Reproductive Isolation Driven by the Combined Effects of Ecological

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Isolation Driven by the Combined Effects of Ecological Received 28January 2003 Accepted 14 May 2003 Publishedonline 25 July 2003 Reproductive isolationdriven bythe combinedeffects of ecologicaladaptation and reinforce ment P. Nosil1* ,B.J.Crespi 1 and C.P.Sandoval 2 1Departmentof Biosciences, BehavioralEcology Research Group, 8888 University Drive,Simon FraserUniversity, Burnaby, BritishColumbia V5A 1S6, Canada 2MarineScience Institute, University ofCalifornia, Santa Barbara, CA 93206,USA Recentyears have seena resurgenceof interestin theprocess of speciationbut few studies have elucidated themechanisms either driving or constraining theevolution ofreproductive isolation. In theory, thedirect effectsof reinforcing selectionfor increasedmating discrimination whereinterbreeding produceshybrid offspring with lowfitness and the indirect effectsof adaptation todifferent environments can both promote speciation.Conversely, high levels ofhomogenizing geneflow can counteract the forces of selection. We demonstratethe opposing effectsof reinforcing selectionand gene flow in Timema cristinae walking-stick insects.The magnitude offemale mating discrimination against males from other populations is greatest whenmigration rates betweenpopulations adaptedto alternate hostplants are high enoughto allow the evolutionof reinforcement, but low enough to prevent gene flow from eroding adaptive divergencein mate choice.Moreover, reproductive isolation is strongestunder the combined effects of reinforcement andadaptation toalternate hostplants. Our findingsdemonstrate the joint effects of reinforcement, eco- logical adaptation andgene flow on progress towardsspeciation in thewild. Keywords: geneflow; hybridization; natural selection;speciation; Timema;walking-stick insects 1. INTRODUCTION distributedthroughout westernNorth America (Crespi& Sandoval 2000). Timema cristinae exhibits twogenetically Speciation via natural selectioncan occur as an indirect determinedcolour-pattern morphs (Sandoval 1993), with by-productof adaptive divergence(Mayr 1963; Jiggins et an unstripedmorph being more commonon thehost plant al. 2001) andcan also involve directselection for repro- Ceonothusspinosus anda stripedmorph being more com- ductiveisolation in geographical regions wherehybridiz- mon on Adenostomafasciculatum (Sandoval 1994 a). Pre- ation is maladaptive (i.e.reinforcement) (Dobzhansky dation on T.cristinae by birds andlizards is strong and 1951; Howard1993; Butlin 1995; Noor 1999). When eachmorph is mostcryptic onthe plant onwhich it is speciationoccurs as a by-productof adaptive divergence, more common(Sandoval 1994 a,b).Populations usingdif- ecologically divergent populations exhibit greater repro- ferenthost plants have also diverged in asuiteof other ductiveisolation than ecologically similar populations of morphological andbehavioural traits, including body size similar age (reviewedin Funk1998; Rundle et al. 2000; andshape, host preference and cryptic resting behaviour, Schluter2000; Funk et al. 2002). The key prediction of wherehost preference refers to a preferenceto rest on a thereinforcement hypothesis is that non-allopatric particular host,given thechoice (Nosil et al. 2002; Nosil & (geographically contiguousor overlapping) populations Crespi2003). will exhibit greater mating discrimination than allopatric Levelsof sexual isolation are higher betweenpairs of T. (geographically separated)populations. Previous empirical cristinae populations usingdifferent host plants ( n = 15 studiesof reinforcementhave provided evidencefor sucha pairs) than betweensimilar-aged pairs usingthe same host pattern (Noor 1995; Saetre et al. 1997; Rundle& Schluter plant (n = 13 pairs) (Nosil et al. 2002). Becauseinsect col- 1998; Higgie et al. 2000) butthere are fewdata onhow ourmorph (stripedversus unstriped) does not influence ecological adaptation andreinforcement interact during between-populationmate choice,the sexual isolation that thespeciation process (Schluter 2000). Furthermore, has evolved betweenpopulations adaptedto alternate although theoretical modelspredict that theoutcome of hostsis independentof colour pattern (although colour reinforcementreflects a balance betweenthe strength of pattern might influencewithin-population mate choice; reinforcing selectionand the ability ofhomogenizing gene Nosil et al. 2002). In this study,we expand previous work flowbetween populations tocounteract selection by consideringthe effects of reinforcing selectionand gene (Sanderson1989; Servedio& Kirkpatrick 1997; Cain et flowon between-population mating preferences. al. 1999; Servedio2000), this prediction has never,to our Timemacristinae satisfiesall ofthe preconditions for knowledge,been tested using natural populations. reinforcementto contribute to the reproductive isolation In this paper, weuse Timema walking-stick insectsto observedbetween populations. First, interbreeding and analyse thejoint roles ofecological adaptation, reinforce- geneflow between adjacent populations usingdifferent mentand gene flow in theevolution ofreproductive iso- hostplants (i.e.