The Role of the Veterinary Surgeons in Developing Theoretical and Clinical Immunology Rolul Medicilor Veterinari În Dezvoltarea Imunologiei Teoretice Şi Clinice

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Veterinary Surgeons in Developing Theoretical and Clinical Immunology Rolul Medicilor Veterinari În Dezvoltarea Imunologiei Teoretice Şi Clinice 50 Rev Rom Med Vet (2017) 27 | 1: 50-60 THE ROLE OF THE VETERINARY SURGEONS IN DEVELOPING THEORETICAL AND CLINICAL IMMUNOLOGY ROLUL MEDICILOR VETERINARI ÎN DEZVOLTAREA IMUNOLOGIEI TEORETICE ŞI CLINICE R. IFTIMOVICI1) For more than 150 years (1850-2010) veterinary De mai bine de 150 de ani (1850-2010), medicii surgeons made a crucial contribution to laying the veterinari au avut o contribuție esențială în punerea basis of and developing immunology. Starting with bazelor şi dezvoltării imunologiei. Pornind de la pri- the first attempts at immunizing bovine pleuropneu- mele încercări de imunizare a pleuropneumoniei bovi- monia (Louis Willems; 1852-1880), and continuing ne (Louis Willems, 1852-1880) și continuând cu apa- with the advent of the germ theory of infectious and riția teoriei germenelui bolilor infecțioase și contagi- contagious diseases of Louis Pasteur and Robert oase ale lui Louis Pasteur şi Robert Koch, medicii vete- Koch, veterinary surgeons like Henri Bouley, Henri rinari precum Henri Bouley, Henri Toussaint, Pierre- Toussaint, Pierre-Victor Galtier and William Schutz Victor Galtier și William Schutz au colaborat îndea- worked closer with doctors and biochemists in giving proape cu medici şi biochimişti pentru conturarea shape to contemporary immunology. imunologiei contemporane. The article also deals with the second generation Articolul de faţă se ocupă de asemenea, cu a doua of veterinary immunologists such as Edmond Nocard generație de imunologi veterinari, cum ar fi Edmond with his research on human and animal tuberculosis, Nocard cu cercetările sale asupra tuberculozei umane Camille Guerin who co-authored the BCG vaccine, și animale, Camille Guerin, care a fost co-autorul vac- Gaston Ramon, the inventor of anatoxin vaccination, cinului BCG, Gaston Ramon, inventatorul vaccinării Romanian Alexandru Ciucă who introduced the diag- cu anatoxină, românul Alexandru Ciucă, care a desco- nosis of aphthous fever serotypes, or his colleague perit diagnosticul serotipurilor de febră aftoasă, sau Alexandru Vechiu, the first researcher to have lapi- colegul său, Alexandru Vechiu, primul cercetător care nized classic swine fever roots. a lapinizat rădăcini de pestă porcină clasică. The tidal wave of cellular biology and molecular Valul de biologie celulară şi genetică moleculară genetics that swept medicine after 1930 brought care a cuprins medicina după 1930 a adus noi gene- forth new generations of veterinary surgeons who raţii de medici veterinari care au deschis noi teritorii opened up new territories governed by widely appli- guvernate de legi aplicabile pe scară largă. Cum ar fi cable laws. Such is chimerism, a concept introduced himerismul, un concept introdus de Ray Owen în 1945 by Ray Owen in 1945 and expanded into immunologi- și care s-a extins în conceptul de toleranţă imunologi- cal tolerance since 1960, or the immune system's dy- că din anul 1960, ori răspunsul dinamic al sistemului namic response to alien cells explained by the 1996 imunitar la celule străine, explicat de Peter Doherty - Nobel Prize winner Peter Doherty. laureatul Premiului Nobel din 1996. Keywords: theoretical and clinical immunology Cuvinte cheie: imunologie teoretică şi clinică Today immunity is seen as a complex, humoral and mulating the immune system; cellular action of recognition and rejection of the non- c) immunological diagnosis in human and veteri- self. But until 1960 the immune system was under- nary medicine; stood to be exclusively a body response to infectious d) the emergence and development of theoretical germs. The two-millennia-long history of immunology immunology: “the reverse path” from a natural or lab could be divided into at least four stages, each mar- created phenomenon seen with naked eyes to gene- king a revolutionary breakthrough: ralized theory and, finally, to the manufacture of im- a) pure empiricism; munity stimulants and depressants (in cases of auto- b) early accounts of prevention and treatment sti- immune disorders). I. PURE EMPIRICISM 1) Academy of Medical Sciences, Bucharest, Romania e-mail: [email protected] This period, extensively commented by medical Rev Rom Med Vet (2017) 27 | 1 51 historian, can be traced back both in human and vete- scarify sheep ears and smear the incision spot with ca- rinary medicine. prine variola pus or pustular scabs. It started with Mithridates VI Eupator Dionysus, In the 18th and 19th centuries surgeons introduced the legendary King of Pontus in Asia Minor (120 BC to smallpox inoculation to the European cities mostly by 63 BC) who fought three woeful wars against the imitating old practices. However, by the turn of the 18th Romans (88-85 BC; 83-81 BC; 74-66 BC). Fearful of century academic reports could be circulated among being assassinated, the king regularly ingested