Variants of Phosphohexose Isomerase in Gastrointestinal And

Total Page:16

File Type:pdf, Size:1020Kb

Variants of Phosphohexose Isomerase in Gastrointestinal And [CANCER RESEARCH 48. 2998-3001, June, 1988] Variants of Phosphohexose Isomerase in Gastrointestinal and Mammary Carcinoma: Isoelectric Focusing Patterns of Normal and Tumor Tissues Derived from Surgical Specimens of the Same Patient1 Matthias Baumann, Damián Jezussek, Ralf-Torsten Richter, and Karl Brand2 Institute of Biochemistry, Medical Faculty, University of Erlangen-Nuremberg, Federal Republic of Germany ABSTRACT H2PO4 H2O, 5; MgSO4 7H2O,0.77; Krebs saline buffer: H2O, 1:4; pH 7.5). The occurrence of charge variants of phosphohexose isómeras? was Then the homogenate was sonicated by 6 pulses of 10 s each at 50 elucidated in cancerous and, for comparison, in noncancerous tissues W with cooling intervals of 1 min to make sure that the temperature of the preparation remained below 10'C. Subsequently, the extract was obtained from the same organ. Surgical specimens from 35 patients with gastrointestinal and mammary carcinoma were studied by means of the rehomogenized and centrifuged at 12,000 x g for 10 min. The super isoelectric focusing (IEF) technique. Differences in the IEF pattern could natant was dialyzed against 1% glycine buffer, pH 7.5, overnight at 4'C. LKB Multiplier 2117, LKB Power Supply Unit 2103, and Servalyt be demonstrated in 90% of the patients with gastric cancer. Correspond ing values for the patients with colorectal and mammary carcinoma were Precotes, pH 3-10, were used for the isoelectric focusing experiments. 50 and 73%, respectively. Almost all normal specimens proved to be A Julabo Paratherm FT20p electronic thermostat served to cool the plate to 4'C during the run. monomorphic, revealing only the major basic band with a pi of 9.1. In most of the tumors, additional bands of pi 8.9 and 8.6 were found. This The dialyzed probes were diluted with 2% LKB ampholine, pH 3- "typical" IEF pattern in tumor tissues was observed in 60% of gastric 10, achieving a final PHI activity of 1000-3000 »¿unitsina sample and 73% of mammary tumors, but in only 36% of colorectal tumors. The volume of 20 ¡A.Aconstant power of 4.0 W was preset and the Precote results obtained suggest that the IEF pattern of phosphohexose isomerase was prefocused until the voltage reached 500 V. Then the probes were in tumor tissue might be a useful tool for tumor diagnosis. applied and a voltage limit of 2000 V was chosen. When this voltage was reached the run was carried out for a further 30 min, so that the whole procedure took 3-4 h. INTRODUCTION Subsequently the precote was specifically stained for PHI, according to the method described by Carter and Parr (25), using phenazine The analysis of electrophoretic variants of the glycolytic methosulfate and the tetrazolium salt 3-(4,5-dimethyl-2-thiazolyl)-2,5- enzyme PHI3 is a widespread method in human genetics and diphenyl-2H-tetrazolium bromide. For each run, the protein standard internal medicine (1-7). Furthermore, serum PHI activity is a Test Mix 9, supplied by Serva, was used to determine the isoelectric well established tumor marker in oncology (8-19). The molec points (pi) of the PHI bands. This standard was visualized by Coomassie ular and kinetic properties of human PHI were investigated by staining. PHI activity was assayed spectrophometrically according to using hemolysates and muscle extracts as enzyme source (20- Tilley et al. (2). 