Scaling the Power Wall: a Path to Exascale

Total Page:16

File Type:pdf, Size:1020Kb

Scaling the Power Wall: a Path to Exascale Scaling the Power Wall: A Path to Exascale Oreste Villa, Daniel R. Johnson, Mike O’Connor, Evgeny Bolotin, David Nellans, Justin Luitjens, Nikolai Sakharnykh, Peng Wang, Paulius Micikevicius, Anthony Scudiero, Stephen W. Keckler and William J. Dally Email: fovilla, djohnson, moconnor, ebolotin, dnellans, jluitjens, nsakharnykh, penwang, pauliusm, ascudiero, skeckler, [email protected] Abstract—Modern scientific discovery is driven by an in- energy efficiency must improve by a factor of over 20× to satiable demand for computing performance. The HPC com- reach the 50 GF/W target. To achieve such a large improvement munity is targeting development of supercomputers able to in energy efficiency will require many contributions beyond sustain 1 ExaFlops by the year 2020 and power consumption process technology scaling [8]. Process technology improve- is the primary obstacle to achieving this goal. A combination of ments alone will only provide approximately 4.3× of the architectural improvements, circuit design, and manufacturing required improvement in energy efficiency. An additional 1.9× technologies must provide over a 20× improvement in energy efficiency. In this paper, we present some of the progress NVIDIA can be extracted from circuit improvements, enabling operation Research is making toward the design of Exascale systems by at lower VDD. A further 2.5× contribution to energy efficiency tailoring features to address the scaling challenges of performance must come from additional architectural and circuit techniques, and energy efficiency. We evaluate several architectural concepts as well as a system level design and interconnect that allow for a set of HPC applications demonstrating expected energy efficient scale-up of node-level performance. efficiency improvements resulting from circuit and packaging innovations such as low-voltage SRAM, low-energy signaling, At NVIDIA Research, we are developing an integrated and on-package memory. Finally, we discuss the scaling of these set of technologies spanning architecture, circuits, and co- features with respect to future process technologies and provide designed HPC applications targeting these performance and power and performance projections for our Exascale research energy goals. While we recognize the resilience and program- architecture. ming systems are also important to exascale, this paper focuses solely on the power challenges. Because no single silver bullet I. INTRODUCTION will enable exascale level performance and energy efficiency, it is critical for designers to understand the opportunities for Modern scientific discoveries in areas such as genetics, improvement provided by each area alongside the predicted drug discovery, and particle physics rely heavily on large- process technology scaling. This paper aims to quantify the scale simulation and modeling. The demand for expanding contributions of different technologies on the road to exascale computational capability drives the creation of increasingly and project performance and energy consumption of a 2020 higher-performance supercomputers. A continuation of histor- exascale system on a suite of DoE HPC proxy applications [9], ical scaling would predict that exascale supercomputers (i.e. 18 [10]. We expect that exascale applications, like the proxy- able to sustain 1 ExaFlops = 10 Flops) will start to appear apps that represent them, will exhibit highly varied execution by the year 2020 [1]. One of the main challenges in achieving profiles when compared to Linpack. Consequently, exascale this goal is power consumption, which a range of HPC system systems must be able to efficiently handle these variations and operators have suggested be limited to 20 MW for a full not be over-optimized for dense matrix multiplication. This exascale-capable system to mitigate cost of ownership and new paper builds upon the earlier Echelon project by expanding power delivery infrastructure costs [2]. The current generation upon and extending these research concepts with quantitative of energy-efficient supercomputers rely heavily on general analysis of application-level power and performance through purpose Graphic Processing Units (GPUs) to scale up their a variety of future technology nodes [11]. This paper makes floating point throughput [3]. GPUs have a large energy effi- the following contributions: ciency advantage with respect to conventional CPUs because they are designed to exploit high levels of data and thread level • We summarize and explain the behavior of a suite parallelism for performance rather than extracting instruction- of DoE Proxy applications on a modern GPU-based level parallelism from a small number of threads [4]. For supercomputer. highly parallel workloads, GPUs can be up to 10× more energy • We propose an energy-efficient node and system ar- efficient than CPUs within the same area and power budget [5]. chitecture, combining new architectural and circuit innovations. Exascale designers are facing a “power wall” when trying • We compare the power and performance of our pro- to design