Tertiary Alphabet for the Observable Protein Structural Universe”

Total Page:16

File Type:pdf, Size:1020Kb

Tertiary Alphabet for the Observable Protein Structural Universe” Supporting Information for Mackenzie et al., “Tertiary Alphabet for the Observable Protein Structural Universe” SI Methods strongly correlate, resulting in shallow angles and large positive average cosines. Fig. S1 shows this general behavior, except that it also exhibits some oscillations RMSD Cutoff Derivation before it converges to zero. These oscillations have to do with a characteristic length of secondary structural elements (SSEs) separated by turns and loops, such Fundamentally, optimal rigid-body superposition is an instance of linear that within 15-30 residues a chain is expected to dramatically turn, often in regression, whose goal is to minimize the sum squared deviation (SSD) between almost the opposite direction. In fact, the overall curve fits very closely to a corresponding coordinates of two sets of atoms. Regression quality is typically product of exponential decay (due to the chain “forgetting” its direction) and a assessed using the mean squared error (MSE), an estimate of the error variance, sinusoid (from SSE-related oscillations), as shown in Fig. S1. Specifically, the computed as SSD �, where � is the number of degrees of freedom. The RMSD equation we used was exp − � � ∙ cos � ∙ 2� � , where � is the separation (in metric used in structural superposition is similar to the square root of MSE, but residues), � is the characteristic persistence length, and � is the period of uses the number of atoms in place of �. This is statistically justified only when oscillations. Optimally fitting parameters were � ≈ 33 and � ≈ 10 residues. atoms are entirely independent of each other, which is clearly not the case in Based on this, we chose to use a correlation length parameter for our RMSD general. For example, consider comparing two contiguous segments of structure. cutoff function in the range between 15 to 25 residues (corresponding to a drop- Residues consecutive in sequence are joined by peptide bonds of relatively fixed off in the exponential component to ~0.2 and ~0.1, respectively). Specifically, we geometry, so that the position of each next residue in a chain is highly tested all combinations of correlation lengths 15, 20, and 25 with resolution constrained by the previous residues (e.g., Cα-to-Cα distances between adjacent parameters of 0.9 Å, 1.0 Å, and 1.1 Å. From our initial sequence recovery results, residues are generally ~3.8 Å). On the other hand, two residues that are either it appeared that a correlation length of 20 with a resolution of 1.0 Å produced distant in sequence or not part of the same chain more closely resemble best results, although results from all combinations were similar. We thus chose independent data points. We thus reasoned that to formulate a systematic RMSD the RMSD cutoff function based on � ≈ 10 and resolution of 1.0 Å for our final cutoff function, we must consider how the effective number of degrees of set cover and most other experiments in this study. freedom changes with structure size and topology. Using the PDB, we found that a typical protein chain “forgets” its direction only after ~20 residues (see section Effective Number of Degrees of Freedom “Persistence Length” below and Fig. S1), suggesting that positions of residues separated by fewer amino acids would be expected to be significantly inter- Let us consider a structural query composed of � disjoint segments, with the �-th constrained. Considering residues not required to be part of the same chain as segment of length �!. Our goal is to estimate the number of degrees of freedom completely independent of each other, we then estimated the total effective in such a structure, �. Based on the analysis in the section above, we shall number of degrees of freedom in a structural motif as: assume that two residues in the same chain possess some amount of positional !!!! !! “correlation” that decays exponentially with sequence separation, while residue 2 � = � 1 − � !!! ! (S1) pairs in different chains are completely independent. The average degree of � � − 1 ! !!! !!!!! correlation across all residue pairs in the structure is then: ! !!!! !! !!! ! where the first sum extends over disjoint segments of the motif, � is the length !!! !!! !!!!! � ! � = of the �-th segment, � is the total length of the motif (i.e., � = ! �!), and � is