‘ hybridization’between the host-adapted lation. Timema are winglessphytophagous insects forms)is strongly suggestedby theobservations that indi- viduals from adjacentpopulations ondifferent hosts are well within oneper-generation dispersal distanceof each *Authorfor correspondence ([email protected]). other (Sandoval 1993, 1994 a)andthat between-morph Proc.R. Soc.Lond. B (2003) 270, 1911–1918 1911 Ó 2003 TheRoyal Society DOI10.1098/ rspb.2003.2457 1912P. Nosil andothers Natural selection andspeciation matings are commonin naturewhere populations using differenthosts are in contact(Nosil et al. 2002). More- over,geographical variation in morphology is indicative of parapatric 1 abalance betweenhost-specific selection and gene flow population A C betweenadjacent patches (Sandoval 1994 a;Nosil &Cre- C spi 2003), andthe populations are conspecific.In this allopatric study,we use mitochondrial DNA (mtDNA) sequence C variation toprovide further evidenceof interbreeding and population 2 geneflow between adjacent populations of T.cristinae . Second,the evolution ofreinforcement traditionally parapatric C A 3 requiresreduced hybrid fitness.In T.cristinae, between- population hostmigrants are more likely tobe of the locally non- C matching colourmorph than are residents(Sandoval allopatric A 1994a)andthe non-matching morph is at alarge selective population 4 disadvantage owing todifferential predation (therelative fitnessof the less-cryptic morph is 0.30; Sandoval Figure 1. Representative examplesof thefour ‘types’ of 1994a,b).Thusoffspring derivedfrom between-hostmat- between-population crosses (C, Ceonothus population; A, Adenostoma population). Eachsquare represents a ing (i.e. ‘hybridization ’)will tendto exhibit reducedfitness homogeneous patchof asingle host plant, whichmay or relative tooffspring derivedfrom within-population mat- maynot havea neighbouring population using the ing becausefemales who mate with locally less-cryptic alternative host plant (parapatric and allopatric populations, males producea higher frequencyof offspring that are the respectively). ‘Study’ populations used in mating trials are locally non-matching colourmorph or intermediate in col- represented byunfilled boxes, and blackboxes represent ourpattern (i.e.bear afaint stripe) than femalesthat mate populations thatare adjacent toastudy population but were with cryptic males (experimental geneticcrosses show that not used in mating trials. In thefigure, malesfrom allopatric Ceonothus populations are used asan illustrative example; in only 5% ofwithin-morph crossesproduce F 1 offspring of thealternate morph or intermediates,whereas 80% of themating trials malesfrom eachof the12 study between-morphcrosses produce both morphs or inter- populations were used (i.e. malesfrom allopatric and parapatric populations on eachhost). 1, femaleparapatric, mediates;Sandoval 1993). Although previous workdem- male from thesame host; 2, femaleallopatric, male from the onstratesthat femalesproducing offspring ofthe samehost; 3, femaleparapatric, male from thealternative non-matching colour-patternmorph will beat aselective host; 4, femaleallopatric, male from thealternative host. disadvantage (Sandoval 1994 a,b),thecost of producing offspring that are intermediate in colourpattern is lesswell known.In thecurrent study, we test whether selection against theintermediate colour-patternmorph also are geographically separatedfrom all other hostpatches imposesreinforcing selection,predicting that if theinter- by regions lacking suitable hosts.We define a ‘population’ mediate morph exhibits lowfitness then its frequencywill ofwalking-stick insectsas all theinsects collected within declinethrough time (i.e.between sequential time periods ahomogeneouspatch ofa single hostplant. ‘Parapatric’ andage classes;Endler 1986). Becausepopulations using insectpopulations are in contactwith apopulation of differenthosts have diverged in anumberof traits other insectsadapted to the alternate host,while ‘allopatric’ than colourpattern (Nosil et al. 2002; Nosil &Crespi populations are separatedfrom all populations adaptedto 2003), selectionagainst ‘hybrids’ may extendbeyond that thealternative hostby distancesof more than 50 timesthe basedupon colour pattern alone. 12 mper-generation gene-flowdistance (Sandoval 1993). Finally, wenote that recenttheoretical workindicates Reinforcementwould be supported by higher between- that directselection against hybrid mating canpromote population copulation frequenciesin mating trials involv-
