CPU and FFT Benchmarks of ARM Processors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EEMBC and the Purposes of Embedded Processor Benchmarking Markus Levy, President
EEMBC and the Purposes of Embedded Processor Benchmarking Markus Levy, President ISPASS 2005 Certified Performance Analysis for Embedded Systems Designers EEMBC: A Historical Perspective • Began as an EDN Magazine project in April 1997 • Replace Dhrystone • Have meaningful measure for explaining processor behavior • Developed business model • Invited worldwide processor vendors • A consortium was born 1 EEMBC Membership • Board Member • Membership Dues: $30,000 (1st year); $16,000 (subsequent years) • Access and Participation on ALL Subcommittees • Full Voting Rights • Subcommittee Member • Membership Dues Are Subcommittee Specific • Access to Specific Benchmarks • Technical Involvement Within Subcommittee • Help Determine Next Generation Benchmarks • Special Academic Membership EEMBC Philosophy: Standardized Benchmarks and Certified Scores • Member derived benchmarks • Determine the standard, the process, and the benchmarks • Open to industry feedback • Ensures all processor/compiler vendors are running the same tests • Certification process ensures credibility • All benchmark scores officially validated before publication • The entire benchmark environment must be disclosed 2 Embedded Industry: Represented by Very Diverse Applications • Networking • Storage, low- and high-end routers, switches • Consumer • Games, set top boxes, car navigation, smartcards • Wireless • Cellular, routers • Office Automation • Printers, copiers, imaging • Automotive • Engine control, Telematics Traditional Division of Embedded Applications Low High Power -
Microbenchmarks in Big Data
M Microbenchmark Overview Microbenchmarks constitute the first line of per- Nicolas Poggi formance testing. Through them, we can ensure Databricks Inc., Amsterdam, NL, BarcelonaTech the proper and timely functioning of the different (UPC), Barcelona, Spain individual components that make up our system. The term micro, of course, depends on the prob- lem size. In BigData we broaden the concept Synonyms to cover the testing of large-scale distributed systems and computing frameworks. This chap- Component benchmark; Functional benchmark; ter presents the historical background, evolution, Test central ideas, and current key applications of the field concerning BigData. Definition Historical Background A microbenchmark is either a program or routine to measure and test the performance of a single Origins and CPU-Oriented Benchmarks component or task. Microbenchmarks are used to Microbenchmarks are closer to both hardware measure simple and well-defined quantities such and software testing than to competitive bench- as elapsed time, rate of operations, bandwidth, marking, opposed to application-level – macro or latency. Typically, microbenchmarks were as- – benchmarking. For this reason, we can trace sociated with the testing of individual software microbenchmarking influence to the hardware subroutines or lower-level hardware components testing discipline as can be found in Sumne such as the CPU and for a short period of time. (1974). Furthermore, we can also find influence However, in the BigData scope, the term mi- in the origins of software testing methodology crobenchmarking is broadened to include the during the 1970s, including works such cluster – group of networked computers – acting as Chow (1978). One of the first examples of as a single system, as well as the testing of a microbenchmark clearly distinguishable from frameworks, algorithms, logical and distributed software testing is the Whetstone benchmark components, for a longer period and larger data developed during the late 1960s and published sizes. -
Cloud Workbench a Web-Based Framework for Benchmarking Cloud Services