a � � − 1 2 correlation length parameter emergent from the above observation of positional where � !!! ! is the correlation between positions � and � of the same segment, correlation in protein chains (see section “Effective Number of Degrees of with � being a correlation length parameter, whereas a correlation value of zero Freedom” below for a derivation). Notice that � ranges between zero and �. Zero is assumed for residue pairs across different chains (and these are thus skipped in is reached when the correlation length � is very large (infinite), meaning that the summation). An aggregate parameter that describes the overall amount of positions of all residues are highly inter-correlated and no degrees of freedom inter-dependence, � varies from 0 to 1 corresponding to all residues in the remain. On the other hand, the value of � is approached either for very short structure being either fully independent (i.e., � = �) or fully dependent (i.e., correlation lengths or very long segment lengths. In these cases, each residue is � = 0) of each other, respectively. We thus express � as � 1 − � or: effectively independent of the bulk of other residues, such that (nearly) all !!!! !! 2 degrees of freedom are preserved. Given Eq. S1, we can now establish a � = � 1 − � !!! ! � � − 1 ! “universal” RMSD metric ��� �, in place of the traditional RMSD, ��� �. !!! !!!!! Then, if we choose a specific cutoff in terms of our universal metric, �!"#, the When applying this to TERMs, we treated disjoint segments as separate chains. corresponding traditional RMSD cutoff for a given TERM � becomes: Given this formulation for the number of degrees of freedom, the modified � � = �!"# � � � � (S2) universal RMSD metric follows readily as detailed above. We note that this formulation is entirely empirical. However, we have found the resulting This value is no larger than �!"# itself, being much smaller than �!"# for functional form for an RMSD cutoff to work very well in practice, returning small/simple TERMs (i.e., when � ≪ � ), and approaching �!"# for match ensembles that generally agree well with our intuition on structural large/complex TERMs (e.g., those with many segments) as � approaches �. similarity across a large range of motif sizes and complexities (Fig. S2). Thus, �!"# can be thought of as a resolution parameter (i.e., the RMSD cutoff imposed in the limit of large structures), with Eq. S2 computing the RMSD TERM Secondary Structure Classification cutoff for a structure of any finite size. Secondary-structural (SS) assignments were used to analyze TERM diversity and Persistence Length to generate representative sets of TERMs across different SSE classes. First, STRIDE was used to determine the SS class of each residue (1): helix (including We sought to determine how quickly the protein chain in a typical folded STRIDE’s α-helix, 3-10 helix, and pi-helix classes; H), strand (including structure “forgets” its direction. Towards this end, we defined a chain tangent STRIDE’s extended and isolated β-bridge classes; E), turn (T), or coil (C). Next, vector at each residue � to be along the largest principal axis of the local each residue of a TERM segment was assigned an SS class based on the majority backbone window (backbone atoms from residues � through � + 5; sign of vector of residue assignments in the surrounding three-residue window. If there was no chosen to align with the N-to-C direction of the window—i.e., last minus first majority, the residue maintained its original class. The SS class of an entire backbone atom). Then, for all pairs of residues in a protein, the cosine of the segment was then assigned as a string of concatenated residue SS classes, with angle between their respective chain tangent vectors, ��� � , was computed. consecutive repeats removed SS. For example, a six residue segment with two Having done this for all chains in DB80, we plotted the average ��� � as a turn residues followed by four helix residues, TTHHHH, would be represented as function of inter-residue separation, shown in Fig. S1. At large separations there the string TH. Finally, a TERM’s SS class was represented with the set of its should be no relationship between chain tangent vectors (i.e., chain direction is segment classifications. For example a two-segment beta sheet TERM would be fully randomized after a certain number of amino acids), such that the average represented as {E,E}, a two-segment TERM with turn-helix and helix segments cosine should be zero. Whereas at short separations, chain directions should as {TH, H} and a three-segment TERM with a beta sheet and a helix as {E,E,H}. Two TERMs were considered to share a secondary-structure class if they were average. In particular, if �!" is the set of all TERMs that cover ��(�, �), with the assigned identical sets. positions of TERM � ∈ �!" aligned with � and � being �! and �!, respectively, then the pair enrichment was calculated as: � (� , � )� �, �, � , � Metal and Water Binding Motifs !