future systems capable of sustaining 50 GFlops posed design to currently available GPUs in a 28nm per Watt (GF/W) on dense codes such as Linpack [6]. The process technology and quantify the contributions of current Titan supercomputer at Oak Ridge National Laboratory the architecture and circuit-level features as technol- consists of 18,688 nodes, each containing one NVIDIA Tesla ogy scales down to 7nm. K20X GPU. On the Linpack benchmark, this system achieves • We estimate application-level power/performance for 17.59 PetaFlops while requiring 8.2 MW of power – delivering exascale systems by combining node level simulation 2.14 GF/W [7]. To enable exascale systems in the future, with a scaling model derived from scalability mea- SC14, November 16-21, 2014, New Orleans surements taken on modern supercomputers. 978-1-4799-5500-8/14/$31.00 c 2014 IEEE To our knowledge, no prior work has delivered a single The parallelization scheme divides the 3D domain into comprehensive overview of the future applications, challenges, sub-boxes which are assigned to MPI ranks. After receiving and features to provide exascale-level performance and power the force and position information of the neighboring sub- estimates for future HPC systems. boxes from the previous time-step, each MPI rank can compute forces and positions at the current time-step for the atoms This paper is organized as follows. Section II describes the assigned. Because of the short-range potential calculation and application used in this study. Section III presents the overall the relatively short cutoff radius, larger sub-boxes result in system architecture. Section IV presents the methodology used more computation and less communication. The computation in our studies. Section V presents the power and performance of forces, which can take up of 95% of the total time, can results at node, comparison with a modern GPU, discusses be separated among internal-to-internal atoms and external- scaling at full system level. Section VI presents related work to-internal atoms interactions. This approach enables overlap focusing on architecture, circuit features, and technology scal- of intra-node communication with internal-to-internal force ing studies. Finally Section VII concludes the paper. calculation if the problem size is sufficiently large. II. SCIENTIFIC APPLICATIONS B. LULESH While ultra-dense workloads, such as Linpack, are often LULESH represents a typical hydrodynamics modeling the benchmark by which HPC systems are measured, real application which describes the motion of materials relative to supercomputing applications are rarely as regular. As a result, each other when subject to forces [13]. LULESH is a simplified machines that are over-optimized for these dense workloads application implemented to only solve a simple Sedov blast tend to have poor real-world utilization when other applications problem with analytic answers but represents the numerical are ported to them. To encourage the design and development algorithms, data motion, and programming style typical in of balanced high performance supercomputers, the DoE has production codes. LULESH approximates the hydrodynamics funded the development of proxy applications (proxy-apps) for equations discretely by partitioning the spatial problem domain workloads they view as important to scientific computing in into a collection of volumetric elements defined by a mesh. the next 10 years [9], [10]. These proxy-apps are designed to A node on the mesh is a point where mesh lines intersect. be simplified, but representative, versions of these workloads LULESH uses a regular mesh, but to retain unstructured data suitable for public sector research and development. To ensure proprieties, the data structures make use of indirection arrays maximum portability, the proxy-apps consist of Fortran/C/C++ to index into the mesh. code using MPI for intra-node communication. Parallelism within the node is typically exposed with threading libraries At scale, the parallelization consists of assigning a subset of such as POSIX threads or OpenMP pragma directives. For elements to each MPI rank. Because the amount of data com- this work, NVIDIA helped develop GPU implementations of municated among MPI ranks is proportional to the number of the proxy-apps using numerically equivalent CUDA kernels or surface elements while computation is proportional to the vol- OpenACC compiler directives injected into the original code. ume of assigned elements,
Recommended publications
  • Microbenchmarks in Big Data
