Cylindropuntia & Cylindropuntia Invasive Cacti Are a Serious Threat to Biodiversity and Agricultural Systems Within Australian Rangeland Regions

Total Page:16

File Type:pdf, Size:1020Kb

Cylindropuntia & Cylindropuntia Invasive Cacti Are a Serious Threat to Biodiversity and Agricultural Systems Within Australian Rangeland Regions w Invasive cacti a prickly problem Austrocylindropuntia & Cylindropuntia Invasive cacti are a serious threat to biodiversity and agricultural systems within Australian rangeland regions. The key features listed may assist you to identify these prickly invaders. Austrocylindropuntia cylindrica Austrocylindropuntia subulata Cylindropuntia fulgida var. mamillata Cane cactus Eve’s-pin cactus Coral cactus, boxing glove cactus K C Erect, branching shrub Branching shrub to 3m tall. Erect shrub up to 0.4-0.8m CHINNO 0.3-1.5m tall. Often forms Forms patches to 8m wide. tall. Deciduous leaves. Rarely B BO patches several metres wide. Leaves can persist. flowers/fruits. Green-grey green. Dark bluish-green, shiny. Mid green. Slender, to Stem Segments Stem Segments Stem Segments Stem Segments Stem Segments Stem Segments Often distorted, with a K K C Rounded, 15-50cm long, 50cm long, 4-5cm diameter. C Stem Segments Stem Segments corrugated (tuberculate) Stem Segments Stem Segments 3-4cm diameter. Deciduous Leaves to 12cm long. Flowers Flowers Stem Segments Stem Segments surface, 10-22cm long, CHINNO StemFlowers Segments StemFlowers Segments Flowers Flowers CHINNO B leaves to 1cm long. B 2-4.5cm diameter. Often BO Pink.Flowers Flowers BO Stem Segments Stem Segments StemFlowers Segments Stem SegmentsFlowers numerous, easily detached Flowers Flowers StemFruits Segments StemFruits Segments Red,FlowersFruits cup shaped. FlowersFruits Fruits Fruits small segments. Oblong,Fruits egg or club shapedFruits Flowers Flowers Flowers Flowers Stem Segments Stem Segments Fruits Fruits DeepSpines red. Spines EggFruits to urn shaped, to Fruits to 10cm long. Green. StemFlowers Segments Stem SegmentsFlowers FruitsSpines FruitsSpines Spines Spines 4.5cm long. Deep (CanFruits produce chains).Fruits Flowers Flowers Spines Spines InverseFruits cone or oval Fruits Spines Spines Flowers Flowers green-yellowSpines green. Spines shaped.Fruits Grey-green. Fruits SHAUNA POTTER Spines Spines 1-4Spines spines, up to 7cmSpines long. (CanFruits produce chains).Fruits Forms long chains. Spines Spines (Lack papery sheath). UsuallyFruits sterile. Fruits Spines Spines 2-6Spines spines, approxSpines 1cm 4-15Spines spines, 7-20cmSpines long K long. (Lack papery sheath). C (often shorter). Cream to brown (colour variable). CHINNO B (White to tan sheath). BO SHAUNA POTTER Cylindropuntia imbricata Cylindropuntia leptocaulis Cylindropuntia kleiniae Devil’s rope/rope pear Pencil cactus Branched shrub or small tree Straggly shrub to 0.5-2.5m Spreading shrub 0.4-1.8m tall. 1-3m tall. Often with short tall. Large plants form trunk. Deciduous leaves. trunks. Deciduous leaves. Deciduous leaves. Green-grey green. Very Dull grey-green. 15-40cm Stem Segments Stem Segments LightStem Segmentsgrey-green. 