Bachelor August 12, 2014 Cloud WorkBench A Web-Based Framework for Benchmarking Cloud Services Joel Scheuner of Muensterlingen, Switzerland (10-741-494) supervised by Prof. Dr. Harald C. Gall Philipp Leitner, Jürgen Cito software evolution & architecture lab Bachelor Cloud WorkBench A Web-Based Framework for Benchmarking Cloud Services Joel Scheuner software evolution & architecture lab Bachelor Author: Joel Scheuner, [email protected] Project period: 04.03.2014 - 14.08.2014 Software Evolution & Architecture Lab Department of Informatics, University of Zurich Acknowledgements This bachelor thesis constitutes the last milestone on the way to my first academic graduation. I would like to thank all the people who accompanied and supported me in the last four years of study and work in industry paving the way to this thesis. My personal thanks go to my parents supporting me in many ways. The decision to choose a complex topic in an area where I had no personal experience in advance, neither theoretically nor technologically, made the past four and a half months challenging, demanding, work-intensive, but also very educational which is what remains in good memory afterwards. Regarding this thesis, I would like to offer special thanks to Philipp Leitner who assisted me during the whole process and gave valuable advices. Moreover, I want to thank Jürgen Cito for his mainly technologically-related recommendations, Rita Erne for her time spent with me on language review sessions, and Prof. Harald Gall for giving me the opportunity to write this thesis at the Software Evolution & Architecture Lab at the University of Zurich and providing fundings and infrastructure to realize this thesis. -
Overview of the SPEC Benchmarks
9 Overview of the SPEC Benchmarks Kaivalya M. Dixit IBM Corporation “The reputation of current benchmarketing claims regarding system performance is on par with the promises made by politicians during elections.” Standard Performance Evaluation Corporation (SPEC) was founded in October, 1988, by Apollo, Hewlett-Packard,MIPS Computer Systems and SUN Microsystems in cooperation with E. E. Times. SPEC is a nonprofit consortium of 22 major computer vendors whose common goals are “to provide the industry with a realistic yardstick to measure the performance of advanced computer systems” and to educate consumers about the performance of vendors’ products. SPEC creates, maintains, distributes, and endorses a standardized set of application-oriented programs to be used as benchmarks. 489 490 CHAPTER 9 Overview of the SPEC Benchmarks 9.1 Historical Perspective Traditional benchmarks have failed to characterize the system performance of modern computer systems. Some of those benchmarks measure component-level performance, and some of the measurements are routinely published as system performance. Historically, vendors have characterized the performances of their systems in a variety of confusing metrics. In part, the confusion is due to a lack of credible performance information, agreement, and leadership among competing vendors. Many vendors characterize system performance in millions of instructions per second (MIPS) and millions of floating-point operations per second (MFLOPS). All instructions, however, are not equal. Since CISC machine instructions usually accomplish a lot more than those of RISC machines, comparing the instructions of a CISC machine and a RISC machine is similar to comparing Latin and Greek. 9.1.1 Simple CPU Benchmarks Truth in benchmarking is an oxymoron because vendors use benchmarks for marketing purposes. -
Automatic Benchmark Profiling Through Advanced Trace Analysis Alexis Martin, Vania Marangozova-Martin
Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin, Vania Marangozova-Martin To cite this version: Alexis Martin, Vania Marangozova-Martin. Automatic Benchmark Profiling through Advanced Trace Analysis. [Research Report] RR-8889, Inria - Research Centre Grenoble – Rhône-Alpes; Université Grenoble Alpes; CNRS. 2016. hal-01292618 HAL Id: hal-01292618 https://hal.inria.fr/hal-01292618 Submitted on 24 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin , Vania Marangozova-Martin RESEARCH REPORT N° 8889 March 23, 2016 Project-Team Polaris ISSN 0249-6399 ISRN INRIA/RR--8889--FR+ENG Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin ∗ † ‡, Vania Marangozova-Martin ∗ † ‡ Project-Team Polaris Research Report n° 8889 — March 23, 2016 — 15 pages Abstract: Benchmarking has proven to be crucial for the investigation of the behavior and performances of a system. However, the choice of relevant benchmarks still remains a challenge. To help the process of comparing and choosing among benchmarks, we propose a solution for automatic benchmark profiling. It computes unified benchmark profiles reflecting benchmarks’ duration, function repartition, stability, CPU efficiency, parallelization and memory usage. -
