From Play-In Scenarios to Code: an Achievable Dream

Total Page:16

File Type:pdf, Size:1020Kb

From Play-In Scenarios to Code: an Achievable Dream COVER FEATURE From Play-In Scenarios to Code: An Achievable Dream A development scheme for complex reactive systems leads from a user- friendly requirements capture method, called play-in scenarios, to full behavioral descriptions of system parts, and from there to final implementation. 1 David Harel n a 1992 Computer article, I tried to present an system model, most notably its structure and behav- The Weizmann optimistic view of the future of development ior. The linking of structure and behavior is crucial Institute of methods for complex systems. Research since and by no means a straightforward issue. In SA/SD, Science then only supports this optimism, as I will for example, each system function or activity is asso- I attempt to show. ciated with a state machine or a statechart2 that This article presents a general, rather sweeping describes its behavior. In OOAD, as evident in the development scheme, combining ideas that have been Unified Modeling Language (UML)3 and its exe- known for a long time with more recent ones. The cutable basis, the XUML,4 each class is associated scheme makes it possible to go from a high-level user- with a statechart, which describes the behavior of friendly requirements capture method—which I call every instance object. The “Structured Analysis and play-in scenarios—via a rich language for describing Structured Design” and “Object-Oriented Analysis message sequencing to a full model of the system, and and Design” sidebars give some background on these from there to final implementation. modeling approaches. A cyclic process of verifying the system against An indispensable part of any serious modeling requirements and synthesizing system parts from the approach is a rigorous semantical basis for the model requirements is central to the proposal. The article puts constructed—notably, for the behavioral parts of the special emphasis on the languages, methods, and com- model and their connection with the structure. It is puterized tools that allow smooth but rigorous tran- these semantics that lead to the possibility of execut- sitions between the various stages of the scheme. In ing models and running actual code generated from contrast to database systems, this article focuses on them. (The code need not result in software; it could systems that have a dominant reactive, event-driven be in a hardware description language, leading to real facet. For these systems, modeling and analyzing hardware.) Figure 1 shows system modeling with full behavior is the most crucial and problematic issue. code generation. Obviously, if we have the ability to generate full code, MODELING THE SYSTEM we would eventually want that code to serve as the Over the years, the main approaches to high-level basis for the final implementation. Some current tools, system modeling have been structured-analysis/struc- like Statemate and Rhapsody from I-Logix Inc. or Rose tured-design (SA/SD) and object-oriented analysis and RealTime from Rational Corp., can in fact produce design (OOAD). The two modeling approaches are quality code, good enough for the implementation of about a decade apart in initial conception and evolu- many kinds of reactive systems. And there is no doubt tion. Over the years, both approaches have yielded that the techniques for this kind of “supercompilation” visual formalisms for capturing the various parts of a from high-level visual formalisms will improve in time. Providing higher levels of abstraction with automated downward transformations has always been the way to An early version of this article appeared in Proc. Fundamental Approaches to Software Eng. (FASE), Lecture Notes in Computer go, as long as the engineers who do the actual work are Science, vol. 1783, Springer-Verlag, Berlin, Mar. 2000, pp. 22-34. happy with the abstractions. 0018-9162/01/$10.00 © 2001 IEEE January 2001 53 Figure 1. System modeling with full Code code generation. The generation system model Code consists of structure and behavior System model depicted using visual SPECIFYING REQUIREMENTS formalisms in When developing a complex system, it is very executable UML Structure important to be able to test and debug the model before investing extensively in implementation— (XUML) or structured 1 analysis/structured hence, the desire for executable models. design (SA/SD). A Requirements are the basis for testing and debugging rigorous semantical by executing the model. By their very nature, require- Behavior basis makes it possi- ments constitute the constraints, desires, and hopes we ble to automatically entertain concerning the system under development. generate full runable We want to make sure, both during development and code from the model. when we feel development is over, that the system does, or will do, what we intend or hope for it to do. (XUML or SA/SD) Figure 2 shows system modeling with full