6-26cmStem Segments slender,Stem Segments 2-8cm long, Stem Segments Stem Segments Stem Segments Stem Segments Stem Segments Stem Segments Stem Segments Stem Segments Stem Segments K long, 3.5-5cm diameter. C long, 0.6-1.2cm diameter. 0.3-0.5cm diameter. Flowers Flowers Large, widely spaced Stem Segments Stem Segments Stem Segments Stem Segments Flowers Flowers Flowers Flowers Flowers Flowers CHINNO Flowers Flowers B tubercles give a woven, Pink-red.Flowers Flowers PaleFlowers to greenish yellow.Flowers Stem Segments Stem Segments Stem Segments Stem Segments BO SHAUNA POTTER SHAUNA POTTER rope like appearance. Flowers Flowers Fruits Fruits Flowers Flowers Fruits Fruits EggFruits or cylinder shaped.Fruits Fleshy,Fruits egg shaped. Fruits Fruits Fruits Flowers Flowers Fruits Fruits Fruits Fruits DarkFlowers pink, magenta. Flowers Stem Segments Stem Segments RipensFruits to orange. Fruits Yellow to red when ripe. Spines Spines Flashy,Fruits egg shaped, Fruits Spines Spines Spineless.FruitsSpines Often sterile.Fruits Spines Spines Spines Spines Spines Spines Spines Spines Spines Flowers Flowers 1-4Spines spines, 2-4.5cmSpines long. to Fruits4cm long. Greenish-Fruits White to brown. (Tan 0-4Spines spines, 0.5-1.5cmSpines long. yellowSpines when ripe. Spines Fruits Fruits (CanSpines form chains). Spines sheath firmly attached). Cream to pale yellow. 2-12Spines spines, 0.8-3cmSpines long. Trunks often covered in K K C spines. Off white-cream. C CHINNO (Off white-cream sheath CHINNO B B BO BO attached). POTTERSHAUNA Cylindropuntia prolifera Cylindropuntia spinosior Cylindropuntia rosea Jumping cholla Snake cactus (White-spined) Hudson pear Low shrub 0.4-1m tall. Erect shrub to 1m tall. Often Low, spreading shrub, 0.5-1m Deciduous leaves. forming patches several metres tall. Up to 3m wide. Old plants SHAUNA POTTERSHAUNA Greenish grey. 4-15cm wide. Similar to C. prolifera, can develop trunks, but not Stem Segments Stem Segments but different spine and fruit commonly seen. Deciduous long, 4-5cm diameter. colour. Deciduous leaves. leaves. EasilyStem Segments detached. Stem Segments ProminentStemFlowers Segments tubercles. StemFlowers Segments Mid grey-green. 10-24cm Grey-pale green. 4.5-26cm Stem Segments Stem Segments Stem Segments Stem Segments long, 1.5-3cm diameter. long, 1.5-3.5cm diameter. Flowers Flowers Fruits Fruits SHAUNA POTTER Stem Segments Stem Segments SHAUNA POTTER Stem Segments Stem Segments RoseStemFlowers Segments to magenta. Stem SegmentsFlowers Firmly attached. Easily detached. Prominent FlowersStem Segments FlowersStem Segments FlowersStem Segments FlowersStem Segments Prominent tubercles. tubercles. TopFruits shaped, 2-5cm long.Fruits Flowers Flowers Flowers Flowers Flowers Flowers FruitsSpines FruitsSpines Stem Segments Stem Segments Stem Segments Stem Segments Rose-purple. Pink-red.Flowers Flowers Green. Can form chains. FruitsFlowers FruitsFlowers Fruits Fruits UsuallyFruitsSpines sterile . Fruits Spines OblongFlowersFruits to egg shaped,Flowers Fruits to Spines Spines Fleshy,FlowersFruits cylindrical,Flowers to 4cmFruits long.SpinesFruits Yellow, sometimesSpinesFruits 3cmSpinesFruits long. Green-yellowSpinesFruits 7-11Spines spines, 1-2cmSpines long. Fruits Fruits Fruits Fruits green. green.Spines Sterile hybrid. Spines Light to dark brown, Spines Spines Spines