    M Microbenchmark Overview Microbenchmarks constitute the first line of per- Nicolas Poggi formance testing. Through them, we can ensure Databricks Inc., Amsterdam, NL, BarcelonaTech the proper and timely functioning of the different (UPC), Barcelona, Spain individual components that make up our system. The term micro, of course, depends on the prob- lem size. In BigData we broaden the concept Synonyms to cover the testing of large-scale distributed systems and computing frameworks. This chap- Component benchmark; Functional benchmark; ter presents the historical background, evolution, Test central ideas, and current key applications of the field concerning BigData. Definition Historical Background A microbenchmark is either a program or routine to measure and test the performance of a single Origins and CPU-Oriented Benchmarks component or task. Microbenchmarks are used to Microbenchmarks are closer to both hardware measure simple and well-defined quantities such and software testing than to competitive bench- as elapsed time, rate of operations, bandwidth, marking, opposed to application-level – macro or latency. Typically, microbenchmarks were as- – benchmarking. For this reason, we can trace sociated with the testing of individual software microbenchmarking influence to the hardware subroutines or lower-level hardware components testing discipline as can be found in Sumne such as the CPU and for a short period of time. (1974). Furthermore, we can also find influence However, in the BigData scope, the term mi- in the origins of software testing methodology crobenchmarking is broadened to include the during the 1970s, including works such cluster – group of networked computers – acting as Chow (1978). One of the first examples of as a single system, as well as the testing of a microbenchmark clearly distinguishable from frameworks, algorithms, logical and distributed software testing is the Whetstone benchmark components, for a longer period and larger data developed during the late 1960s and published sizes.
    [Show full text]
  • Overview of the SPEC Benchmarks
    9 Overview of the SPEC Benchmarks Kaivalya M. Dixit IBM Corporation “The reputation of current benchmarketing claims regarding system performance is on par with the promises made by politicians during elections.” Standard Performance Evaluation Corporation (SPEC) was founded in October, 1988, by Apollo, Hewlett-Packard,MIPS Computer Systems and SUN Microsystems in cooperation with E. E. Times. SPEC is a nonprofit consortium of 22 major computer vendors whose common goals are “to provide the industry with a realistic yardstick to measure the performance of advanced computer systems” and to educate consumers about the performance of vendors’ products. SPEC creates, maintains, distributes, and endorses a standardized set of application-oriented programs to be used as benchmarks. 489 490 CHAPTER 9 Overview of the SPEC Benchmarks 9.1 Historical Perspective Traditional benchmarks have failed to characterize the system performance of modern computer systems. Some of those benchmarks measure component-level performance, and some of the measurements are routinely published as system performance. Historically, vendors have characterized the performances of their systems in a variety of confusing metrics. In part, the confusion is due to a lack of credible performance information, agreement, and leadership among competing vendors. Many vendors characterize system performance in millions of instructions per second (MIPS) and millions of floating-point operations per second (MFLOPS). All instructions, however, are not equal. Since CISC machine instructions usually accomplish a lot more than those of RISC machines, comparing the instructions of a CISC machine and a RISC machine is similar to comparing Latin and Greek. 9.1.1 Simple CPU Benchmarks Truth in benchmarking is an oxymoron because vendors use benchmarks for marketing purposes.
    [Show full text]
  • Hypervisors Vs. Lightweight Virtualization: a Performance Comparison
    2015 IEEE International Conference on Cloud Engineering Hypervisors vs. Lightweight Virtualization: a Performance Comparison Roberto Morabito, Jimmy Kjällman, and Miika Komu Ericsson Research, NomadicLab Jorvas, Finland [email protected], [email protected], [email protected] Abstract — Virtualization of operating systems provides a container and alternative solutions. The idea is to quantify the common way to run different services in the cloud. Recently, the level of overhead introduced by these platforms and the lightweight virtualization technologies claim to offer superior existing gap compared to a non-virtualized environment. performance. In this paper, we present a detailed performance The remainder of this paper is structured as follows: in comparison of traditional hypervisor based virtualization and Section II, literature review and a brief description of all the new lightweight solutions. In our measurements, we use several technologies and platforms evaluated is provided. The benchmarks tools in order to understand the strengths, methodology used to realize our performance comparison is weaknesses, and anomalies introduced by these different platforms in terms of processing, storage, memory and network. introduced in Section III. The benchmark results are presented Our results show that containers achieve generally better in Section IV. Finally, some concluding remarks and future performance when compared with traditional virtual machines work are provided in Section V. and other recent solutions. Albeit containers offer clearly more dense deployment of virtual machines, the performance II. BACKGROUND AND RELATED WORK difference with other technologies is in many cases relatively small. In this section, we provide an overview of the different technologies included in the performance comparison.