code gen- eration and soft links to requirements. Requirements can be formal (rigorously and precisely defined) or Structured Analysis and Structured Design SA/SD, which started in the late 1970s, chassis, wheels, and so on—and an River, N.J., 1979. is based on raising classical procedural engine, then you merely stick the engine 3. P. Ward and S. Mellor, Structured Devel- programming concepts to the modeling under the hood and you are done.) The opment for Real-Time Systems: Volumes level and using diagrams, or visual for- three teams struggled with this issue, and 1-3, Yourdon Press, New York, 1985. malisms, as the languages for modeling their decisions on how to link structure 4. D. Hatley and I. Pirbhai, Strategies for system structure. Structural models are with behavior ended up being very similar. Real-Time System Specification, Dorset based on functional decomposition and Careful behavioral modeling and its close House, New York, 1987. information flow and are depicted by hier- linking with system structure are espe- 5. D. Harel et al., “STATEMATE: A Working archical dataflow diagrams. cially crucial for reactive systems,7,8 of Environment for the Development of Com- Many methodologists were instrumental which real-time systems are a special case. plex Reactive Systems,” IEEE Trans. Soft. in setting the ground for the SA/SD paradigm Statemate, released in 1987, was the first Eng., vol. 16, no. 4, 1990, pp. 403-414; al- by devising the functional decomposition and commercial tool to enable model execution so in Proc. 10th Int’l Conf. Soft. Eng., IEEE dataflow diagram framework, including and code generation from high-level mod- Press, Piscataway, N.J., 1988, pp. 396-406. Tom DeMarco1 and Larry Constantine and els5 (http://www.ilogix.com). Modeling 6. D. Harel, “Statecharts: A Visual Formal- Ed Yourdon.2 David Parnas’s work over the Reactive Systems with Statecharts: The ism for Complex Systems,” Science of years was very influential, too. STATEMATE Approach9 gives an updated Computer Programming, vol. 8, 1987, pp. In the mid-1980s, three methodology and detailed summary of the SA/SD lan- 231-274; also tech. report CS84-05, The teams—Ward and Mellor,3 Hatley and guages, their relationships, and the way Weizmann Institute of Science, Rehovot, Pirbhai,4 and the Statemate team5— they are embedded in Statemate. Israel, 1984. enriched this basic SA/SD model by using Of course, modelers don’t need to 7. D. Harel and A. Pnueli, “On the Develop- state diagrams or the richer language of adopt state machines or statecharts to ment of Reactive Systems,” in Logics and statecharts6 to add behavior to these describe behavior. Many other possible Models of Concurrent Systems, K.R. Apt, efforts. A state diagram or statechart is languages can be linked with the SA/SD ed., NATO ASI Series, vol. F-13, Springer- associated with each function or activity, structural diagrams. They include visual Verlag, New York, 1985, pp. 477-498. describing its behavior. Many nontrivial formalisms such as Petri nets or SDL dia- 8. A. Pnueli, “Applications of Temporal issues had to be worked out to properly grams and more algebraic methods like Logic to the Specification and Verification connect structure with behavior, enabling Communicating Sequential Processes or of Reactive Systems: A Survey of Current modelers to construct a comprehensive Calculus of Communicating Systems. Trends,” Current Trends in Concurrency, and semantically rigorous model of the J. de Bakker et al., eds., Lecture Notes in system. It is not enough to simply decide References Computer Science, vol. 224, Springer-Ver- on a behavioral language and then asso- 1. T. DeMarco, Structured Analysis and Sys- lag, Berlin, 1986, pp. 510-584. ciate each function or activity with a tem Specification, Yourdon Press, New 9. D. Harel and M. Politi, Modeling Reac- behavioral description. (This would be York, 1978. tive Systems with Statecharts: The like saying that when you build a car, all 2. L.L. Constantine and E. Yourdon, Struc- STATEMATE Approach, McGraw-Hill, you need are the structural things—body, tured Design, Prentice Hall, Upper Saddle New York, 1998. 54 Computer Figure 2. System Code modeling with “soft” generation links to requirements. Code Developers check the System model model against requirements by exe- cuting the model (testing and debug- Structure ging). Developers use Testing and debugging; model execution various methodolo- gies to go from the Use cases requirements to the model. In general, Behavior however, these processes are not comprehensive, not Requirements Development guaranteed to methodologies succeed, and not fully automated. (Message sequence charts) (XUML or SA/SD) Object-Oriented Analysis and Design The late 1980s saw the first proposals now part of the Rational RealTime tool (see Trans. Database Systems, vol. 1, no. 1, for object-oriented analysis and design http://www.rational.com). 1976, pp. 9-36. (OOAD). As in SA/SD, the basic idea in Another tool is Rhapsody (http://www. 2. G.