Spines Spines Spines Spines Spines interlacing. (White to tan K 7-14 spines, 1-4cm long. 6-24Spines spines, 0.8-1.5cmSpines C K K C sheath firmly attached ). C White to light brown. long, interlacing. White to CHINNO B grey. (White sheath firmly (White sheath loosely CHINNO CHINNO BO B B attached). BO attached). BO Cylindropuntia tunicata Key to symbols Glossary (Brown-spined) Hudson pear Low, densely branched shrub Stem Segments Stem Segments Areole – small pits or depressions on the surface of segments. This poster is based on a Stem Segments Stem Segments 0.3 to 0.6m tall. Deciduous StemStem Segments segments Stem Segments Glochids – small, detachable barbed bristles. previous version by leaves. Flowers Flowers the South Australian FlowersFlowersFlowers Flowers Flowers Tubercle – a small raised area or nodule on a plant surface. Pale grey-green. 10-20cm Opuntia Taskforce. Stem Segments Stem Segments Stem segment – distinct, individual part of the stem. Can be cylindrical (e.g. in long, 1.5-3cm diameter. FruitsFruitsFruits Fruits Fruits Fruits Fruits Austrocylindropuntia & Cylindropuntia), or flattened (e.g. in Opuntia, commonly EasilyStem Segments detached. ProminentStem Segments Flowers Flowers Stem Segments Stem Segments SpinesSpines Spines referred to as pads). tubercles. Spines Spines SHAUNA POTTERSHAUNA Spines Spines Sheath – papery outer covering of the spine. Only present in Cylindropuntia species. Flowers Flowers Fruits Fruits Yellowish-brown.StemFlowers Segments Stem SegmentsFlowers ClubFruits to top shaped. Fruits Flowers Flowers FruitsSpines FruitsSpines Greenish-yellowish to red. Spineless.FruitsSpines Usually Fruitssterile.Spines Spines Spines 4-7Spines spines, 3-7cm long.Spines Red-brown to pale brown. K C (Brownish sheath loosely attached). CHINNO B BO.
Recommended publications
  • What Did the First Cacti Look Like
    What Did the First Cactus Look like? An Attempt to Reconcile the Morphological and Molecular Evidence Author(s): M. Patrick Griffith Source: Taxon, Vol. 53, No. 2 (May, 2004), pp. 493-499 Published by: International Association for Plant Taxonomy (IAPT) Stable URL: http://www.jstor.org/stable/4135628 . Accessed: 03/12/2014 10:33 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. International Association for Plant Taxonomy (IAPT) is collaborating with JSTOR to digitize, preserve and extend access to Taxon. http://www.jstor.org This content downloaded from 192.135.179.249 on Wed, 3 Dec 2014 10:33:44 AM All use subject to JSTOR Terms and Conditions TAXON 53 (2) ' May 2004: 493-499 Griffith * The first cactus What did the first cactus look like? An attempt to reconcile the morpholog- ical and molecular evidence M. Patrick Griffith Rancho Santa Ana Botanic Garden, 1500 N. College Avenue, Claremont, California 91711, U.S.A. michael.patrick. [email protected] THE EXTANT DIVERSITYOF CAC- EARLYHYPOTHESES ON CACTUS TUS FORM EVOLUTION Cacti have fascinated students of naturalhistory for To estimate evolutionaryrelationships many authors many millennia. Evidence exists for use of cacti as food, determinewhich morphological features are primitive or medicine, and ornamentalplants by peoples of the New ancestral versus advanced or derived.