small surgeons and physicians. non-lethal amounts of various poisons to make himself Lady Mary Wortley Montagu, wife to the British immune. ambassador to Turkey, was brave enough to allow her Human variola (smallpox) and caprine variola children to be “variolated”. The operation was carried (sheep and goat pox) are the best known examples of out by a highly skilled old Greek woman (Lady Mary's prophylaxis and therapy. boy was inoculated in 1721 and her daughter in 1721). As is known, variolation is the first stage, based on In a letter to a friend, in the spring of 1721, an two findings made in antiquity: enthusiastic Lady Mary described the inoculations a) human and caprine variola is a highly conta- done with fresh, powerful smallpox material. Later on, gious and malignant virus; she embarked on a campaign to popularize inoculation b) those who suffer from smallpox will never by writing memoirs and promoting it to the court of acquire it again. They make the best nurses during George I. At her insistence, six condemned felons at variola epidemic. Newgate prison were offered the alternative of han- It did not take long before doctors started to intro- ging or their freedom if inoculated, on 9 August 1721. duce small amounts of viral matter from slightly ill pa- They all preferred to be inoculated and all survived to tients to children and adults in order to prime the be released on 6 September. immune system to recognize and destroy that virus. Greek surgeons Iacob Pilarino (1659-1718) and However, it was a most difficult step that required Emanoil Timoni (1670-1718) were also making efforts great courage. To all appearances, the first attempts to popularize “inoculation” (the term used at that at inoculation were made by the ancient Chinese, the time). Timoni managed to publish a substantial article Koreans, the Japanese and the Indians. on variolation in Philosophical Transactions of the The Chinese used nasal insufflation by blowing Royal Society in London, in 1713, even before Lady powdered smallpox material, usually scabs, up the Mary could plead with Voltaire in favor of the inocula- children's nostrils, with the help of bamboo pipes. tion of children. Pilarino and Timoni spent some time in Indian children under two years of age were the service of Wallachian and Moldavian princes, with wrapped in shirts splattered with pus taken from hu- Pilarino reaching as far high as physician in Peter the man smallpox papules. Scottish children would wrap Great's retinue. their scratched arm skin with wool tissue smeared with By 1720 aristocrats in nearly all of Europe's capital pus. cities sought inoculation for their children as well as for Similar methods of inoculation were reported in themselves. At Versailles, for instance, King Louis XVI the Middle Ages (300-600 AD) in areas now encom- and Maria Antoinette led several noble families to passed by Germany, Austria, the Netherlands, Den- smallpox inoculation in 1774. The king's decision to mark and even Russia, thanks to Viking inroads. submit himself to inoculation came shortly after the The Abyssinians, Berbers and Arabs used to treat Faculty of Medicine's professors had voted 75%-25% pustular scabs with water or milk, while South-Euro- in favor of the saying “Ce qui pouvait etre utile aux pean Slavs (Bulgarians and Serbs) would mildly spank hommes ne pouvait offenser Dieu” (“Things useful their children with pus-smeared twigs. to man will not insult God”). The inoculation saved In the 13th and 14th century, the inhabitants of what Louis XVI, the “king craftsman”, from sharing the fate is now Romania would prick their arm or thigh skin of his predecessor, King Louis XV, who scoffed at the with needles dipped into pustules, wash their children procedure and died of smallpox in 1774. in the water previously used by a carrier of the infec- Finally, British country physician Edward Jenner tion, or attach to their earlobes earrings dipped in (1749-1823) managed to introduce the smallpox vac- smallpox pus. cine (from Variolae vaccinae – smallpox of the cow) at Variolation was also practiced on animals. She- a time when the virus was devastating his country. He pherds living in the Carpathians and the Balkans would made the passage from empiricism to science. 52 Rev Rom Med Vet (2017) 27 | 1 The empirical part of his work was his simple ob- geons graduating from schools in Lyon, Charrenton- servation that milkmaids were generally immune to Alfort, Leipzig, Vienna and Torino were asked to join smallpox. Jenner concluded that the pus filled blisters the process of preparing the smallpox vaccine. Each of acquired by milkmaids from cowpox (a disease similar them worked successfully, improving the method of to smallpox, but much less virulent) made them resis- cultivating the virus on calves' thoracic skin. tant to smallpox. It is true that human and veterinary vaccines came The scientific part came with his realization that to be widely used more than 80 years after Jenner's smallpox vaccination could be put to mass use. As is 1785-1800 discovery set the stage for the eradication known, Jenner fought stoically against the prejudice of smallpox.