Recommended publications
  • De Novo Characterization of the Timema Cristinae Transcriptome Facilitates Marker Discovery and Inference of Genetic Divergence
    Molecular Ecology Resources (2012) doi: 10.1111/j.1755-0998.2012.03121.x De novo characterization of the Timema cristinae transcriptome facilitates marker discovery and inference of genetic divergence AARON A. COMEAULT,* MATHEW SOMMERS,* TANJA SCHWANDER,† C. ALEX BUERKLE,‡ TIMOTHY E. FARKAS,* PATRIK NOSIL* and THOMAS L. PARCHMAN‡ *Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80303, USA, †Center for Ecology and Evolutionary Studies, University of Groningen, 9700CC Groningen, The Netherlands, ‡Department of Botany, University of Wyoming, Laramie, WY 82071, USA Abstract Adaptation to different ecological environments can promote speciation. Although numerous examples of such ‘ecological speciation’ now exist, the genomic basis of the process, and the role of gene flow in it, remains less understood. This is, at least in part, because systems that are well characterized in terms of their ecology often lack genomic resources. In this study, we characterize the transcriptome of Timema cristinae stick insects, a system that has been researched intensively in terms of ecological speciation, but for which genomic resources have not been previously developed. Specifically, we obtained >1 million 454 sequencing readsthatassembledinto84937contigsrepresenting approximately 18 282 unique genes and tens of thousands of potential molecular markers. Second, as an illustration of their utility, we used these geno- mic resources to assess multilocus genetic divergence within both an ecotype pair and a species pair of Timema stick insects. The results suggest variable levels of genetic divergence and gene flow among taxon pairs and genes and illustrate afirststeptowardsfuturegenomicworkinTimema. Keywords: gene flow, isolation with migration, next-generation sequencing, speciation, transcriptome Received 3 November 2011; revision received 6 January 2012; accepted 13 January 2012 Introduction resources (some notable exceptions aside, such as three- spine stickleback; Peichel et al.
    [Show full text]
  • Phasmida (Stick and Leaf Insects)
    ● Phasmida (Stick and leaf insects) Class Insecta Order Phasmida Number of families 8 Photo: A leaf insect (Phyllium bioculatum) in Japan. (Photo by ©Ron Austing/Photo Researchers, Inc. Reproduced by permission.) Evolution and systematics Anareolatae. The Timematodea has only one family, the The oldest fossil specimens of Phasmida date to the Tri- Timematidae (1 genus, 21 species). These small stick insects assic period—as long ago as 225 million years. Relatively few are not typical phasmids, having the ability to jump, unlike fossil species have been found, and they include doubtful almost all other species in the order. It is questionable whether records. Occasionally a puzzle to entomologists, the Phasmida they are indeed phasmids, and phylogenetic research is not (whose name derives from a Greek word meaning “appari- conclusive. Studies relating to phylogeny are scarce and lim- tion”) comprise stick and leaf insects, generally accepted as ited in scope. The eggs of each phasmid are distinctive and orthopteroid insects. Other alternatives have been proposed, are important in classification of these insects. however. There are about 3,000 species of phasmids, although in this understudied order this number probably includes about 30% as yet unidentified synonyms (repeated descrip- Physical characteristics tions). Numerous species still await formal description. Stick insects range in length from Timema cristinae at 0.46 in (11.6 mm) to Phobaeticus kirbyi at 12.9 in (328 mm), or 21.5 Extant species usually are divided into eight families, in (546 mm) with legs outstretched. Numerous phasmid “gi- though some researchers cite just two, based on a reluctance ants” easily rank as the world’s longest insects.