    [Show full text]
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • The Natural World That I Seek out in the Desert Regions of Baja California
    The natural world that I seek out in the desert regions of Baja California and southern California provides me with scientific adventure, excitement towards botany, respect for nature, and overall feelings of peace and purpose. Jon P. Rebman, Ph.D. has been the Mary and Dallas Clark Endowed Chair/Curator of Botany at the San Diego Natural History Museum (SDNHM) since 1996. He has a Ph.D. in Botany (plant taxonomy), M.S. in Biology (floristics) and B.S. in Biology. Dr. Rebman is a plant taxonomist and conducts extensive floristic research in Baja California and in San Diego and Imperial Counties. He has over 15 years of experience in the floristics of San Diego and Imperial Counties and 21 years experience studying the plants of the Baja California peninsula. He leads various field classes and botanical expeditions each year and is actively naming new plant species from our region. His primary research interests have centered on the systematics of the Cactus family in Baja California, especially the genera Cylindropuntia (chollas) and Opuntia (prickly-pears). However, Dr. Rebman also does a lot of general floristic research and he co- published the most recent edition of the Checklist of the Vascular Plants of San Diego County. He has over 22 years of field experience with surveying and documenting plants including rare and endangered species. As a field botanist, he is a very active collector of scientific specimens with his personal collections numbering over 22,500. Since 1996, he has been providing plant specimen identification/verification for various biological consulting companies on contracts dealing with plant inventory projects and environmental assessments throughout southern California.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    SYSTEMATICS OF TRIBE TRICHOCEREEAE AND POPULATION GENETICS OF Haageocereus (CACTACEAE) By MÓNICA ARAKAKI MAKISHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Mónica Arakaki Makishi 2 To my parents, Bunzo and Cristina, and to my sisters and brother. 3 ACKNOWLEDGMENTS I want to express my deepest appreciation to my advisors, Douglas Soltis and Pamela Soltis, for their consistent support, encouragement and generosity of time. I would also like to thank Norris Williams and Michael Miyamoto, members of my committee, for their guidance, good disposition and positive feedback. Special thanks go to Carlos Ostolaza and Fátima Cáceres, for sharing their knowledge on Peruvian Cactaceae, and for providing essential plant material, confirmation of identifications, and their detailed observations of cacti in the field. I am indebted to the many individuals that have directly or indirectly supported me during the fieldwork: Carlos Ostolaza, Fátima Cáceres, Asunción Cano, Blanca León, José Roque, María La Torre, Richard Aguilar, Nestor Cieza, Olivier Klopfenstein, Martha Vargas, Natalia Calderón, Freddy Peláez, Yammil Ramírez, Eric Rodríguez, Percy Sandoval, and Kenneth Young (Peru); Stephan Beck, Noemí Quispe, Lorena Rey, Rosa Meneses, Alejandro Apaza, Esther Valenzuela, Mónica Zeballos, Freddy Centeno, Alfredo Fuentes, and Ramiro Lopez (Bolivia); María E. Ramírez, Mélica Muñoz, and Raquel Pinto (Chile). I thank the curators and staff of the herbaria B, F, FLAS, LPB, MO, USM, U, TEX, UNSA and ZSS, who kindly loaned specimens or made information available through electronic means. Thanks to Carlos Ostolaza for providing seeds of Haageocereus tenuis, to Graham Charles for seeds of Blossfeldia sucrensis and Acanthocalycium spiniflorum, to Donald Henne for specimens of Haageocereus lanugispinus; and to Bernard Hauser and Kent Vliet for aid with microscopy.