Hypervisors Vs. Lightweight Virtualization: a Performance Comparison
2015 IEEE International Conference on Cloud Engineering Hypervisors vs. Lightweight Virtualization: a Performance Comparison Roberto Morabito, Jimmy Kjällman, and Miika Komu Ericsson Research, NomadicLab Jorvas, Finland [email protected], [email protected], [email protected] Abstract — Virtualization of operating systems provides a container and alternative solutions. The idea is to quantify the common way to run different services in the cloud. Recently, the level of overhead introduced by these platforms and the lightweight virtualization technologies claim to offer superior existing gap compared to a non-virtualized environment. performance. In this paper, we present a detailed performance The remainder of this paper is structured as follows: in comparison of traditional hypervisor based virtualization and Section II, literature review and a brief description of all the new lightweight solutions. In our measurements, we use several technologies and platforms evaluated is provided. The benchmarks tools in order to understand the strengths, methodology used to realize our performance comparison is weaknesses, and anomalies introduced by these different platforms in terms of processing, storage, memory and network. introduced in Section III. The benchmark results are presented Our results show that containers achieve generally better in Section IV. Finally, some concluding remarks and future performance when compared with traditional virtual machines work are provided in Section V. and other recent solutions. Albeit containers offer clearly more dense deployment of virtual machines, the performance II. BACKGROUND AND RELATED WORK difference with other technologies is in many cases relatively small. In this section, we provide an overview of the different technologies included in the performance comparison. -
Power Measurement Tutorial for the Green500 List
Power Measurement Tutorial for the Green500 List R. Ge, X. Feng, H. Pyla, K. Cameron, W. Feng June 27, 2007 Contents 1 The Metric for Energy-Efficiency Evaluation 1 2 How to Obtain P¯(Rmax)? 2 2.1 The Definition of P¯(Rmax)...................................... 2 2.2 Deriving P¯(Rmax) from Unit Power . 2 2.3 Measuring Unit Power . 3 3 The Measurement Procedure 3 3.1 Equipment Check List . 4 3.2 Software Installation . 4 3.3 Hardware Connection . 4 3.4 Power Measurement Procedure . 5 4 Appendix 6 4.1 Frequently Asked Questions . 6 4.2 Resources . 6 1 The Metric for Energy-Efficiency Evaluation This tutorial serves as a practical guide for measuring the computer system power that is required as part of a Green500 submission. It describes the basic procedures to be followed in order to measure the power consumption of a supercomputer. A supercomputer that appears on The TOP500 List can easily consume megawatts of electric power. This power consumption may lead to operating costs that exceed acquisition costs as well as intolerable system failure rates. In recent years, we have witnessed an increasingly stronger movement towards energy-efficient computing systems in academia, government, and industry. Thus, the purpose of the Green500 List is to provide a ranking of the most energy-efficient supercomputers in the world and serve as a complementary view to the TOP500 List. However, as pointed out in [1, 2], identifying a single objective metric for energy efficiency in supercom- puters is a difficult task. Based on [1, 2] and given the already existing use of the “performance per watt” metric, the Green500 List uses “performance per watt” (PPW) as its metric to rank the energy efficiency of supercomputers. -