    [Show full text]
  • Reproductive Isolation of Two Sympatric Louseworts, Pedicularis
    Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066© 2006 The Linnean Society of London? 2006 90? 3748 Original Article REPRODUCTIVE ISOLATION IN SYMPATRIC LOUSEWORTS C.-F. YANG ET AL . Biological Journal of the Linnean Society, 2007, 90, 37–48. With 4 figures Reproductive isolation of two sympatric louseworts, Pedicularis rhinanthoides and Pedicularis longiflora (Orobanchaceae): how does the same pollinator type avoid interspecific pollen transfer? CHUN-FENG YANG, ROBERT W. GITURU† and YOU-HAO GUO* College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China Received 11 April 2005; accepted for publication 1 March 2006 To study the isolation mechanism of two commonly intermingled louseworts, Pedicularis rhinanthoides and Pedic- ularis longiflora, pollination biology in three mixed populations with the two species was investigated during a 3- year project. The results indicated that higher flowering density could help to enhance pollinator activity, and thus increase reproductive output. Bumblebees are the exclusive pollinator for the two louseworts and are essential for their reproductive success. Reproductive isolation between the two species is achieved by a combination of pre- and postzygotic isolation mechanisms. Although both species are pollinated by bumblebees, the present study indicates they successfully avoid interspecific pollen transfer due to floral isolation. Mechanical isolation is achieved by the stigma in the two species picking up pollen from different parts of the pollinator’s body, whereas ethological isolation occurs due to flower constancy. Additionally, strong postzygotic isolation was demonstrated by non seed set after arti- ficial cross-pollination even with successful pollen tube growth. We describe the hitherto unreported role of variation in the tightness and direction of the twist of the corolla beak in maintaining mechanical isolation between Pedicu- laris species.
    [Show full text]
  • Behavioural Mechanisms of Reproductive Isolation Between Two Hybridizing Dung Fly Species
    Animal Behaviour 132 (2017) 155e166 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Behavioural mechanisms of reproductive isolation between two hybridizing dung fly species * Athene Giesen , Wolf U. Blanckenhorn, Martin A. Schafer€ Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland article info Characterization of the phenotypic differentiation and genetic basis of traits that can contribute to Article history: reproductive isolation is an important avenue to understand the mechanisms of speciation. We quan- Received 29 November 2016 tified the degree of prezygotic isolation and geographical variation in mating behaviour among four Initial acceptance 26 January 2017 populations of Sepsis neocynipsea that occur in allopatry, parapatry or sympatry with four populations of Final acceptance 21 June 2017 its sister species Sepsis cynipsea. To obtain insights into the quantitative genetic basis and the role of selection against hybrid phenotypes we also investigated mating behaviour of F1 hybrid offspring and MS. number: 16-01039R corresponding backcrosses with the parental populations. Our study documents successful hybridization under laboratory conditions, with low copulation frequencies in heterospecific pairings but higher fre- Keywords: quencies in pairings of F1 hybrids signifying hybrid vigour. Analyses of F1 offspring and their parental biogeography backcrosses provided little evidence for sexual selection against hybrids.
    [Show full text]
  • 10 What Is a Species? Investigation • 3–4 C L a S S S E S S I O N S
    10 What Is a Species? investigation • 3–4 c l a s s s e s s i o n s OVERVIEW MatERIals and adVanCE PREPaRatIOn In this activity students learn about the biological species For the teacher concept in defining species and how it provides information transparency of Scoring Guide: GROUP INTERACTION (GI) about where new species are in the process of separation transparency of Scoring Guide: UNDERSTANDING from closely related species. Students then investigate the CONCEPTS (UC) factors that lead to reproductive isolation of species. For each group of four students set of 14 Species Pairs Cards KEy COntEnt set of 8 Reproductive Barrier Cards 1. Species evolve over time. The millions of species that live chart paper* (optional) on the earth today are related by descent from common markers* (optional) ancestors. For each student 2. Taxa are classified in a hierarchy of groups and sub- Student Sheet 10.1, “Supporting a Scientific Argument” groups based on genealogical relationships. (optional) 3. The broad patterns of behavior exhibited by animals Scoring Guide: GROUP INTERACTION (GI) (optional) have evolved by natural selection as a result of reproduc- Scoring Guide: UNDERSTANDING CONCEPTS (UC) tive success. (optional) 4. Scientists have found that the original definition of spe- *Not supplied in kit cies as groups of organisms with similar morphology Decide in advance if you will hand out Student Sheet does not reflect underlying evolutionary processes. 10.1,“Supporting a Scientific Argument,” or have students 5. The biological species concept defines a species as a pop- record this information in their science notebooks.