∈!!" ! ! ! ! ! ! � �, �, �, � = (S10) � (� , � ) TERMs for which at least � % of matches interacted with a metal of interest (i.e., !∈!!" ! ! ! where � (� , � ) is the weight assigned to TERM �, in conjunction with had a non-hydrogen atom within 3 Å of the metal
Recommended publications
  • Dependent Activation
    Ca2؉-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2؉-dependent activation Shumin Bian*, Isabelle Favre*†, and Edward Moczydlowski*‡§ Departments of *Pharmacology and ‡Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066 Communicated by Ramon Latorre, Center for Scientific Studies of Santiago, Valdivia, Chile, February 13, 2001 (received for review November 28, 2000) Mutational and biophysical analysis suggests that an intracellular S0–S6 plus a portion of the COOH terminus, whereas the Ϸ400 .(COOH-terminal domain of the large conductance Ca2؉-activated residue sequence following the linker comprises the Tail (Fig. 1 K؉ channel (BK channel) contains Ca2؉-binding site(s) that are Experiments with chimeric Core-Tail constructs by using Slo1 allosterically coupled to channel opening. However the structural genes of different species suggest that the Ca2ϩ-sensing function basis of Ca2؉ binding to BK channels is unknown. To pursue this of the channel is associated with the Tail domain (9). More question, we overexpressed the COOH-terminal 280 residues of the recent studies making use of the Ca2ϩ-insensitive Slo3 Kϩ Drosophila slowpoke BK channel (Dslo-C280) as a FLAG- and His6- channel gene verified that specific regions of protein sequence tagged protein in Escherichia coli. We purified Dslo-C280 in soluble within the Tail confer the property of Ca2ϩ-dependent gating ؉ ؉ form and used a 45Ca2 -overlay protein blot assay to detect Ca2 (10). Complementary mutational studies identified an Asp-rich ؉ binding. Dslo-C280 exhibits specific binding of 45Ca2 in compari- sequence motif in the Tail domain (Fig.
    [Show full text]
  • Bryostatin Enhancement of Memory in Hermissenda
    Reference: Biol. Bull. 210: 201–214. (June 2006) A contribution to The Biological Bulletin Virtual Symposium © 2006 Marine Biological Laboratory on Marine Invertebrate Models of Learning and Memory. Bryostatin Enhancement of Memory in Hermissenda A. M. KUZIRIAN1,*, H. T. EPSTEIN1, C. J. GAGLIARDI1,2, T. J. NELSON3, M. SAKAKIBARA4, C. TAYLOR5, A. B. SCIOLETTI1,6, AND D. L. ALKON3 1 Marine Biological Laboratory, Woods Hole, Massachusetts 02543; 2 Science Department, Roger Williams University, Bristol, Rhode Island 02809; 3 Blanchette Rockefeller Neurosciences Institute, Johns Hopkins University, Rockville, Maryland 20850; 4 Department of Biological Science and Technology, Tokai University, Shizuoka, Japan; 5 Department of Biology, University of Michigan, Ann Arbor, Michigan 48104; and 6 Northeastern University, Boston, Massachusetts 02115 Abstract. Bryostatin, a potent agonist of protein kinase C bryostatin revealed changes in input resistance and an en- (PKC), when administered to Hermissenda was found to hanced long-lasting depolarization (LLD) in response to affect acquisition of an associative learning paradigm. Low light. Likewise, quantitative immunocytochemical measure- bryostatin concentrations (0.1 to 0.5 ng/ml) enhanced mem- ments using an antibody specific for the PKC-activated ϩ ory acquisition, while concentrations higher than 1.0 ng/ml Ca2 /GTP-binding protein calexcitin showed enhanced an- down-regulated the pathway and no recall of the associative tibody labeling with bryostatin. training was exhibited. The extent of enhancement de- Animals exposed to the PKC inhibitor bisindolylmaleim- pended upon the conditioning regime used and the memory ide-XI (Ro-32-0432) administered by immersion prior to stage normally fostered by that regime. The effects of two 9-TE conditioning showed no training-induced changes training events (TEs) with paired conditioned and uncondi- with or without bryostatin exposure.