    [Show full text]
  • Power Measurement Tutorial for the Green500 List
    Power Measurement Tutorial for the Green500 List R. Ge, X. Feng, H. Pyla, K. Cameron, W. Feng June 27, 2007 Contents 1 The Metric for Energy-Efficiency Evaluation 1 2 How to Obtain P¯(Rmax)? 2 2.1 The Definition of P¯(Rmax)...................................... 2 2.2 Deriving P¯(Rmax) from Unit Power . 2 2.3 Measuring Unit Power . 3 3 The Measurement Procedure 3 3.1 Equipment Check List . 4 3.2 Software Installation . 4 3.3 Hardware Connection . 4 3.4 Power Measurement Procedure . 5 4 Appendix 6 4.1 Frequently Asked Questions . 6 4.2 Resources . 6 1 The Metric for Energy-Efficiency Evaluation This tutorial serves as a practical guide for measuring the computer system power that is required as part of a Green500 submission. It describes the basic procedures to be followed in order to measure the power consumption of a supercomputer. A supercomputer that appears on The TOP500 List can easily consume megawatts of electric power. This power consumption may lead to operating costs that exceed acquisition costs as well as intolerable system failure rates. In recent years, we have witnessed an increasingly stronger movement towards energy-efficient computing systems in academia, government, and industry. Thus, the purpose of the Green500 List is to provide a ranking of the most energy-efficient supercomputers in the world and serve as a complementary view to the TOP500 List. However, as pointed out in [1, 2], identifying a single objective metric for energy efficiency in supercom- puters is a difficult task. Based on [1, 2] and given the already existing use of the “performance per watt” metric, the Green500 List uses “performance per watt” (PPW) as its metric to rank the energy efficiency of supercomputers.
    [Show full text]
  • The High Performance Linpack (HPL) Benchmark Evaluation on UTP High Performance Computing Cluster by Wong Chun Shiang 16138 Diss
    The High Performance Linpack (HPL) Benchmark Evaluation on UTP High Performance Computing Cluster By Wong Chun Shiang 16138 Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Technology (Hons) (Information and Communications Technology) MAY 2015 Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan CERTIFICATION OF APPROVAL The High Performance Linpack (HPL) Benchmark Evaluation on UTP High Performance Computing Cluster by Wong Chun Shiang 16138 A project dissertation submitted to the Information & Communication Technology Programme Universiti Teknologi PETRONAS In partial fulfillment of the requirement for the BACHELOR OF TECHNOLOGY (Hons) (INFORMATION & COMMUNICATION TECHNOLOGY) Approved by, ____________________________ (DR. IZZATDIN ABDUL AZIZ) UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK MAY 2015 ii CERTIFICATION OF ORIGINALITY This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons. ________________ WONG CHUN SHIANG iii ABSTRACT UTP High Performance Computing Cluster (HPCC) is a collection of computing nodes using commercially available hardware interconnected within a network to communicate among the nodes. This campus wide cluster is used by researchers from internal UTP and external parties to compute intensive applications. However, the HPCC has never been benchmarked before. It is imperative to carry out a performance study to measure the true computing ability of this cluster. This project aims to test the performance of a campus wide computing cluster using a selected benchmarking tool, the High Performance Linkpack (HPL).