    [Show full text]
  • Ecological Epigenetics in Timema Cristinae Stick Insects: on the Patterns, Mechanisms and Ecological Consequences of DNA Methylation in the Wild
    Ecological epigenetics in Timema cristinae stick insects: On the patterns, mechanisms and ecological consequences of DNA methylation in the wild Clarissa Ferreira de Carvalho A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Science Department of Animal and Plant Sciences Submission Date April 2019 I II Abstract Epigenetic factors can contribute to phenotypic diversity and to ecological processes. For instance, DNA methylation can influence gene regulation, and thus phenotypic plasticity. However, little is yet known about how and why methylation varies in the wild. In this dissertation, I build on this knowledge by combining ecological, genetic and DNA methylation data from natural and experimental populations of the stick insect Timema cristinae. This species is an important system to ecological genetics studies, which provides good starting point for the investigation of the patterns, drivers, and the possible ecological consequences of natural methylation variation. I obtained methylation data using whole- genome bisulfite sequencing (BS-seq) and genetic data from restriction site associated DNA sequencing (RAD-seq). From a population survey, I found natural methylation variation in T. cristinae (1) is characteristic of “Hemimetabola” insects; (2) is structured in geographical space; and (3) is strongly correlated to genetic variation. In addition, an experiment simulating a host shift was carried out to test for the direct effects of host plant species on T. cristinae methylation levels. In both the population survey and in the experiment, binomial mixed models were used to perform a methylome scan in search of candidate single methylation polymorphisms (SMPs) associated with host plant use.
    [Show full text]
  • Analysis of the Stick Insect (Clitarchus Hookeri) Genome Reveals a High Repeat Content and Sex- Biased Genes Associated with Reproduction Chen Wu1,2,3* , Victoria G
    Wu et al. BMC Genomics (2017) 18:884 DOI 10.1186/s12864-017-4245-x RESEARCH ARTICLE Open Access Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex- biased genes associated with reproduction Chen Wu1,2,3* , Victoria G. Twort1,2,4, Ross N. Crowhurst3, Richard D. Newcomb1,3 and Thomas R. Buckley1,2 Abstract Background: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only thegenomeofTimema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. Results: The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria,the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly.
    [Show full text]
  • 10 Walking Sticks: Natural Selection for Cryptic Coloration on Different Host Plants
    Case Studies in Ecology and Evolution DRAFT 10 Walking sticks: natural selection for cryptic coloration on different host plants While she was a graduate student at the University of California, Christina Sandoval discovered a new species of insect. Timema christinae is an inconspicuous stick insect that lives in the chaparral of Southern California. It is only about 2 cm long and it feeds mostly at night. During the day it remains still and hides by mimicking the branches and leaves of its host plant. Because they are such good mimics of the host plants they feed on they are called “stick insects” or “walking sticks”. Eggs hatch on ground and young climb into a nearby host plant. Sometimes they never leave that single plant. Despite their inactivity, Sandoval noticed some very interesting differences between the insects. There were two color types. Some of the walking sticks were plain green while the others had a long white stripe on their http://paradisereserve.ucnrs.org/Timem a.html back. Moreover, those two color morphs were associated with two different species of host plant, with one type found on one host plant and the other on the second host. One of the first possibilities she considered was that the two forms were different species. Sandoval brought them back to the lab and found that the two types could interbreed freely, which showed that they were simply color variants of a single species of walking stick. Why, then, were there two colors types? Why were they segregated on different host plant species? She suspected that this was an example of natural selection at work.
    [Show full text]
  • THE IMPACT of POLYPLOIDY on GENETIC STRUCTURE and REPRODUCTIVE ISOLATION in the GENUS LEUCANTHEMUM Mill. (COMPOSITAE, ANTHEMIDEAE)
    THE IMPACT OF POLYPLOIDY ON GENETIC STRUCTURE AND REPRODUCTIVE ISOLATION IN THE GENUS LEUCANTHEMUM Mill. (COMPOSITAE, ANTHEMIDEAE) Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie und vorklinische Medizin der Universität Regensburg vorgelegt von Roland Greiner aus Regensburg im Dezember 2011 Das Promotionsgesuch wurde eingereicht am: Die Arbeit wurde angeleitet von: Prof. Dr. Christoph Oberprieler Unterschrift: Evolution is a change from an indefinite, incoherent, homogeneity to a definite, coherent, heterogeneity, through continuous differentiations and integrations. Herbert Spencer Evolution is a change from a no-howish, untalkaboutable, all-alikeness by continous sticktogetheration and somethingelsification. William James Table of Contents Table of Contents..........................................................................................................I List of Tables...............................................................................................................III Table of Figures...........................................................................................................V Abstract.......................................................................................................................1 General Introduction...................................................................................................2 Types of Polyploidy..................................................................................................3