    [Show full text]
  • Native Range Size and Growth Form in Cactaceae Predict Invasiveness
    A peer-reviewed open-access journal NeoBiota 30: 75–90Native (2016) range size and growth form in Cactaceae predict invasiveness and impact 75 doi: 10.3897/neobiota.30.7253 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net Advancing research on alien species and biological invasions Native range size and growth form in Cactaceae predict invasiveness and impact Ana Novoa1,2, Sabrina Kumschick1,2, David M. Richardson1, Mathieu Rouget3, John R. U. Wilson1,2 1 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa 2 Invasive Species Programme, South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa 3 Centre for Invasion Biology, School of Agricultural, Earth and Environmen- tal Sciences, University of KwaZulu-Natal, Scottsville, South Africa Corresponding author: Ana Novoa ([email protected]) Academic editor: C. Daehler | Received 20 November 2015 | Accepted 31 March 2016 | Published 23 June 2016 Citation: Novoa A, Kumschick S, Richardson DM, Rouget M, Wilson JRU (2016) Native range size and growth form in Cactaceae predict invasiveness and impact. In: Daehler CC, van Kleunen M, Pyšek P, Richardson DM (Eds) Proceedings of 13th International EMAPi conference, Waikoloa, Hawaii. NeoBiota 30: 75–90. doi: 10.3897/neobiota.30.7253 Abstract Many recent studies in invasion science have identified species traits that determine either invasiveness or impact. Such analyses underpin risk assessments and attempts to prioritise management actions. However, the factors that mediate the capacity of an introduced species to establish and spread (i.e. its invasiveness) can differ from those that affect the nature and severity of impacts. Here we compare those traits correlated with invasiveness with those correlated with impact for Cactaceae (“cacti”) in South Africa.
    [Show full text]
  • Sauromalus Hispidus
    ARTÍCULOS CIENTÍFICOS Cerdá-Ardura & Langarica-Andonegui 2018 - Sauromalus hispidus in Rasa Island- p 17-28 ON THE PRESENCE OF THE SPINY CHUCKWALLA SAUROMALUS HISPIDUS (STEJNEGER, 1891) IN RASA ISLAND, MEXICO PRESENCIA DEL CHACHORÓN ESPINOSO SAUROMALUS HISPIDUS (STEJNEGER, 1891) EN LA ISLA DE RASA, MÉXICO Adrián Cerdá-Ardura1* and Esther Langarica-Andonegui2 1Lindblad Expeditions/National Geographic. 2Facultad de Ciencias, Uiversidad Nacional Autónoma de México, CDMX, México. *Correspondence author: [email protected] Abstract.— In 2006 and 2013 two different individuals of the Spiny Chuckwalla (Sauromalus hispidus) were found on the small, flat, volcanic and isolated Rasa Island, located in the Midriff Region of the Gulf of California, Mexico. This species had never been recorded from Rasa Island prior to 2006. A new field study in 2014 revealed the presence of a single female chuckwalla inhabiting the Tapete Verde Valley, in the south-central part of the island, occupying a territory no bigger than 10000 m2. A scat analysis shows that the only food consumed by the animal is the Alkali Weed (Cressa truxilliensis) that forms patches of carpets in its habitat. The individual is in precarious condition, as it seems to starve on a seasonal basis, especially during El Niño cycles; also, it is missing fingers and toes, which appear to be intentional markings by amputation. We conclude that the two individuals were introduced to the island intentionally by humans. Keywords.— Chuckwalla, Gulf of California, Rasa Island. Resumen.— En 2006 y 2013 se encontraron dos individuos diferentes del cachorón de roca o chuckwalla espinoso (Sauromalus hispidus) en la pequeña, plana, volcánica y aislada isla Rasa, localizada en la Región de las Grandes Islas, en el Golfo de California, México.