    [Show full text]
  • A Study on the Evaluation of HPC Microservices in Containerized Environment
    ReceivED XXXXXXXX; ReVISED XXXXXXXX; Accepted XXXXXXXX DOI: xxx/XXXX ARTICLE TYPE A Study ON THE Evaluation OF HPC Microservices IN Containerized EnVIRONMENT DeVKI Nandan Jha*1 | SaurABH Garg2 | Prem PrAKASH JaYARAMAN3 | Rajkumar Buyya4 | Zheng Li5 | GrAHAM Morgan1 | Rajiv Ranjan1 1School Of Computing, Newcastle UnivERSITY, UK Summary 2UnivERSITY OF Tasmania, Australia, 3Swinburne UnivERSITY OF TECHNOLOGY, AustrALIA Containers ARE GAINING POPULARITY OVER VIRTUAL MACHINES (VMs) AS THEY PROVIDE THE ADVANTAGES 4 The UnivERSITY OF Melbourne, AustrALIA OF VIRTUALIZATION WITH THE PERFORMANCE OF NEAR bare-metal. The UNIFORMITY OF SUPPORT PROVIDED 5UnivERSITY IN Concepción, Chile BY DockER CONTAINERS ACROSS DIFFERENT CLOUD PROVIDERS MAKES THEM A POPULAR CHOICE FOR DEVel- Correspondence opers. EvOLUTION OF MICROSERVICE ARCHITECTURE ALLOWS COMPLEX APPLICATIONS TO BE STRUCTURED INTO *DeVKI Nandan Jha Email: [email protected] INDEPENDENT MODULAR COMPONENTS MAKING THEM EASIER TO manage. High PERFORMANCE COMPUTING (HPC) APPLICATIONS ARE ONE SUCH APPLICATION TO BE DEPLOYED AS microservices, PLACING SIGNIfiCANT RESOURCE REQUIREMENTS ON THE CONTAINER FRamework. HoweVER, THERE IS A POSSIBILTY OF INTERFERENCE BETWEEN DIFFERENT MICROSERVICES HOSTED WITHIN THE SAME CONTAINER (intra-container) AND DIFFERENT CONTAINERS (inter-container) ON THE SAME PHYSICAL host. In THIS PAPER WE DESCRIBE AN Exten- SIVE EXPERIMENTAL INVESTIGATION TO DETERMINE THE PERFORMANCE EVALUATION OF DockER CONTAINERS EXECUTING HETEROGENEOUS HPC microservices. WE ARE PARTICULARLY CONCERNED WITH HOW INTRa- CONTAINER AND inter-container INTERFERENCE INflUENCES THE performance. MoreoVER, WE INVESTIGATE THE PERFORMANCE VARIATIONS IN DockER CONTAINERS WHEN CONTROL GROUPS (cgroups) ARE USED FOR RESOURCE limitation. FOR EASE OF PRESENTATION AND REPRODUCIBILITY, WE USE Cloud Evaluation Exper- IMENT Methodology (CEEM) TO CONDUCT OUR COMPREHENSIVE SET OF Experiments.
    [Show full text]
  • Fair Benchmarking for Cloud Computing Systems
    Fair Benchmarking for Cloud Computing Systems Authors: Lee Gillam Bin Li John O’Loughlin Anuz Pranap Singh Tomar March 2012 Contents 1 Introduction .............................................................................................................................................................. 3 2 Background .............................................................................................................................................................. 4 3 Previous work ........................................................................................................................................................... 5 3.1 Literature ........................................................................................................................................................... 5 3.2 Related Resources ............................................................................................................................................. 6 4 Preparation ............................................................................................................................................................... 9 4.1 Cloud Providers................................................................................................................................................. 9 4.2 Cloud APIs ...................................................................................................................................................... 10 4.3 Benchmark selection ......................................................................................................................................