    [Show full text]
  • Hydrocarbon Divergence and Reproductive Isolation in Timema Stick Insects Schwander Et Al
    Hydrocarbon divergence and reproductive isolation in Timema stick insects Schwander et al. Schwander et al. BMC Evolutionary Biology 2013, 13:151 http://www.biomedcentral.com/1471-2148/13/151 Schwander et al. BMC Evolutionary Biology 2013, 13:151 http://www.biomedcentral.com/1471-2148/13/151 RESEARCH ARTICLE Open Access Hydrocarbon divergence and reproductive isolation in Timema stick insects Tanja Schwander1,2*, Devin Arbuthnott3, Regine Gries4, Gerhard Gries4, Patrik Nosil5 and Bernard J Crespi4 Abstract Background: Individuals commonly prefer certain trait values over others when choosing their mates. If such preferences diverge between populations, they can generate behavioral reproductive isolation and thereby contribute to speciation. Reproductive isolation in insects often involves chemical communication, and cuticular hydrocarbons, in particular, serve as mate recognition signals in many species. We combined data on female cuticular hydrocarbons, interspecific mating propensity, and phylogenetics to evaluate the role of cuticular hydrocarbons in diversification of Timema walking-sticks. Results: Hydrocarbon profiles differed substantially among the nine analyzed species, as well as between partially reproductively-isolated T. cristinae populations adapted to different host plants. In no-choice trials, mating was more likely between species with similar than divergent hydrocarbon profiles, even after correcting for genetic divergences. The macroevolution of hydrocarbon profiles, along a Timema species phylogeny, fits best with a punctuated model of phenotypic change concentrated around speciation events, consistent with change driven by selection during the evolution of reproductive isolation. Conclusion: Altogether, our data indicate that cuticular hydrocarbon profiles vary among Timema species and populations, and that most evolutionary change in hydrocarbon profiles occurs in association with speciation events.
    [Show full text]
  • Allopatric Speciation
    Lecture 21 Speciation “These facts seemed to me to throw some light on the origin of species — that mystery of mysteries”. C. Darwin – The Origin What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. • may involve changes in location or timing of breeding, or courtship. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. • may involve changes in location or timing of breeding, or courtship. • barriers also occur if hybrids are inviable or sterile – this is postzygotic isolation. Modes of Speciation Modes of Speciation 1. Allopatric speciation 2. Peripatric speciation 3. Parapatric speciation 4. Sympatric speciation Modes of Speciation 1. Allopatric speciation 2. Peripatric speciation 3. Parapatric speciation 4. Sympatric speciation Modes of Speciation 1. Allopatric speciation Allopatric Speciation ‘‘The phenomenon of disjunction, or complete geographic isolation, is of considerable interest because it is almost universally believed to be a fundamental requirement for speciation.’’ Endler (1977) Modes of Speciation 1.
    [Show full text]
  • Hydrocarbon Divergence and Reproductive Isolation in Timema Stick Insects Schwander Et Al
    Hydrocarbon divergence and reproductive isolation in Timema stick insects Schwander et al. Schwander et al. BMC Evolutionary Biology 2013, 13:151 http://www.biomedcentral.com/1471-2148/13/151 Schwander et al. BMC Evolutionary Biology 2013, 13:151 http://www.biomedcentral.com/1471-2148/13/151 RESEARCH ARTICLE Open Access Hydrocarbon divergence and reproductive isolation in Timema stick insects Tanja Schwander1,2*, Devin Arbuthnott3, Regine Gries4, Gerhard Gries4, Patrik Nosil5 and Bernard J Crespi4 Abstract Background: Individuals commonly prefer certain trait values over others when choosing their mates. If such preferences diverge between populations, they can generate behavioral reproductive isolation and thereby contribute to speciation. Reproductive isolation in insects often involves chemical communication, and cuticular hydrocarbons, in particular, serve as mate recognition signals in many species. We combined data on female cuticular hydrocarbons, interspecific mating propensity, and phylogenetics to evaluate the role of cuticular hydrocarbons in diversification of Timema walking-sticks. Results: Hydrocarbon profiles differed substantially among the nine analyzed species, as well as between partially reproductively-isolated T. cristinae populations adapted to different host plants. In no-choice trials, mating was more likely between species with similar than divergent hydrocarbon profiles, even after correcting for genetic divergences. The macroevolution of hydrocarbon profiles, along a Timema species phylogeny, fits best with a punctuated model of phenotypic change concentrated around speciation events, consistent with change driven by selection during the evolution of reproductive isolation. Conclusion: Altogether, our data indicate that cuticular hydrocarbon profiles vary among Timema species and populations, and that most evolutionary change in hydrocarbon profiles occurs in association with speciation events.
    [Show full text]