Recommended publications
  • Revealing the Secrets of David Parnas
    Revealing the Secrets of David Parnas H. Conrad Cunningham Department of Computer and Information Science University of Mississippi March 7, 2014 Those of us in the fast-changing field of computing often dismiss anything writ- ten more than five years ago as obsolete. Yet several decades-old papers by David L. Parnas [1, 4, 5, 6, 7, 8] are as timely as those published in recent issues of the top journals. Parnas articulates the timeless software design concepts known as information hiding and abstract interfaces. Most programmers would describe a module as a unit of code such as a sub- routine or class. Parnas focuses on the programmers rather than the programs. He defines a module as \a work assignment given to a programmer or group of programmers" as a part of a larger software development project [7]. His goals are to enable programmers to develop each module independently, change one module without affecting other modules, and comprehend the overall system by examining one module at a time [5]. Programmers often design a software system by breaking the required pro- cessing into steps and making each step a module. Instead, Parnas uses in- formation hiding to decompose the system into modules that satisfy his goals (2); each module keeps its own secreta design decision about some aspect of the system (e.g., choice of a data structure). A modules design decision can change but none of the other modules should be affected. If some aspect is unlikely to change, the design can distribute this knowledge across several modules and the interfaces among them.
    [Show full text]
  • Keeping Secrets Within a Family: Rediscovering Parnas
    Keeping Secrets within a Family: Rediscovering Parnas H. Conrad Cunningham Cuihua Zhang Yi Liu Computer Science Computer & Information Systems Computer Science University of Mississippi Northwest Vista College University of Mississippi University, MS, 38677 San Antonio, TX 78251 University, MS 38677 Abstract of related programs. The motivation for product lines and frameworks is to take advantage of the David Parnas wrote several papers in the 1970’s commonalities among the members of the product line and 1980’s that are now considered classics. The to lower the overall cost of producing and maintaining concepts he advocated such as information hiding and a group of related software systems. use of abstract interfaces are generally accepted as Since the foundation of software product lines and the appropriate way to design nontrivial software frameworks is what Parnas proposed in his papers, an systems. However, not all of what he proposed has examination of the concepts in these papers (collected been fully appreciated and assimilated into our in [5]) can still reveal much of value to current-day practices. Many of his simple, elegant ideas have software developers and researchers. Many of the been lost amongst the hype surrounding the lessons taught in these works should also be technologies and methods that have arisen in the past incorporated into our college-level teaching. two decades. This paper examines Parnas’s ideas, This paper examines several of the lessons on the especially his emphasis on program families, and design of program families taught by Parnas that are proposes that college-level computing science and still important for contemporary students to learn.
    [Show full text]
  • Stephan Goericke Editor the Future of Software Quality Assurance the Future of Software Quality Assurance Stephan Goericke Editor
    Stephan Goericke Editor The Future of Software Quality Assurance The Future of Software Quality Assurance Stephan Goericke Editor The Future of Software Quality Assurance Editor Stephan Goericke iSQI GmbH Potsdam Germany Translated from the Dutch Original book: ‘AGILE’, © 2018, Rini van Solingen & Manage- ment Impact – translation by tolingo GmbH, © 2019, Rini van Solingen ISBN 978-3-030-29508-0 ISBN 978-3-030-29509-7 (eBook) https://doi.org/10.1007/978-3-030-29509-7 This book is an open access publication. © The Editor(s) (if applicable) and the Author(s) 2020 Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter- national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Systems Development Life Cycle
    Systems Development Life Cycle From Wikipedia, the free encyclopedia Jump to: navigation, search For other uses, see SDLC (disambiguation). Model of the Systems Development Life Cycle with the Maintenance bubble highlighted. The Systems Development Life Cycle (SDLC), or Software Development Life Cycle in systems engineering, information systems and software engineering, is the process of creating or altering systems, and the models and methodologies that people use to develop these systems. The concept generally refers to computer or information systems. In software engineering the SDLC concept underpins many kinds of software development methodologies. These methodologies form the framework for planning and controlling the creation of an information system[1]: the software development process. Contents y 1 Overview y 2 History y 3 Systems development phases o 3.1 Requirements gathering and analysis o 3.2 Design o 3.3 Build or coding o 3.4 Testing o 3.5 Operations and maintenance y 4 Systems development life cycle topics o 4.1 Management and control o 4.2 Work breakdown structured organization o 4.3 Baselines in the SDLC o 4.4 Complementary to SDLC y 5 Strengths and weaknesses y 6 See also y 7 References y 8 Further reading y 9 External links [edit] Overview Systems and Development Life Cycle (SDLC) is a process used by a systems analyst to develop an information system, including requirements, validation, training, and user (stakeholder) ownership. Any SDLC should result in a high quality system that meets or exceeds customer expectations, reaches completion within time and cost estimates, works effectively and efficiently in the current and planned Information Technology infrastructure, and is inexpensive to maintain and cost-effective to enhance.[2] Computer systems are complex and often (especially with the recent rise of Service-Oriented Architecture) link multiple traditional systems potentially supplied by different software vendors.