    [Show full text]
  • Minding the Calcium Store: Ryanodine Receptor Activation As a Convergent Mechanism of PCB Toxicity
    Pharmacology & Therapeutics 125 (2010) 260–285 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Associate Editor: Carey Pope Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity Isaac N. Pessah ⁎, Gennady Cherednichenko, Pamela J. Lein Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA article info abstract Keywords: Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since Ryanodine receptor (RyR) results from epidemiological studies indicate that PCB burden is associated with immune system Calcium-induced calcium release dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various Calcium regulation adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in Polychlorinated biphenyls PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter Triclosan fi 2+ Bastadins the spatial and temporal delity of Ca signals through one or more receptor-mediated processes. This Polybrominated diphenylethers review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in Developmental neurotoxicity muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The Activity dependent plasticity molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed. © 2009 Elsevier Inc. All rights reserved. Contents 1. Introduction ............................................... 260 2. Ryanodine receptor macromolecular complexes: significance to polychlorinated biphenyl-mediated Ca2+ dysregulation .
    [Show full text]
  • The Genie in the Bottle-Magnified Calcium Signaling in Dorsolateral
    Molecular Psychiatry https://doi.org/10.1038/s41380-020-00973-3 EXPERT REVIEW The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex 1 1 1 Amy F. T. Arnsten ● Dibyadeep Datta ● Min Wang Received: 27 August 2020 / Revised: 20 November 2020 / Accepted: 26 November 2020 © The Author(s) 2020. This article is published with open access Abstract Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer’s disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without “bottom-up” sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal – – 1234567890();,: 1234567890();,: cortex (dlPFC) express the molecular machinery for feedforward, cAMP PKA calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP–PKA signaling. Excessive levels of cAMP–calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium–cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin).
    [Show full text]
  • Crystallization and Preliminary X-Ray Diffraction Analysis of Calexcitin From
    crystallization communications Acta Crystallographica Section F Structural Biology Crystallization and preliminary X-ray diffraction and Crystallization analysis of calexcitin from Loligo pealei: a neuronal Communications protein implicated in learning and memory ISSN 1744-3091 G. D. E. Beaven,a P. T. Erskine,a The neuronal protein calexcitin from the long-finned squid Loligo pealei has J. N. Wright,a F. Mohammed,a‡ been expressed in Escherichia coli and purified to homogeneity. Calexcitin is a R. Gill,a S. P. Wood,a J. Vernon,b 22 kDa calcium-binding protein that becomes up-regulated in invertebrates K. P. Gieseb and J. B. Coopera* following Pavlovian conditioning and is likely to be involved in signal transduction events associated with learning and memory. Recombinant squid aSchool of Biological Sciences, University of calexcitin has been crystallized using the hanging-drop vapour-diffusion Southampton, Bassett Crescent East, technique in the orthorhombic space group P212121. The unit-cell parameters Southampton SO16 7PX, England, and of a = 46.6, b = 69.2, c = 134.8 A˚ suggest that the crystals contain two monomers bWolfson Institute for Biomedical Research, per asymmetric unit and have a solvent content of 49%. This crystal form University College London, Cruciform Building, diffracts X-rays to at least 1.8 A˚ resolution and yields data of high quality using Gower Street, London WC1E 6BT, England synchrotron radiation. ‡ Present address: CRUK Institute for Cancer Studies, University of Birmingham, Vincent 1. Introduction Drive, Edgbaston, Birmingham B15 2TT, England. The protein calexcitin was originally identified in the photoreceptor neurons of the marine snail Hermissenda crassicornis as a 20 kDa protein that became up-regulated and phosphorylated following a Correspondence e-mail: Pavlovian training protocol (Nelson et al., 1990).