22). There are relatively few reports dealing with the quantita tive and, in particular, qualitative comparison of PHI in normal and tumor tissues derived from surgical specimens of the same RESULTS patient (23, 24). Thirty-five patients with malignant tumors were included in The purpose of the present study was to evaluate the occur rence of PHI variants, comparing authentic normal and tumor this comparative study, 10 with gastric, 14 with colorectal, and tissues derived from the same organ immediately after surgical 11 with mammary carcinoma. By IEF, three charge variants of removal. Tissue specimens from 35 patients with gastric, colo PHI could be demonstrated in the tissues studied; a major basic rectal, and mammary carcinoma were studied by means of the band A with an isoelectric point of 9.1, and two more acidic IEF technique. bands B and C, with a pi of 8.9 and 8.6, respectively. In almost all normal specimens only the major band A could be found. In most tumor tissues additional bands could be detected. On MATERIALS AND METHODS the basis of this observation a "typical" IEF pattern of PHI, which is illustrated in Fig. 1, was defined as follows: normal Normal (noncancerous) and tumor tissue probes from the same organ tissue containing only band A and tumor specimen revealing of the patient were obtained immediately after surgical removal and two additional bands B and C. histopathological examination of each specimen. Only solid, surgically The IEF patterns of PHI found in normal and tumor tissue and histologically homogeneous tumor tissue, and closest noninvolved, histologically normal tissue as control were used. Blood and coagula specimens derived from the same organ of the patients are given in Tables 1-3. Table 1 shows that for gastric cancer PHI band were removed very thoroughly. All further steps were carried out at 4'C. Normal and carcinoma specimens were prepared identically. An A could be detected in all normal and tumor probes, whereas aliquot of 400 mg of each specimen was minced and homogenized in a band B is found in all tumor samples but only in 20% of the 10-fold volume of hypotonie Krebs saline buffer (in HIMconcentrations: normal specimens. Band C appeared in 8 of 10 malignant NaCl, 136; KC1, 4.7; CaCl2 2H2O, 1.29; K2HPO4 3H2O, 1.18; Na- probes but only in 1 of 10 benign tissues. In Table 2 the results obtained from the patients with colo Received 6/16/87; revised 12/10/87; accepted 2/23/88. The costs of publication of this article were defrayed in part by the payment rectal carcinoma are listed. In all 14 cases the normal tissue of page charges. This article must therefore be hereby marked advertisement in contained only band A. With respect to the tumor specimens, accordance with 18 U.S.C. Section 1734 solely to indicate this fact. 1This work was supported by the Marohn-Stiftung Grant Nr. Br/85. additional bands B and C were found, however, in only SOand 2To whom requests for reprints should be addressed, at Institute of Biochem 36% of the patients. In one instance only band B and C, but istry, Medical Faculty, Fahrstraße17, D-8520 Erlangen, Federal Republic of not band A (pi 9.1) could be detected. Germany.. 3The abbreviations used are: PHI, phosphohexose isomerase; IEF, isoelectric Table 3 illustrates that all normal breast tissues revealed band focusing. A exclusively. In 73% of the malignant breast tissues band B 2998 Downloaded from cancerres.aacrjournals.org on October 1, 2021. © 1988 American Association for Cancer Research. VARIANTS OF PHI IN CANCER GASTRIC CARCINOMA COLORECTAL CARCINOMA MAMMARY CARCINOMA •• NORMAL TUMOR NORMAL TUMOR NORMAL TUMOR Fig. 1. Isoelectric focusing patterns of phosphohexose isomerase in normal (noncancerous) and tumor tissues from patients with gastrointestinal and mammary carcinoma. Aliquots of extracts from normal and tumor tissues were subjected to isoelectric focusing on Servalyt Precotes (3-10), as described in "Materials and Methods." Band A, pi 9.1; Band B, pi 8.9; Band C, pi 8.6. Table 1 Isoelectricfocusing patterns of phosphohexose isomerase in normal and Table 3 Isoelectricfocusing patterns of phosphohexose isomerase in normal and tumor tissues from patients with gastric carcinoma tumor tissues from patients with mammary carcinoma TumorBand B+*--A° Band B BandC BandA Band Patient1234S678910n%NormalBandB+»+A* Band C BandC+ A Band B Band Patient1234567891011n%Normal ++ + +— + —+ ++ + + ++ — — + ++ +— + + —+ — — + ++ +— + + ++ — — + —4. +— + + ++ - - + —+ —— + + —+ — — + —+ +— + + ++ — — + —+ —- + -t- ++ — — + —+10 +++ + —+ — — + +1 + ++ — — + +11 + 2100 810 10 10 8100 0 0 11 20TumorBand 100 100 80 " Band A, pi 9.1; Band B, pi 8.9, Band C, pi 8.6. 