The High Performance Linpack (HPL) Benchmark Evaluation on UTP High Performance Computing Cluster by Wong Chun Shiang 16138 Diss
The High Performance Linpack (HPL) Benchmark Evaluation on UTP High Performance Computing Cluster By Wong Chun Shiang 16138 Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Technology (Hons) (Information and Communications Technology) MAY 2015 Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan CERTIFICATION OF APPROVAL The High Performance Linpack (HPL) Benchmark Evaluation on UTP High Performance Computing Cluster by Wong Chun Shiang 16138 A project dissertation submitted to the Information & Communication Technology Programme Universiti Teknologi PETRONAS In partial fulfillment of the requirement for the BACHELOR OF TECHNOLOGY (Hons) (INFORMATION & COMMUNICATION TECHNOLOGY) Approved by, ____________________________ (DR. IZZATDIN ABDUL AZIZ) UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK MAY 2015 ii CERTIFICATION OF ORIGINALITY This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons. ________________ WONG CHUN SHIANG iii ABSTRACT UTP High Performance Computing Cluster (HPCC) is a collection of computing nodes using commercially available hardware interconnected within a network to communicate among the nodes. This campus wide cluster is used by researchers from internal UTP and external parties to compute intensive applications. However, the HPCC has never been benchmarked before. It is imperative to carry out a performance study to measure the true computing ability of this cluster. This project aims to test the performance of a campus wide computing cluster using a selected benchmarking tool, the High Performance Linkpack (HPL). -
A Study on the Evaluation of HPC Microservices in Containerized Environment
ReceivED XXXXXXXX; ReVISED XXXXXXXX; Accepted XXXXXXXX DOI: xxx/XXXX ARTICLE TYPE A Study ON THE Evaluation OF HPC Microservices IN Containerized EnVIRONMENT DeVKI Nandan Jha*1 | SaurABH Garg2 | Prem PrAKASH JaYARAMAN3 | Rajkumar Buyya4 | Zheng Li5 | GrAHAM Morgan1 | Rajiv Ranjan1 1School Of Computing, Newcastle UnivERSITY, UK Summary 2UnivERSITY OF Tasmania, Australia, 3Swinburne UnivERSITY OF TECHNOLOGY, AustrALIA Containers ARE GAINING POPULARITY OVER VIRTUAL MACHINES (VMs) AS THEY PROVIDE THE ADVANTAGES 4 The UnivERSITY OF Melbourne, AustrALIA OF VIRTUALIZATION WITH THE PERFORMANCE OF NEAR bare-metal. The UNIFORMITY OF SUPPORT PROVIDED 5UnivERSITY IN Concepción, Chile BY DockER CONTAINERS ACROSS DIFFERENT CLOUD PROVIDERS MAKES THEM A POPULAR CHOICE FOR DEVel- Correspondence opers. EvOLUTION OF MICROSERVICE ARCHITECTURE ALLOWS COMPLEX APPLICATIONS TO BE STRUCTURED INTO *DeVKI Nandan Jha Email: [email protected] INDEPENDENT MODULAR COMPONENTS MAKING THEM EASIER TO manage. High PERFORMANCE COMPUTING (HPC) APPLICATIONS ARE ONE SUCH APPLICATION TO BE DEPLOYED AS microservices, PLACING SIGNIfiCANT RESOURCE REQUIREMENTS ON THE CONTAINER FRamework. HoweVER, THERE IS A POSSIBILTY OF INTERFERENCE BETWEEN DIFFERENT MICROSERVICES HOSTED WITHIN THE SAME CONTAINER (intra-container) AND DIFFERENT CONTAINERS (inter-container) ON THE SAME PHYSICAL host. In THIS PAPER WE DESCRIBE AN Exten- SIVE EXPERIMENTAL INVESTIGATION TO DETERMINE THE PERFORMANCE EVALUATION OF DockER CONTAINERS EXECUTING HETEROGENEOUS HPC microservices. WE ARE PARTICULARLY CONCERNED WITH HOW INTRa- CONTAINER AND inter-container INTERFERENCE INflUENCES THE performance. MoreoVER, WE INVESTIGATE THE PERFORMANCE VARIATIONS IN DockER CONTAINERS WHEN CONTROL GROUPS (cgroups) ARE USED FOR RESOURCE limitation. FOR EASE OF PRESENTATION AND REPRODUCIBILITY, WE USE Cloud Evaluation Exper- IMENT Methodology (CEEM) TO CONDUCT OUR COMPREHENSIVE SET OF Experiments. -
I.MX 8Quadxplus Power and Performance
