules Step 1: identify the longest continuous linear chain: this will be the root name: this is the root name 2 4 6 longest chain = 6 (hexane) 1 3 5 2 4 3 4 3 2 2 1 5 4 1 3 5 correct 1 incorrect longest chain = 5 (pentane) longest chain = 5 (pentane) 1 3 1 2 2 3 4 4 longest chain = 4 (butane) longest chain = 4 (butane) 10 Naming more complex molecules Step 2: identify all functional group (the groups not part of the “main chain”) CH3 2 4 4 3 2 1 5 1 3 5 CH3 main chain: pentane main chain: pentane CH3 1 3 1 2 2 3 4 4 CH3 CH3 CH3 main chain: butane main chain: butane 11 Alkyl groups: fragments of alkanes H H empty space (point where it H C H H C attaches to something else) H H methane methyl CH4 CH3 12 More generally.. -
Methane Or Pentane Calibration
July 10, 2003 Applications Note: Use of "pentane equivalent" calibration gas mixtures Introduction The gas that is used to verify accuracy is every bit as important as the detector itself when it comes to worker safety. Choosing (and using) the right mixture is critical to the success of your atmospheric monitoring program. BW understands the importance of calibration, and we are always on the lookout for ways to improve the process. To that end, BW is pleased to announce the introduction of a new series of "pentane equivalent" calibration gas mixtures. These mixtures are designed to provide an even more dependable (and easy) means for the verification of accuracy of instruments that include a sensor for the detection of combustible gas. What are "pentane equivalent" mixtures and why are they better? Using BW’s new "equivalent" mixtures is exactly like using our older mixtures. In the case of the GasAlertMicro and GasAlertMax, all you have to do is press the "cal" button, attach the adaptor, and flow gas to the sensors. All the adjustments are made automatically. The difference comes from what's in the cylinder of gas. In the past, BW has usually recommended using mixtures that include 50% LEL methane as the combustible gas used for general purpose calibration. BW's new equivalent mixtures are still based on methane, but in concentrations that are designed to produce a level of sensitivity "equivalent" to that provided by a mixture that contains a 50% LEL concentration of pentane. The reasoning behind the development of these new formulations has to do with how combustible sensors detect gas, and what happens to sensitivity in the event that a combustible sensor ever becomes "poisoned". -
Chemistry and Hazards of Hazardous Materials and Weapons of Mass Destruction Chapter Contents
Chemistry and Hazards of Hazardous Materials and Weapons of Mass Destruction Chapter Contents Case History ................................145 Polymerization ...........................................................173 atoms ...........................................146 Decomposition ..........................................................174 Periodic table of elements ..................146 Synergistic Reactions ................................................174 Four significant Families ....................147 The Fundamentals of a Reaction ...............................175 Group I – The Alkali Metals .......................................153 Common Families of Hazardous Materials .....................................176 Group II – The Alkaline Earths ...................................154 Inorganic Compounds ...............................................176 Group VII – The Halogens .........................................155 Organic Compounds ..................................................176 Group VIII – The Noble Gases ...................................156 Oxidizers ....................................................................180 Matter ..........................................156 Reactive Materials .....................................................181 Elements ....................................................................158 Corrosives .................................................................185 Compounds ...............................................................160 special Hazards of Chemicals