0 0 100 73BandC++—++—++—++873 * +, presence of band; —,absenceof band. " BandA, pi 9.1; Band B,pi 8.9; BandC, pi 8.6. +, presenceof band; -, absenceof band. Table 4 Comparison of isoelectricfocusing patterns of phosphohexose isomerase in normal and tumor tissues obtained by surgical removal from the same patient The typical IEF pattern of PHI is defined: in the noncancerous tissue only band A, but bands A, B, and C in the tumor tissue. Table 2 Isoelectricfocusing patterns of phosphohexose isomerase in normal and tumor tissues from patients with colorectal carcinoma of patients with differentIEF pat of patients with terns in normal typicalIEF pat TumorGastric and tumortissues90 tern60 Patient1234S6791011121314m%NormalBandB+»-1-A* Band C BandC+ A Band B Band +— •+ carcinoma —+ +— -1- + Colorectalcarcinoma 14 SO 367351 —+ —— + — MammarycarcinomaAlln10 1135% 7369% —++ —— + — —— + — —+* —- + — -! + - I+ -- + + and C could be detected in addition to band A. These data are -+ -—+ - summarized in Table 4. —+ —-+ + In 90% of the patients with gastric carcinoma a difference in —+ +—+ + the IEF pattern of PHI between normal and tumor tissue —+14 +- — + -0 + - derived from the same patient could be demonstrated. Corre sponding values for colorectal and mammary carcinoma were 0100 50 13 7 50 and 73%, respectively. The "typical" IEF pattern of PHI as 0TumorBand 93 50 36 defined above (Fig. 1) occurred in 60 and 73% of all cases with * Band A, pi 9.1; Band B, pi 8.9; Band C, pi 8.6.
Recommended publications
  • Causes and Evaluation of Mildly Elevated Liver Transaminase Levels ROBERT C
    Causes and Evaluation of Mildly Elevated Liver Transaminase Levels ROBERT C. OH, LTC, MC, USA, and THOMAS R. HUSTEAD, LTC, MC, USA Tripler Army Medical Center Family Medicine Residency Program, Honolulu, Hawaii Mild elevations in levels of the liver enzymes alanine transaminase and aspartate transaminase are commonly dis- covered in asymptomatic patients in primary care. Evidence to guide the diagnostic workup is limited. If the history and physical examination do not suggest a cause, a stepwise evaluation should be initiated based on the prevalence of diseases that cause mild elevations in transaminase levels. The most common cause is nonalcoholic fatty liver disease, which can affect up to 30 percent of the population. Other common causes include alcoholic liver disease, medication- associated liver injury, viral hepatitis (hepatitis B and C), and hemochromatosis. Less common causes include α1-antitrypsin deficiency, autoimmune hepatitis, and Wilson disease. Extrahepatic conditions (e.g., thyroid disorders, celiac disease, hemolysis, muscle disorders) can also cause elevated liver transaminase levels. Initial testing should include a fasting lipid profile; measurement of glucose, serum iron, and ferritin; total iron-binding capacity; and hepa- titis B surface antigen and hepatitis C virus antibody testing. If test results are normal, a trial of lifestyle modification with observation or further testing for less common causes is appropriate. Additional testing may include ultrasonog- raphy; measurement of α1-antitrypsin and ceruloplasmin; serum protein electrophoresis; and antinuclear antibody, smooth muscle antibody, and liver/kidney microsomal antibody type 1 testing. Referral for further evaluation and possible liver biopsy is recommended if transaminase levels remain elevated for six months or more.