NXP Semiconductors Document Number: AN12338 Application Note Rev. 4 , 04/2020 i.MX 8QuadXPlus Power and Performance 1. Introduction Contents This application note helps you to design power 1. Introduction ........................................................................ 1 management systems. It illustrates the current drain 2. Overview of i.MX 8QuadXPlus voltage supplies .............. 1 3. Power measurement of the i.MX 8QuadXPlus processor ... 2 measurements of the i.MX 8QuadXPlus Applications 3.1. VCC_SCU_1V8 power ........................................... 4 Processors taken on NXP Multisensory Evaluation Kit 3.2. VCC_DDRIO power ............................................... 4 (MEK) Platform through several use cases. 3.3. VCC_CPU/VCC_GPU/VCC_MAIN power ........... 5 3.4. Temperature measurements .................................... 5 This document provides details on the performance and 3.5. Hardware and software used ................................... 6 3.6. Measuring points on the MEK platform .................. 6 power consumption of the i.MX 8QuadXPlus 4. Use cases and measurement results .................................... 6 processors under a variety of low- and high-power 4.1. Low-power mode power consumption (Key States modes. or ‘KS’)…… ......................................................................... 7 4.2. Complex use case power consumption (Arm Core, The data presented in this application note is based on GPU active) ......................................................................... 11 5. SOC -
Part 1 of 4 : Introduction to RISC-V ISA
PULP PLATFORM Open Source Hardware, the way it should be! Working with RISC-V Part 1 of 4 : Introduction to RISC-V ISA Frank K. Gürkaynak <[email protected]> Luca Benini <[email protected]> http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform Working with RISC-V Summary ▪ Part 1 – Introduction to RISC-V ISA ▪ What is RISC-V about ▪ Description of ISA, and basic principles ▪ Simple 32b implementation (Ibex by LowRISC) ▪ How to extend the ISA (CV32E40P by OpenHW group) ▪ Part 2 – Advanced RISC-V Architectures ▪ Part 3 – PULP concepts ▪ Part 4 – PULP based chips | ACACES 2020 - July 2020 Working with RISC-V Few words about myself Frank K. Gürkaynak (just call me Frank) Senior scientist at ETH Zurich (means I am old) working with Luca Studied / Worked at Universities: in Turkey, United States and Switzerland (ETHZ and EPFL) Involved in Digital Design, Low Power Circuits, Open Source Hardware Part of PULP project from the beginning in 2013 | ACACES 2020 - July 2020 Working with RISC-V RISC-V Instruction Set Architecture ▪ Started by UC-Berkeley in 2010 SW ▪ Contract between SW and HW Applications ▪ Partitioned into user and privileged spec ▪ External Debug OS ▪ Standard governed by RISC-V foundation ▪ ETHZ is a founding member of the foundation ISA ▪ Necessary for the continuity User Privileged ▪ Defines 32, 64 and 128 bit ISA Debug ▪ No implementation, just the ISA ▪ Different implementations (both open and close source) HW ▪ At ETH Zurich we specialize in efficient implementations of RISC-V cores | ACACES 2020 - July 2020 Working with RISC-V RISC-V maintains basically a PDF document | ACACES 2020 - July 2020 Working with RISC-V ISA defines the instructions that processor uses C++ program translated to RISC-V instructions defined by ISA. -
Automatic Benchmark Profiling Through Advanced Trace Analysis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hal - Université Grenoble Alpes Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin, Vania Marangozova-Martin To cite this version: Alexis Martin, Vania Marangozova-Martin. Automatic Benchmark Profiling through Advanced Trace Analysis. [Research Report] RR-8889, Inria - Research Centre Grenoble { Rh^one-Alpes; Universit´eGrenoble Alpes; CNRS. 2016. <hal-01292618> HAL Id: hal-01292618 https://hal.inria.fr/hal-01292618 Submitted on 24 Mar 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin , Vania Marangozova-Martin RESEARCH REPORT N° 8889 March 23, 2016 Project-Team Polaris ISSN 0249-6399 ISRN INRIA/RR--8889--FR+ENG Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin ∗ † ‡, Vania Marangozova-Martin ∗ † ‡ Project-Team Polaris Research Report n° 8889 — March 23, 2016 — 15 pages Abstract: Benchmarking has proven to be crucial for the investigation of the behavior and performances of a system. However, the choice of relevant benchmarks still remains a challenge. To help the process of comparing and choosing among benchmarks, we propose a solution for automatic benchmark profiling.