    [Show full text]
  • On the Performance of MPI-Openmp on a 12 Nodes Multi-Core Cluster
    On the Performance of MPI-OpenMP on a 12 nodes Multi-core Cluster Abdelgadir Tageldin Abdelgadir1, Al-Sakib Khan Pathan1∗ , Mohiuddin Ahmed2 1 Department of Computer Science, International Islamic University Malaysia, Gombak 53100, Kuala Lumpur, Malaysia 2 Department of Computer Network, Jazan University, Saudi Arabia [email protected] , [email protected] , [email protected] Abstract. With the increasing number of Quad-Core-based clusters and the introduction of compute nodes designed with large memory capacity shared by multiple cores, new problems related to scalability arise. In this paper, we analyze the overall performance of a cluster built with nodes having a dual Quad-Core Processor on each node. Some benchmark results are presented and some observations are mentioned when handling such processors on a benchmark test. A Quad-Core-based cluster's complexity arises from the fact that both local communication and network communications between the running processes need to be addressed. The potentials of an MPI-OpenMP approach are pinpointed because of its reduced communication overhead. At the end, we come to a conclusion that an MPI-OpenMP solution should be considered in such clusters since optimizing network communications between nodes is as important as optimizing local communications between processors in a multi-core cluster. Keywords: MPI-OpenMP, hybrid, Multi-Core, Cluster. 1 Introduction The integration of two or more processors within a single chip is an advanced technology for tackling the disadvantages exposed by a single core when it comes to increasing the speed, as more heat is generated and more power is consumed by those single cores.
    [Show full text]
  • Power Efficiency in High Performance Computing
    Power Efficiency in High Performance Computing Shoaib Kamil John Shalf Erich Strohmaier LBNL/UC Berkeley LBNL/NERSC LBNL/CRD [email protected] [email protected] [email protected] ABSTRACT 100 teraflop successor consumes almost 1,500 KW without After 15 years of exponential improvement in microproces- even being in the top 10. The first petaflop-scale systems, sor clock rates, the physical principles allowing for Dennard expected to debut in 2008, will draw 2-7 megawatts of power. scaling, which enabled performance improvements without a Projections for exaflop-scale computing systems, expected commensurate increase in power consumption, have all but in 2016-2018, range from 60-130 megawatts [16]. Therefore, ended. Until now, most HPC systems have not focused on fewer sites in the US will be able to host the largest scale power efficiency. However, as the cost of power reaches par- computing systems due to limited availability of facilities ity with capital costs, it is increasingly important to com- with sufficient power and cooling capabilities. Following this pare systems with metrics based on the sustained perfor- trend, over time an ever increasing proportion of an HPC mance per watt. Therefore we need to establish practical center’s budget will be needed for supplying power to these methods to measure power consumption of such systems in- systems. situ in order to support such metrics. Our study provides The root cause of this impending crisis is that chip power power measurements for various computational loads on the efficiency is no longer improving at historical rates. Up until largest scale HPC systems ever involved in such an assess- now, Moore’s Law improvements in photolithography tech- ment.