    [Show full text]
  • Checklist of the Vascular Alien Flora of Catalonia (Northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3
    BOTANICAL CHECKLISTS Mediterranean Botany ISSNe 2603-9109 https://dx.doi.org/10.5209/mbot.63608 Checklist of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3 Received: 7 March 2019 / Accepted: 28 June 2019 / Published online: 7 November 2019 Abstract. This is an inventory of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) updated to 2018, representing 1068 alien taxa in total. 554 (52.0%) out of them are casual and 514 (48.0%) are established. 87 taxa (8.1% of the total number and 16.8 % of those established) show an invasive behaviour. The geographic zone with more alien plants is the most anthropogenic maritime area. However, the differences among regions decrease when the degree of naturalization of taxa increases and the number of invaders is very similar in all sectors. Only 26.2% of the taxa are more or less abundant, while the rest are rare or they have vanished. The alien flora is represented by 115 families, 87 out of them include naturalised species. The most diverse genera are Opuntia (20 taxa), Amaranthus (18 taxa) and Solanum (15 taxa). Most of the alien plants have been introduced since the beginning of the twentieth century (70.7%), with a strong increase since 1970 (50.3% of the total number). Almost two thirds of alien taxa have their origin in Euro-Mediterranean area and America, while 24.6% come from other geographical areas. The taxa originated in cultivation represent 9.5%, whereas spontaneous hybrids only 1.2%. From the temporal point of view, the rate of Euro-Mediterranean taxa shows a progressive reduction parallel to an increase of those of other origins, which have reached 73.2% of introductions during the last 50 years.
    [Show full text]
  • Taxonomy and Distribution of Opuntia and Related Plants
    Taxonomy and Distribution of Opuntia and Related Genera Raul Puente Desert Botanical Garden Donald Pinkava Arizona State University Subfamily Opuntioideae Ca. 350 spp. 13-18 genera Very wide distribution (Canada to Patagonia) Morphological consistency Glochids Bony arils Generic Boundaries Britton and Rose, 1919 Anderson, 2001 Hunt, 2006 -- Seven genera -- 15 genera --18 genera Austrocylindropuntia Austrocylindropuntia Grusonia Brasiliopuntia Brasiliopuntia Maihuenia Consolea Consolea Nopalea Cumulopuntia Cumulopuntia Opuntia Cylindropuntia Cylindropuntia Pereskiopsis Grusonia Grusonia Pterocactus Maihueniopsis Corynopuntia Tacinga Miqueliopuntia Micropuntia Opuntia Maihueniopsis Nopalea Miqueliopuntia Pereskiopsis Opuntia Pterocactus Nopalea Quiabentia Pereskiopsis Tacinga Pterocactus Tephrocactus Quiabentia Tunilla Tacinga Tephrocactus Tunilla Classification: Family: Cactaceae Subfamily: Maihuenioideae Pereskioideae Cactoideae Opuntioideae Wallace, 2002 Opuntia Griffith, P. 2002 Nopalea nrITS Consolea Tacinga Brasiliopuntia Tunilla Miqueliopuntia Cylindropuntia Grusonia Opuntioideae Grusonia pulchella Pereskiopsis Austrocylindropuntia Quiabentia 95 Cumulopuntia Tephrocactus Pterocactus Maihueniopsis Cactoideae Maihuenioideae Pereskia aculeata Pereskiodeae Pereskia grandiflora Talinum Portulacaceae Origin and Dispersal Andean Region (Wallace and Dickie, 2002) Cylindropuntia Cylindropuntia tesajo Cylindropuntia thurberi (Engelmann) F. M. Knuth Cylindropuntia cholla (Weber) F. M. Knuth Potential overlapping areas between the Opuntia
    [Show full text]
  • Lake Havasu City Recommended Landscaping Plant List
    Lake Havasu City Recommended Landscaping Plant List Lake Havasu City Recommended Landscaping Plant List Disclaimer Lake Havasu City has revised the recommended landscaping plant list. This new list consists of plants that can be adapted to desert environments in the Southwestern United States. This list only contains water conscious species classified as having very low, low, and low-medium water use requirements. Species that are classified as having medium or higher water use requirements were not permitted on this list. Such water use classification is determined by the type of plant, its average size, and its water requirements compared to other plants. For example, a large tree may be classified as having low water use requirements if it requires a low amount of water compared to most other large trees. This list is not intended to restrict what plants residents choose to plant in their yards, and this list may include plant species that may not survive or prosper in certain desert microclimates such as those with lower elevations or higher temperatures. In addition, this list is not intended to be a list of the only plants allowed in the region, nor is it intended to be an exhaustive list of all desert-appropriate plants capable of surviving in the region. This list was created with the intention to help residents, businesses, and landscapers make informed decisions on which plants to landscape that are water conscious and appropriate for specific environmental conditions. Lake Havasu City does not require the use of any or all plants found on this list. List Characteristics This list is divided between trees, shrubs, groundcovers, vines, succulents and perennials.