    [Show full text]
  • Cell Biology of the Axon Editor Edward Koenig 70 Summer Hill Lane Williamsville NY 14221 USA [email protected]
    Results and Problems in Cell Differentiation 48 Series Editors Dietmar Richter, Henri Tiedge Edward Koenig (ed.) Cell Biology of the Axon Editor Edward Koenig 70 Summer Hill Lane Williamsville NY 14221 USA [email protected] Series Editors Dietmar Richter Henri Tiedge Center for Molecular Neurobiology The Robert F. Furchgott Center for Neural and University Medical Center Hamburg- Behavioral Science Eppendorf (UKE) Department of Physiology and Pharmacology University of Hamburg Department of Neurology Martinistrasse 52 SUNY Health Science Center at Brooklyn 20246 Hamburg Brooklyn, New York 11203 Germany USA [email protected] [email protected] ISBN 978-3-642-03018-5 e-ISBN 978-3-642-03019-2 DOI 10.1007/978-3-642-03019-2 Springer Heidelberg Dordrecht London New York Results and Problems in Cell Differentiation ISSN 0080-1844 Library of Congress Control Number: 2009932721 © Springer-Verlag Berlin Heidelberg 2009 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Biointerface Research in Applied Chemistry
    Volume 9, Issue 1, 2019, 3817 - 3824 ISSN 2069-5837 Biointerface Research in Applied Chemistry www.BiointerfaceResearch.com https://doi.org/10.33263/BRIAC91.817824 Original Review Article Open Access Journal Received: 06.01.2019 / Revised: 29.01.2019 / Accepted: 10.02.2019 / Published on-line: 15.02.2019 Protein structure from the essential amino acids to the 3D structure Diaa Atta 1,*, Abd Elaziz Mahmoud 1, Ahmed Fakhry 1 1Spectroscopy Department, National Research Centre, Giza, Egypt. *corresponding author e-mail address:[email protected] ABSTRACT Protein structure is a hot topic, not only to the specialist, but with others like the physicists. So this review is targeting those who are not biologists and have to deal with the protein in their research. In this review we travel with the protein structures from the amino acids and its classifications, and how the polypeptide chain is formed from these building blocks up to the final 3D structure. We introduced the secondary structure species like helices with its different types and how it is formed; also the beta sheet formation and types are explained briefly. Finally the tertiary and quaternary structures are presented. The approaches of molecular modeling as well as other important computational methods present significant contribution to studying proteins. Keywords: Protein structure- Amino acid-Primary structure- Secondary structure- tertiary structure-quaternary structure. 1. INTRODUCTION One from the most important and used class of molecules is In the protein structure there is very strange information that any the proteins class. It is engineered to incorporate any molecule that protein is constructed from only 20 different amino acids (the one can imagine, and convert it from the ion structure into a large standard amino acids) [8].
    [Show full text]
  • Distinct Intracellular Calcium Transients in Neurites and Somata Integrate Neuronal Signals
    The Journal of Neuroscience, July 1, 2002, 22(13):5344–5353 Distinct Intracellular Calcium Transients in Neurites and Somata Integrate Neuronal Signals Friedrich W. Johenning,1,3 Michal Zochowski,2 Stuart J. Conway,4 Andrew B. Holmes,4 Peter Koulen,1 and Barbara E. Ehrlich1,2 Departments of 1Pharmacology and 2Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520, 3Department of Neuroanatomy, University Hospital Eppendorf, 20246 Hamburg, Germany, and 4Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom Intracellular calcium signals have distinct temporal and spatial throughout the cell. In the soma, they serve as amplifying patterns in neurons in which signal initiation and repetitive molecular switches, facilitating recruitment of the InsP3R type spiking occurs predominantly in the neurite. We investigated III-dependent pool. In the neurite, they decrease the probability the functional implications of the coexpression of different iso- of repetitive spiking. Use of a cell-permeant analog of InsP3 forms of ryanodine receptors (RyR) and inositol 1,4,5- suggested that regional specificity in InsP3 production and trisphosphate receptors (InsP3Rs) using immunocytochemistry, surface-to-volume effects play minor roles in determining tem- Western blotting, and calcium imaging in neuronally differenti- poral and spatial calcium signaling patterns in neurons. Our ated PC12 cells. InsP3R type III, an isoform that has been findings suggest that additional modulatory processes acting shown to be upregulated in neuronal apoptosis, is exclusively on the intracellular channels are necessary to generate spatially expressed in the soma, serving as a gatekeeper for high- specific calcium signaling. magnitude calcium surges. InsP3R type I is expressed through- Key words: intracellular calcium signaling; inositol 1,4,5 out the cell and can be related to signal initiation and repetitive trisphosphate; InsP3 receptor; ryanodine receptor; PC12 cells; spiking in the neurite.