    [Show full text]
  • Inspection's Role in Software Quality Assurance
    focusguest editors’ introduction Inspection’s Role in Software Quality Assurance David L. Parnas, University of Limerick Mark Lawford, McMaster University espite more than 30 years’ effort to improve software quality, companies still release programs containing numerous errors. Many major products have thousands of bugs. It’s not for lack of D trying; all major software developers stress software quality as- surance and try to remove bugs before release. The problem is the code’s complexity. It’s easy to review code but fail to notice significant errors. Researchers have responded to these prob- lems by studying methods of formal correct- ness verification for programs. In theory, we now know how to prove programs correct with the same degree of rigor that we apply to mathematical theorems. In reality, this is rarely practical and even more rarely done. Most research papers on verification make simplifying assumptions (for example, a 1:1 correspondence between variables and vari- able names) that aren’t valid for real pro- grams. Proofs of realistic programs involve long, complex expressions and require pa- tience, time, and diligence that developers don’t think they have. (Interestingly enough, they never have time to verify a program be- fore release, but they must take time to re- spond to complaints after release.) Inspection methods can be more effective than informal reviews and require less effort than formal 16 IEEE SOFTWARE Published by the IEEE Computer Society 0740-7459/03/$17.00 © 2003 IEEE proofs, but their success depends on having a I The TSE papers do communicate the re- sound, systematic procedure.
    [Show full text]
  • Devops E Continuous Delivery Release-Automation Di Software Mediante Implementazione Di Una Pipeline
    POLITECNICO DI TORINO Corso di Laurea Magistrale in Ingegneria Informatica (Computer Engineering) Tesi di Laurea Magistrale DevOps e Continuous Delivery Release-Automation di software mediante implementazione di una pipeline Relatore Candidato prof. Marco Mezzalama Marco Punzi Supervisore aziendale Consoft Sistemi dott. Marco Casu Anno accademico 2017 – 2018 Ai complici della realizzazione di un sogno Abstract «L’avvento della Application Economy impone sempre più l’idea del soft- ware come strumento per generare direttamente valore di business. Occorre quindi garantire servizi di deployment rapidi e in alta affidabil- ità, che permettano il rilascio di software testato e di qualità in qualsi- asi istante. La Continuous Delivery quale estensione della Continuous Integration prevede un approccio strutturato ed automatizzato ai test funzionali, di non regressione e di integrazione, ottimizzando i processi ripetibili di Lifecycle e Deploy. Per assicurare soluzioni flessibili ed in- tegrabili all’interno dei processi aziendali, si necessita di un approccio metodologico di gestione del ciclo del software agendo sulla comunicazione e collaborazione tra gli sviluppatori e gli operatori IT.» (Consoft Sistemi SpA, DevOps Solution, 2017) iii Indice Abstract .................................... iii Introduzione Generale 1 1 Modelli e filosofie a confronto 5 1.1 Introduzione . 5 1.2 Nascita e decadenza del modello Waterfall ............... 6 1.2.1 Le fasi del modello . 6 1.2.2 Gli svantaggi del modello . 7 1.3 Lo sviluppo Agile ............................. 8 1.4 Software release: Anti-pattern e Soluzioni . 12 1.5 L’etica DevOps .............................. 13 1.6 DevOps: il valore di business . 16 1.6.1 Il Return of Investment del DevOps . 18 1.7 Conclusione .