    [Show full text]
  • CS 267 Dense Linear Algebra: History and Structure, Parallel Matrix
    Quick review of earlier lecture •" What do you call •" A program written in PyGAS, a Global Address CS 267 Space language based on Python… Dense Linear Algebra: •" That uses a Monte Carlo simulation algorithm to approximate π … History and Structure, •" That has a race condition, so that it gives you a Parallel Matrix Multiplication" different funny answer every time you run it? James Demmel! Monte - π - thon ! www.cs.berkeley.edu/~demmel/cs267_Spr16! ! 02/25/2016! CS267 Lecture 12! 1! 02/25/2016! CS267 Lecture 12! 2! Outline Outline •" History and motivation •" History and motivation •" What is dense linear algebra? •" What is dense linear algebra? •" Why minimize communication? •" Why minimize communication? •" Lower bound on communication •" Lower bound on communication •" Parallel Matrix-matrix multiplication •" Parallel Matrix-matrix multiplication •" Attaining the lower bound •" Attaining the lower bound •" Other Parallel Algorithms (next lecture) •" Other Parallel Algorithms (next lecture) 02/25/2016! CS267 Lecture 12! 3! 02/25/2016! CS267 Lecture 12! 4! CS267 Lecture 2 1 Motifs What is dense linear algebra? •" Not just matmul! The Motifs (formerly “Dwarfs”) from •" Linear Systems: Ax=b “The Berkeley View” (Asanovic et al.) •" Least Squares: choose x to minimize ||Ax-b||2 Motifs form key computational patterns •" Overdetermined or underdetermined; Unconstrained, constrained, or weighted •" Eigenvalues and vectors of Symmetric Matrices •" Standard (Ax = λx), Generalized (Ax=λBx) •" Eigenvalues and vectors of Unsymmetric matrices
    [Show full text]
  • CPU and FFT Benchmarks of ARM Processors
    Proceedings of SAIP2014 Affordable and power efficient computing for high energy physics: CPU and FFT benchmarks of ARM processors Mitchell A Cox, Robert Reed and Bruce Mellado School of Physics, University of the Witwatersrand. 1 Jan Smuts Avenue, Braamfontein, Johannesburg, South Africa, 2000 E-mail: [email protected] Abstract. Projects such as the Large Hadron Collider at CERN generate enormous amounts of raw data which presents a serious computing challenge. After planned upgrades in 2022, the data output from the ATLAS Tile Calorimeter will increase by 200 times to over 40 Tb/s. ARM System on Chips are common in mobile devices due to their low cost, low energy consumption and high performance and may be an affordable alternative to standard x86 based servers where massive parallelism is required. High Performance Linpack and CoreMark benchmark applications are used to test ARM Cortex-A7, A9 and A15 System on Chips CPU performance while their power consumption is measured. In addition to synthetic benchmarking, the FFTW library is used to test the single precision Fast Fourier Transform (FFT) performance of the ARM processors and the results obtained are converted to theoretical data throughputs for a range of FFT lengths. These results can be used to assist with specifying ARM rather than x86-based compute farms for upgrades and upcoming scientific projects. 1. Introduction Projects such as the Large Hadron Collider (LHC) generate enormous amounts of raw data which presents a serious computing challenge. After planned upgrades in 2022, the data output from the ATLAS Tile Calorimeter will increase by 200 times to over 41 Tb/s (Terabits/s) [1].
    [Show full text]
  • Red Hat Enterprise Linux 6 Vs. Microsoft Windows Server 2012
    COMPARING CPU AND MEMORY PERFORMANCE: RED HAT ENTERPRISE LINUX 6 VS. MICROSOFT WINDOWS SERVER 2012 An operating system’s ability to effectively manage and use server hardware often defines system and application performance. Processors with multiple cores and random access memory (RAM) represent the two most vital subsystems that can affect the performance of business applications. Selecting the best performing operating system can help your hardware achieve its maximum potential and enable your critical applications to run faster. To help you make that critical decision, Principled Technologies compared the CPU and RAM performance of Red Hat Enterprise Linux 6 and Microsoft Windows Server 2012 using three benchmarks: SPEC® CPU2006, LINPACK, and STREAM. We found that Red Hat Enterprise Linux 6 delivered better CPU and RAM performance in nearly every test, outperforming its Microsoft competitor in both out-of -box and optimized configurations. APRIL 2013 A PRINCIPLED TECHNOLOGIES TEST REPORT Commissioned by Red Hat, Inc. BETTER CPU AND RAM PERFORMANCE We compared CPU and RAM performance on two operating systems: Red Hat Enterprise Linux 6 and Microsoft Windows Server 2012. For our comparison, we used the SPEC CPU2006 benchmark and LINPACK benchmark to test the CPU performance of the solutions using the different operating systems, and the STREAM benchmark to test the memory bandwidth of the two solutions. For each test, we first configured both solutions with out-of-box (default) settings, and then we tested those solutions using multiple tuning parameters to deliver optimized results. We ran each test three times and report the results from the median run. For detailed system configuration information, see Appendix A.
    [Show full text]