    [Show full text]
  • NADPH-Dependent A-Oxidation of Unsaturated Fatty Acids With
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6673-6677, August 1992 Biochemistry NADPH-dependent a-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms (5-enoyl-CoA/A3,A2-enoyl-CoA isomerase/A3',52'4-dienoyl-CoA isomerase/2,4-dienoyl-CoA reductase) TOR E. SMELAND*, MOHAMED NADA*, DEAN CUEBASt, AND HORST SCHULZ* *Department of Chemistry, City College of the City University of New York, New York, NY 10031; and tJoined Departments of Chemistry, Manhattan College/College of Mount Saint Vincent, Riverdale, NY 10471 Communicated by Salih J. Wakil, April 13, 1992 ABSTRACT The mitochondrial metabolism of 5-enoyl- a recent observation of Tserng and Jin (5) who reported that CoAs, which are formed during the (3-oxidation of unsaturated the mitochondrial -oxidation of 5-enoyl-CoAs is dependent fatty acids with double bonds extending from odd-numbered on NADPH. Their analysis of metabolites by gas chroma- carbon atoms, was studied with mitochondrial extracts and tography/mass spectrometry led them to propose that the purified enzymes of (3-oxidation. Metabolites were identified double bond of 5-enoyl-CoAs is reduced by NADPH to yield spectrophotometrically and by high performance liquid chro- the corresponding saturated fatty acyl-CoAs, which are then matography. 5-cis-Octenoyl-CoA, a putative metabolite of further degraded by P-oxidation. linolenic acid, was efficiently dehydrogenated by medium- This report addresses the question of how 5-enoyl-CoAs chain acyl-CoA dehydrogenase (EC 1.3.99.3) to 2-trans-5-cis- are chain-shortened by P-oxidation. We demonstrate that octadienoyl-CoA, which was isomerized to 3,5-octadienoyl- 5-enoyl-CoAs, after dehydrogenation to 2,5-dienoyl-CoAs, CoA either by mitochondrial A3,A2-enoyl-CoA isomerase (EC can be isomerized to 2,4-dienoyl-CoAs, which are reduced by 5.3.3.8) or by peroxisomal trifunctional enzyme.
    [Show full text]
  • Regulation of the Tyrosine Kinase Itk by the Peptidyl-Prolyl Isomerase Cyclophilin A
    Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A Kristine N. Brazin, Robert J. Mallis, D. Bruce Fulton, and Amy H. Andreotti* Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 Edited by Owen N. Witte, University of California, Los Angeles, CA, and approved December 14, 2001 (received for review October 5, 2001) Interleukin-2 tyrosine kinase (Itk) is a nonreceptor protein tyrosine ulation of the cis and trans conformers. The majority of folded kinase of the Tec family that participates in the intracellular proteins for which three-dimensional structural information has signaling events leading to T cell activation. Tec family members been gathered contain trans prolyl imide bonds. The cis con- contain the conserved SH3, SH2, and catalytic domains common to formation occurs at a frequency of Ϸ6% in folded proteins (17), many kinase families, but they are distinguished by unique se- and a small subset of proteins are conformationally heteroge- quences outside of this region. The mechanism by which Itk and neous with respect to cis͞trans isomerization (18–21). Further- related Tec kinases are regulated is not well understood. Our more, the activation energy for interconversion between cis and studies indicate that Itk catalytic activity is inhibited by the peptidyl trans proline is high (Ϸ20 kcal͞mol) leading to slow intercon- prolyl isomerase activity of cyclophilin A (CypA). NMR structural version rates (22). This barrier is a rate-limiting step in protein studies combined with mutational analysis show that a proline- folding and may serve to kinetically isolate two functionally and dependent conformational switch within the Itk SH2 domain reg- conformationally distinct molecules.
    [Show full text]
  • Phosphoglucose Isomerase (Pgi)
    NIPRO ENZYMES PHOSPHOGLUCOSE ISOMERASE (PGI) [EC 5. 3. 1. 9] from Bacillus stearothermophilus D-Glucose 6-phosphate ↔ D-Fructose 6-phosphate SPECIFICATION State : Lyophilized Specific activity : more than 400 U/mg protein Contaminants : (as PGI activity = 100 %) Phosphofructokinase < 0.01 % 6-Phosphogluconate dehydrogenase < 0.01 % Phosphoglucomutase < 0.01 % NADPH oxidase < 0.01 % Glutathione reductase < 0.01 % PROPERTIES Molecular weight : ca. 200,000 Subunit molecular weight : ca. 54,000 Optimum pH : 9.0 - 10.0 (Fig. 1) pH stability : 6.0 - 10.5 (Fig. 2) Isoelectric point : 4.2 Thermal stability : No detectable decrease in activity up to 60 °C. (Fig. 3, 4) Michaelis constants : (95mM Tris-HCI buffer, pH 9.0, at 30 °C) Fructose 6-phospate 0.27 mM STORAGE Stable at -20 °C for at least one year NIPRO ENZYMES ASSAY Principle The change in absorbance is measured at 340nm according to the following reactions. Fructose 6-phosphate PGI Glucose 6-phosphate + G6PDH + Glucose 6-phosphate + NADP Gluconolactone 6-phosphate + NADPH + H Unit Definition One unit of activity is defined as the amount of PGI that forms 1 μmol of glucose 6-phosphate per minute at 30 °C. Solutions Ⅰ Buffer solution ; 100 mM Tris-HCl, pH 9.0 Ⅱ Fructose 6-phosphate (F6P) solution ; 100 mM (0.310 g F6P disodium salt/10 mL distilled water) + + Ⅲ NADP solution ; 22.5 mM (0.188 g NADP sodium salt∙4H2O/10 mL distilled water) Ⅳ Glucose-6-phosphate dehydrogenase (G6PDH) ; (from yeast, Roche Diagnostics K.K., No. 127 671) suspension in 3.2 M (NH4)2SO4 solution (10 mg/2 mL) approx.