    [Show full text]
  • A Debate on Teaching Computing Science
    Teaching Computing Science t the ACM Computer Science Conference last Strategic Defense Initiative. William Scherlis is February, Edsger Dijkstra gave an invited talk known for his articulate advocacy of formal methods called “On the Cruelty of Really Teaching in computer science. M. H. van Emden is known for Computing Science.” He challenged some of his contributions in programming languages and the basic assumptions on which our curricula philosophical insights into science. Jacques Cohen Aare based and provoked a lot of discussion. The edi- is known for his work with programming languages tors of Comwunications received several recommenda- and logic programming and is a member of the Edi- tions to publish his talk in these pages. His comments torial Panel of this magazine. Richard Hamming brought into the foreground some of the background received the Turing Award in 1968 and is well known of controversy that surrounds the issue of what be- for his work in communications and coding theory. longs in the core of a computer science curriculum. Richard M. Karp received the Turing Award in 1985 To give full airing to the controversy, we invited and is known for his contributions in the design of Dijkstra to engage in a debate with selected col- algorithms. Terry Winograd is well known for his leagues, each of whom would contribute a short early work in artificial intelligence and recent work critique of his position, with Dijkstra himself making in the principles of design. a closing statement. He graciously accepted this offer. I am grateful to these people for participating in We invited people from a variety of specialties, this debate and to Professor Dijkstra for creating the backgrounds, and interpretations to provide their opening.
    [Show full text]
  • Dr. Dobb's | Software Engineering ≠ Computer Science | June 4, 2009
    Software Engineering ≠ Computer Science Software engineering seems different, in a frustrating way, from other disciplines of computer science By Chuck Connell, Dr. Dobb's Journal Jun 04, 2009 URL:http://www.ddj.com/architect/217701907 Chuck Connell is a software consultant. He can be reached at www.chc-3.com. A few years ago, I studied algorithms and complexity. The field is wonderfully clean, with each concept clearly defined, and each result building on earlier proofs. When you learn a fact in this area, you can take it to the bank, since mathematics would have to be inconsistent to overturn what you just learned. Even the imperfect results, such as approximation and probabilistic algorithms, have rigorous analyses about their imperfections. Other disciplines of computer science, such as network topology and cryptography also enjoy similar satisfying status. Now I work on software engineering, and this area is maddeningly slippery. No concept is precisely defined. Results are qualified with "usually" or "in general". Today's research may, or may not, help tomorrow's work. New approaches often overturn earlier methods, with the new approaches burning brightly for a while and then falling out of fashion as their limitations emerge. We believed that structured programming was the answer. Then we put faith in fourth-generation languages, then object-oriented methods, then extreme programming, and now maybe open source. But software engineering is where the rubber meets the road. Few people care whether P equals NP just for the beauty of the question. The computer field is about doing things with computers. This means writing software to solve human problems, and running that software on real machines.
    [Show full text]
  • Revealing the Secrets of David Parnas
    Revealing the Secrets of David Parnas H. Conrad Cunningham Department of Computer and Information Science University of Mississippi March 7, 2014 Those of us in the fast-changing field of computing often dismiss anything writ- ten more than five years ago as obsolete. Yet several decades-old papers by David L. Parnas [1, 4, 5, 6, 7, 8] are as timely as those published in recent issues of the top journals. Parnas articulates the timeless software design concepts known as information hiding and abstract interfaces. Most programmers would describe a module as a unit of code such as a sub- routine or class. Parnas focuses on the programmers rather than the programs. He defines a module as \a work assignment given to a programmer or group of programmers" as a part of a larger software development project [7]. His goals are to enable programmers to develop each module independently, change one module without affecting other modules, and comprehend the overall system by examining one module at a time [5]. Programmers often design a software system by breaking the required pro- cessing into steps and making each step a module. Instead, Parnas uses in- formation hiding to decompose the system into modules that satisfy his goals (2); each module keeps its own secreta design decision about some aspect of the system (e.g., choice of a data structure). A modules design decision can change but none of the other modules should be affected. If some aspect is unlikely to change, the design can distribute this knowledge across several modules and the interfaces among them.