    [Show full text]
  • Targeting Biotypes of Dactylopius Tomentosus to Improve Effective Biocontrol of Cylindropuntia Spp
    Nineteenth Australasian Weeds Conference Targeting biotypes of Dactylopius tomentosus to improve effective biocontrol of Cylindropuntia spp. in Australia Peter K. Jones1, Royce H. Holtkamp2 and Michael D. Day1 1 Department of Agriculture, Fisheries and Forestry, GPO Box 267, Brisbane, Qld 4001, Australia 2 Department of Primary Industries, 4 Marsden Park Road, Calala, NSW 2340, Australia ([email protected]) Summary Seven Dactylopius tomentosus (Lamarck) Control strategies are mainly by herbicide applica- biotypes were collected from a range of Cylindrop- tion and physical removal. The latter is successful with untia spp. in Mexico, South Africa and United States small infestations and isolated plants. However, these of America (USA) and imported into quarantine fa- removed plants also require correct disposal by burn- cilities at the Ecosciences Precinct. Host range trials ing or burial to ensure new infestations do not occur. were conducted for each biotype and further assessed Biological control of Cylindropuntia spp. is a cost against the Cylindropuntia species that are naturalised effective and successful control strategy used in the in Australia to determine the most effective biotype for Republic of South Africa and Australia. Dactylopius each species. Host range was confined to the Cylindro- tomentosus (‘imbricata’ biotype) was imported into puntia for all seven biotypes. In the efficacy trials, C. Australia in 1925, as a biocontrol agent for C. imbri- imbricata (Haw.) F.M.Knuth was killed by the ‘imbri- cata. It is now widespread throughout areas where cata’ biotype within 16 weeks and C. kleiniae (DC.) C. imbricata is present and is assisting in its control F.M.Knuth died within 26 weeks.
    [Show full text]
  • List of Approved Plants
    APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Disturbance, Restoration, and Soil Carbon Dynamics in Desert and Tropical Ecosystems a Disser
    UNIVERSITY OF CALIFORNIA RIVERSIDE Disturbance, Restoration, and Soil Carbon Dynamics in Desert and Tropical Ecosystems A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Plant Biology by Amanda Cantu Swanson September 2017 Dissertation Committee: Dr. Edith B. Allen, Chairperson Dr. G. Darrel Jenerette Dr. James O. Sickman Copyright by Amanda Cantu Swanson 2017 The Dissertation of Amanda Cantu Swanson is approved: Committee Chairperson University of California, Riverside Acknowledgements I would like to acknowledge my principal advisor, Dr. Edith B. Allen, for seeing my potential when I was a student volunteer and for encouraging me to be a restoration and plant ecologist. She has been a wonderful mentor, resource, and colleague, and her guidance has enabled me to succeed in graduate school. Working in her lab has been an invaluable experience that will serve me throughout my career. I would also like to acknowledge Dr. Michael F. Allen, who informally co-advised me during my Ph.D. He has also been an incredible teacher and supporter, whose wisdom and creativity have further inspired me to ask novel scientific questions and pursue a career in research. I would also like to thank my dissertation committee members Dr. G. Darrel Jenerette and Dr. James Sickman for their unwavering support and guidance. Several other faculty and collaborators have generously given their time, resources, and support to help me with my dissertation: Dr. Emma Aronson, Dr. Cameron Barrows, Jon Botthoff, Dr. Diego Dierick, Dr. Mark De Guzman, Mark Fisher, Dr. Rebecca Hernandez, Dr. Liyin Liang, Dr. Allen Muth, Dr.
    [Show full text]