    [Show full text]
  • Gamma Glutamyl Transferase (GGT) NCD 190.32
    Medicare National Coverage Determination (NCD) Policy TRANSFERASE GAMMA GLUTAMYL Summary: Gamma Glutamyl Transferase (GGT) NCD 190.32 The terms of Medicare National Coverage Determinations (NCDs) are binding on all fee-for-service (Part A/B) Medicare Administrative Contractors (MACs) and Medicare Advantage (MA) plans. NCDs are not binding, however, on Medicaid and other governmental payers, nor are they binding on commercial payers in their non-MA lines of business. Item/Service Description* Gamma Glutamyl Transferase (GGT) is an intracellular enzyme that appears in blood following leakage from cells. Renal tubules, liver, and pancreas contain high amounts, although the measurement of GGT in serum is almost always used for assessment of hepatobiliary function. Unlike other enzymes which are found in heart, skeletal muscle, and intestinal mucosa as well as liver, the appearance of an elevated level of GGT in serum is almost always the result of liver disease or injury. It is specifically useful to differentiate elevated alkaline phosphatase levels when the source of the alkaline phosphatase increase (bone, liver, or placenta) is unclear. The combination of high alkaline phosphatase and a normal GGT does not, however, rule out liver disease completely. As well as being a very specific marker of hepatobiliary function, GGT is also a very sensitive marker for hepatocellular damage. Abnormal concentrations typically appear before elevations of other liver enzymes or bilirubin are evident. Obstruction of the biliary tract, viral infection (e.g., hepatitis, mononucleosis), metastatic cancer, exposure to hepatotoxins (e.g., organic solvents, drugs, alcohol), and use of drugs that induce microsomal enzymes in the liver (e.g., cimetidine, barbiturates, phenytoin, and carbamazepine) all can cause a moderate to marked increase in GGT serum concentration.
    [Show full text]
  • Como As Enzimas Agem?
    O que são enzimas? Catalizadores biológicos - Aceleram reações químicas específicas sem a formação de produtos colaterais PRODUTO SUBSTRATO COMPLEXO SITIO ATIVO ENZIMA SUBSTRATO Características das enzimas 1 - Grande maioria das enzimas são proteínas (algumas moléculas de RNA tem atividade catalítica) 2 - Funcionam em soluções aquosas diluídas, em condições muito suaves de temperatura e pH (mM, pH neutro, 25 a 37oC) Pepsina estômago – pH 2 Enzimas de organismos hipertermófilos (crescem em ambientes quentes) atuam a 95oC 3 - Apresentam alto grau de especificidade por seus reagentes (substratos) Molécula que se liga ao sítio ativo Região da enzima e que vai sofrer onde ocorre a a ação da reação = sítio ativo enzima = substrato 4 - Peso molecular: varia de 12.000 à 1 milhão daltons (Da), são portanto muito grandes quando comparadas ao substrato. 5 - A atividade catalítica das Enzimas depende da integridade de sua conformação protéica nativa – local de atividade catalítica (sitio ativo) Sítio ativo e toda a molécula proporciona um ambiente adequado para ocorrer a reação química desejada sobre o substrato A atividade de algumas enzimas podem depender de outros componentes não proteicos Enzima ativa = Holoenzimas Parte protéica das enzimas + cofator Apoenzima ou apoproteína •Íon inorgânico •Molécula complexa (coenzima) Covalentemente ligados à apoenzima GRUPO PROSTÉTICO COFATORES Elemento com ação complementar ao sitio ativo as enzimas que auxiliam na formação de um ambiente ideal para ocorrer a reação química ou participam diretamente dela