    [Show full text]
  • Software Engineering
    Software Engineering ACM Fellow David Parnas, 2004 What advice do you have for computer science/software engineering students? Most students who are studying computer science really want to study software engineering but they don't have that choice. There are very few programs that are designed as engineering programs but specialize in software. I would advise students to pay more attention to the fundamental ideas rather than the latest technology. The technology will be out-of-date before they graduate. Fundamental ideas never get out of date. However, what worries me about what I just said is that some people would think of Turing machines and Goedel's theorem as fundamentals. I think those things are fundamental but they are also nearly irrelevant. I think there are fundamental design principles, for example structured programming principles, the good ideas in "Object Oriented" programming, etc. What is the most often-overlooked risk in software engineering? Incompetent programmers. There are estimates that the number of programmers needed in the U.S. exceeds 200,000. This is entirely misleading. It is not a quantity problem; we have a quality problem. One bad programmer can easily create two new jobs a year. Hiring more bad programmers will just increase our perceived need for them. If we had more good programmers, and could easily identify them, we would need fewer, not more. What is the most-repeated mistake in software engineering? People tend to underestimate the difficulty of the task. Overconfidence explains most of the poor software that I see. Doing it right is hard work.
    [Show full text]
  • Integrative Educational Approach Oriented Towards Software And
    PAPER INTEGRATIVE EDUCATIONAL APPROACH ORIENTED TOWARDS SOFTWARE AND SYSTEMS DEVELOPMENT Integrative Educational Approach Oriented Towards Software and Systems Development http://dx.doi.org/10.3991/ijep.v3i1.2345 A.J. Stoica1 and S. Islam2 1 Uppsala University, Uppsala, Sweden 2 University of East London, London, United Kingdom Abstract—The paper is based on our academic teaching and between conceptual and operational aspects in software research work in software and system engineering to effec- engineering education. tively develop modern, complex real-life Web application In our educational work, we are guided by: i) lifelong systems. It bridges the gap between academic education and learning preparing our students for applications-oriented industry needs and illustrates how such collaboration can be careers, working in all levels of computer systems engi- successfully developed in the IT area where technology neering in particular software and systems engineering development is rapid. Its scope covers the processes, models, domain; ii) contributions Harlan D. Mills award recipi- technologies, people, and knowledge that have the capability ents: Bertrand Meyer for practical and fundamental con- to contribute to developing such systems. The paper also tributions to object-oriented software engineering, soft- relates to contributions of some of Harlan D. Mills award ware reuse, and the integration of formal methods into the recipients for software engineering achievement, to address above; Barry Boehm for developing empirical software the needs to: i) improve the engineering education in an engineering models that consider cost, schedule, and academic setting, and ii) develop real-life software and quality, as well as software process spiral model, Theory system projects.
    [Show full text]
  • Software Engineering, Why and What
    Middle Road Software, Inc. Software Engineering, Why And What David Lorge Parnas1! Abstract In the 1960s many of the scientists and mathematicians who were interested in computer software observed that software development was a profession that had more in common with Engineering than it did with the fields in which they had been trained. Most of them had mastered a body of knowledge and been taught how to extend that knowledge. They had not been taught how to apply what they had learned when building products that would be used by strangers. It was proposed that, in addition to "Computer Science", there was a need for a for a new Engineering discipline called "Software Engineering". Although some critics considered the new field, redundant and superfluous, time has proven that it is needed. Today we depend on software in the same way that previous generations depended on traditional engineering products. While the early pioneers correctly sensed that a new field was needed, they did not succeed in defining the capabilities required of practitioners in the new field. More recently, there have been several efforts to identify a "body of knowledge" for Software Engineering. In my opinion, none have captured the essence of the field. This talk approaches the subject by focussing on capabilities, i.e., by addressing the question, What should a Software Engineer be able to do? Starting with two historical characterizations of the field by the pioneers, it presents a set of capabilities required by today's "Software Engineers". 1 After lengthy discussions with Carl Landwehr, Jochen Ludewig Robert Meersman, Peretz Shoval, Yair Wand ,David Weiss and Elaine Weyuker whose contributions were substantial and substantive.
    [Show full text]