    [Show full text]
  • MYSTERIES of the EQUILATERAL TRIANGLE, First Published 2010
    MYSTERIES OF THE EQUILATERAL TRIANGLE Brian J. McCartin Applied Mathematics Kettering University HIKARI LT D HIKARI LTD Hikari Ltd is a publisher of international scientific journals and books. www.m-hikari.com Brian J. McCartin, MYSTERIES OF THE EQUILATERAL TRIANGLE, First published 2010. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the publisher Hikari Ltd. ISBN 978-954-91999-5-6 Copyright c 2010 by Brian J. McCartin Typeset using LATEX. Mathematics Subject Classification: 00A08, 00A09, 00A69, 01A05, 01A70, 51M04, 97U40 Keywords: equilateral triangle, history of mathematics, mathematical bi- ography, recreational mathematics, mathematics competitions, applied math- ematics Published by Hikari Ltd Dedicated to our beloved Beta Katzenteufel for completing our equilateral triangle. Euclid and the Equilateral Triangle (Elements: Book I, Proposition 1) Preface v PREFACE Welcome to Mysteries of the Equilateral Triangle (MOTET), my collection of equilateral triangular arcana. While at first sight this might seem an id- iosyncratic choice of subject matter for such a detailed and elaborate study, a moment’s reflection reveals the worthiness of its selection. Human beings, “being as they be”, tend to take for granted some of their greatest discoveries (witness the wheel, fire, language, music,...). In Mathe- matics, the once flourishing topic of Triangle Geometry has turned fallow and fallen out of vogue (although Phil Davis offers us hope that it may be resusci- tated by The Computer [70]). A regrettable casualty of this general decline in prominence has been the Equilateral Triangle. Yet, the facts remain that Mathematics resides at the very core of human civilization, Geometry lies at the structural heart of Mathematics and the Equilateral Triangle provides one of the marble pillars of Geometry.
    [Show full text]
  • View Full Page
    The Journal of Neuroscience, August 1, 2001, 21(15):5813–5823 Expression of Protein Kinase C Inhibitor Blocks Cerebellar Long-Term Depression without Affecting Purkinje Cell Excitability in Alert Mice Jeroen Goossens,1,2 Herve´ Daniel,3 Armelle Rancillac,3 Johannes van der Steen,1 John Oberdick,4 Francis Cre´ pel,3 Christiaan I. De Zeeuw,5 and Maarten A. Frens1 1Department of Physiology, Neuroscience Institute, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands, 2Department of Medical Physics and Biophysics, University of Nijmegen, 6500 HB Nijmegen, The Netherlands, 3Laboratory of Neurobiology, Institute of Neuroscience, University of Paris IV, 75252 Paris, France, 4Department of Cell Biology, Ohio State University, Columbus, Ohio 43210, and 5Department of Anatomy, Neuroscience Institute, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands A longstanding but still controversial hypothesis is that long- innervation does not occur in cerebellar slices obtained from 3- term depression (LTD) of parallel fiber–Purkinje cell synapses in to 6-month-old mutants. These data indicate (1) that neither the cerebellum embodies part of the neuronal information stor- PKC inhibition nor the subsequent blockage of LTD induction age required for associative motor learning. Transgenic mice in disturbs the spontaneous discharge of Purkinje cells in alert which LTD is blocked by Purkinje cell-specific inhibition of mice, (2) that Purkinje cell-specific inhibition of PKC detains protein kinase C (PKC) (L7-PKCI mutants) do indeed show rather than prevents the developmental conversion from multi- impaired adaptation of their vestibulo-ocular reflex, whereas ple to mono-innervation of Purkinje cells by climbing fibers, and the dynamics of their eye movement performance are unaf- (3) that as a consequence the impaired motor learning as fected.