    [Show full text]
  • Inhibitor for Protein Disulfide‑Isomerase Family a Member 3
    ONCOLOGY LETTERS 21: 28, 2021 Inhibitor for protein disulfide‑isomerase family A member 3 enhances the antiproliferative effect of inhibitor for mechanistic target of rapamycin in liver cancer: An in vitro study on combination treatment with everolimus and 16F16 YOHEI KANEYA1,2, HIDEYUKI TAKATA2, RYUICHI WADA1,3, SHOKO KURE1,3, KOUSUKE ISHINO1, MITSUHIRO KUDO1, RYOTA KONDO2, NOBUHIKO TANIAI4, RYUJI OHASHI1,3, HIROSHI YOSHIDA2 and ZENYA NAITO1,3 Departments of 1Integrated Diagnostic Pathology, and 2Gastrointestinal and Hepato‑Biliary‑Pancreatic Surgery, Nippon Medical School; 3Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo 113‑8602; 4Department of Gastrointestinal and Hepato‑Biliary‑Pancreatic Surgery, Nippon Medical School Musashi Kosugi Hospital, Tokyo 211‑8533, Japan Received April 16, 2020; Accepted October 28, 2020 DOI: 10.3892/ol.2020.12289 Abstract. mTOR is involved in the proliferation of liver 90.2±10.8% by 16F16 but to 62.3±12.2% by combination treat‑ cancer. However, the clinical benefit of treatment with mTOR ment with Ev and 16F16. HuH‑6 cells were resistant to Ev, and inhibitors for liver cancer is controversial. Protein disulfide proliferation was reduced to 86.7±6.1% by Ev and 86.6±4.8% isomerase A member 3 (PDIA3) is a chaperone protein, and by 16F16. However, combination treatment suppressed prolif‑ it supports the assembly of mTOR complex 1 (mTORC1) and eration to 57.7±4.0%. Phosphorylation of S6K was reduced by stabilizes signaling. Inhibition of PDIA3 function by a small Ev in both Li‑7 and HuH‑6 cells. Phosphorylation of 4E‑BP1 molecule known as 16F16 may destabilize mTORC1 and was reduced by combination treatment in both Li‑7 and HuH‑6 enhance the effect of the mTOR inhibitor everolimus (Ev).
    [Show full text]
  • Deamidated Human Triosephosphate Isomerase Is a Promising Druggable Target
    biomolecules Article Deamidated Human Triosephosphate Isomerase Is a Promising Druggable Target Sergio Enríquez-Flores 1,*, Luis Antonio Flores-López 1,2, Itzhel García-Torres 1, Ignacio de la Mora-de la Mora 1 , Nallely Cabrera 3, Pedro Gutiérrez-Castrellón 4 , Yoalli Martínez-Pérez 5 and Gabriel López-Velázquez 1,* 1 Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; [email protected] (L.A.F.-L.); [email protected] (I.G.-T.); [email protected] (I.d.l.M.-d.l.M.) 2 CONACYT-Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico 3 Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; [email protected] 4 Hospital General Dr. Manuel Gea González, Mexico City 14080, Mexico; [email protected] 5 Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; [email protected] * Correspondence: [email protected] (S.E.-F.); [email protected] (G.L.-V.); Tel.: +52-55-10840900 (G.L.-V.) Received: 9 June 2020; Accepted: 10 July 2020; Published: 15 July 2020 Abstract: Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600–1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation.