    [Show full text]
  • Crystallization Communications Crystallization And
    crystallization communications Acta Crystallographica Section F Structural Biology Crystallization and preliminary X-ray diffraction and Crystallization analysis of calexcitin from Loligo pealei: a neuronal Communications protein implicated in learning and memory ISSN 1744-3091 G. D. E. Beaven,a P. T. Erskine,a The neuronal protein calexcitin from the long-finned squid Loligo pealei has J. N. Wright,a F. Mohammed,a‡ been expressed in Escherichia coli and purified to homogeneity. Calexcitin is a R. Gill,a S. P. Wood,a J. Vernon,b 22 kDa calcium-binding protein that becomes up-regulated in invertebrates K. P. Gieseb and J. B. Coopera* following Pavlovian conditioning and is likely to be involved in signal transduction events associated with learning and memory. Recombinant squid aSchool of Biological Sciences, University of calexcitin has been crystallized using the hanging-drop vapour-diffusion Southampton, Bassett Crescent East, technique in the orthorhombic space group P212121. The unit-cell parameters Southampton SO16 7PX, England, and of a = 46.6, b = 69.2, c = 134.8 A˚ suggest that the crystals contain two monomers bWolfson Institute for Biomedical Research, per asymmetric unit and have a solvent content of 49%. This crystal form University College London, Cruciform Building, diffracts X-rays to at least 1.8 A˚ resolution and yields data of high quality using Gower Street, London WC1E 6BT, England synchrotron radiation. ‡ Present address: CRUK Institute for Cancer Studies, University of Birmingham, Vincent 1. Introduction Drive, Edgbaston, Birmingham B15 2TT, England. The protein calexcitin was originally identified in the photoreceptor neurons of the marine snail Hermissenda crassicornis as a 20 kDa protein that became up-regulated and phosphorylated following a Correspondence e-mail: Pavlovian training protocol (Nelson et al., 1990).
    [Show full text]
  • Functional Evaluation of the Π-Helix in the NAD(P)
    Article Cite This: Biochemistry 2018, 57, 4469−4477 pubs.acs.org/biochemistry Functional Evaluation of the π‑Helix in the NAD(P)H:FMN Reductase of the Alkanesulfonate Monooxygenase System Jonathan M. Musila,† Dianna L. Forbes, and Holly R. Ellis* Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States *S Supporting Information ABSTRACT: A subgroup of enzymes in the NAD(P)H:FMN reduc- tase family is comprised of flavin reductases from two-component monooxygenase systems. The diverging structural feature in these FMN reductases is a π-helix centrally located at the tetramer interface that is generated by the insertion of an amino acid in a conserved α4 helix. The Tyr insertional residue of SsuE makes specific contacts across the dimer interface that may assist in the altered mechanistic properties of this enzyme. The Y118F SsuE variant maintained the π−π stacking interactions at the tetramer interface and had kinetic parameters similar to those of wild-type SsuE. Substitution of the π-helical residue (Tyr118) to Ala or Ser transformed the enzymes into flavin-bound SsuE variants that could no longer support flavin reductase and desulfonation activities. These variants existed as dimers and could form protein−protein interactions with SsuD even though flavin transfer was not sustained. The ΔY118 SsuE variant was flavin-free as purified and did not undergo the tetramer to dimer oligomeric shift with the addition of flavin. The absence of desulfonation activity can be attributed to the inability of ΔY118 SsuE to promote flavin transfer and undergo the requisite oligomeric changes to support desulfonation.
    [Show full text]