    [Show full text]
  • Protein Disulfide-Isomerase A3 Significantly Reduces Ischemia
    Neurochemistry International 122 (2019) 19–30 Contents lists available at ScienceDirect Neurochemistry International journal homepage: www.elsevier.com/locate/neuint Protein disulfide-isomerase A3 significantly reduces ischemia-induced damage by reducing oxidative and endoplasmic reticulum stress T Dae Young Yooa,b,1, Su Bin Choc,1, Hyo Young Junga, Woosuk Kima, Kwon Young Leed, Jong Whi Kima, Seung Myung Moone,f, Moo-Ho Wong, Jung Hoon Choid, Yeo Sung Yoona, ∗ ∗∗ Dae Won Kimh, Soo Young Choic, , In Koo Hwanga, a Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea b Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, 31151, South Korea c Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea d Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea e Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 18450, South Korea f Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea g Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea h Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju
    [Show full text]
  • Relationship of Liver Enzymes to Insulin Sensitivity and Intra-Abdominal Fat
    Diabetes Care Publish Ahead of Print, published online July 31, 2007 Relationship of Liver Enzymes to Insulin Sensitivity and Intra-abdominal Fat Tara M Wallace MD*, Kristina M Utzschneider MD*, Jenny Tong MD*, 1Darcy B Carr MD, Sakeneh Zraika PhD, 2Daniel D Bankson MD, 3Robert H Knopp MD, Steven E Kahn MB, ChB. *Metabolism, Endocrinology and Nutrition, VA Puget Sound Health Care System 1Obstetrics and Gynecology, University of Washington, Seattle, WA 2Pathology and Laboratory Medicine, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, WA 3Harborview Medical Center, University of Washington, Seattle, WA Running title: Liver enzymes and insulin sensitivity Correspondence to: Steven E. Kahn, M.B., Ch.B. VA Puget Sound Health Care System (151) 1660 S. Columbian Way Seattle, WA 98108 Email: [email protected] Received for publication 18 August 2006 and accepted in revised form 29 June 2007. 1 Copyright American Diabetes Association, Inc., 2007 Liver enzymes and insulin sensitivity ABSTRACT Objective: To determine the relationship between plasma liver enzyme concentrations, insulin sensitivity and intra-abdominal fat (IAF) distribution. Research Design and Methods: Plasma gamma-glutamyl transferase (GGT), aspartate transaminase (AST), alanine transaminase (ALT) levels, insulin sensitivity (SI), IAF and subcutaneous fat (SCF) areas were measured on 177 non-diabetic subjects (75M/102, 31-75 2 -5 years) with no history of liver disease. Based on BMI (< or ≥27.5 kg/m ) and SI (< or ≥7.0x10 min-1 pM-1) subjects were divided into lean insulin sensitive (LIS, n=53), lean insulin resistant (LIR, n=60) and obese insulin resistant (OIR, n=56) groups.
    [Show full text]
  • GFAT and PFK Genes Show Contrasting Regulation of Chitin
    www.nature.com/scientificreports OPEN GFAT and PFK genes show contrasting regulation of chitin metabolism in Nilaparvata lugens Cai‑Di Xu1,3, Yong‑Kang Liu2,3, Ling‑Yu Qiu2, Sha‑Sha Wang2, Bi‑Ying Pan2, Yan Li2, Shi‑Gui Wang2 & Bin Tang2* Glutamine:fructose‑6‑phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased signifcantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition signifcantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2‑4, Cht6‑7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite efects on these genes. These results may be benefcial to develop new chitin synthesis inhibitors for pest control. Chitin is a linear polymer composed of N-acetylglucosamine units connected by β-1, 4-glycoside bonds and is the second most abundant biopolymer in nature. It is widely distributed in fungi, nematodes, and arthropods1. In insects, chitin is a major component of the exoskeleton, trachea, and the peritrophic matrix that lines the midgut epithelium1–4.
    [Show full text]
  • Scaffoldless Engineered Enzyme Assembly for Enhanced Methanol Utilization
    Scaffoldless engineered enzyme assembly for enhanced methanol utilization J. Vincent Pricea, Long Chena, W. Brian Whitakera,b, Eleftherios Papoutsakisa,b, and Wilfred Chena,1 aDepartment of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716; and bThe Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 Edited by Arnold L. Demain, Drew University, Madison, NJ, and approved September 27, 2016 (received for review February 4, 2016) Methanol is an important feedstock derived from natural gas and organisms requires electrons in the form of NADH and culture can be chemically converted into commodity and specialty chem- conditions largely microaerobic or anaerobic (7, 10). Thus, or- icals at high pressure and temperature. Although biological ganisms that can grow anaerobically or microaerobically and NAD- conversion of methanol can proceed at ambient conditions, there dependent Mdhs are essential for effective conversion of methanol + is a dearth of engineered microorganisms that use methanol to to desirable metabolites (7). Although NAD(P) -dependent Mdhs produce metabolites. In nature, methanol dehydrogenase (Mdh), are the best candidates for engineering synthetic methylotrophs which converts methanol to formaldehyde, highly favors the reverse like Escherichia coli, these enzymes have poor predicted thermo- reaction. Thus, efficient coupling with the irreversible sequestration dynamic properties and are thus dependent on maintaining low of formaldehyde by 3-hexulose-6-phosphate synthase (Hps)
    [Show full text]