Recommended publications
  • 17110-Disseminated-Nocardiosis-A-Case-Report.Pdf
    Open Access Case Report DOI: 10.7759/cureus.5294 Disseminated Nocardiosis: A Case Report Ines M. Leite 1 , Frederico Trigueiros 1 , André M. Martins 1 , Marina Fonseca 1 , Tiago Marques 2 1. Serviço De Medicina 2, Hospital De Santa Maria, Lisboa, PRT 2. Serviço De Doenças Infecciosas, Hospital De Santa Maria, Lisboa, PRT Corresponding author: Ines M. Leite, [email protected] Abstract Disseminated nocardiosis is a rare infection associated with underlying immunosuppression, and patients usually have some identifiable risk factor affecting cellular immunity. Due to advances in taxonomy and microbiology identification methods, infections by Nocardia species are more frequent, making the discussion of its approach and choice of antibiotherapy increasingly relevant. A 77-year-old man presented to the emergency department with marked pain on the right lower limb, weakness, and upper leg edema. He had been diagnosed with organized cryptogenic pneumonia one year before and was chronically immunosuppressed with methylprednisolone 32 mg/day. Blood cultures isolated Nocardia cyriacigeorgica. Computed tomography revealed a gas collection in the region of the right iliacus muscle with involvement of the gluteal and obturator muscles upwardly and on the supragenicular plane inferiorly. Triple therapy with imipenem, amikacin, and cotrimoxazole was started, and the patient was submitted for emergent surgical decompression, fasciotomy, and drainage due to acute compartment syndrome. The patient had a good outcome and was discharged from the hospital after 30 days of intravenous therapy. This case illustrates the severity of Nocardia infection and highlights the need for a meticulous approach in the diagnosis and treatment of these patients. Categories: Internal Medicine, Infectious Disease Keywords: nocardia, nocardia infection, immunosuppression Introduction In the suborder of Corynebacterineae, three genera have strains that may be pathological to humans, with some characteristics similar to Fungi: Mycobacterium, Corynebacterium, and Nocardia.
    [Show full text]
  • The Designing of Anti-Diphtheria Serotherapy at the Institut Pasteur (1888-1900): the Role of a Supranational Network of Microbiologists
    The designing of anti-diphtheria serotherapy at the Institut Pasteur (1888-1900): the role of a supranational network of microbiologists Gabriel Gachelin Rehseis, UMR 7596 CNRS-Université Paris VII. Paris. [email protected] Dynamis Fecha de recepción: 28 de julio de 2006 [0211-9536] 2007; 27: 45-62 Fecha de aceptación: 22 de enero de 2007 SUMMARY: 1.—Introduction. 2.—Shuttling of research on diphtheria between France and Germany. 3.—The designing of French standards and norms in accordance with German ones. 4.—The rapid decline of strong anti-German feelings at the Institut Pasteur. ABSTRACT: The development of anti-diphtheria serotherapy at the Institut Pasteur immedia- tely follows the crisis known as the Pasteur-Koch debate. Research on diphtheria in Paris is indicative of the importance granted by Pasteurian scientists to Koch’s school criticisms. After 1887, relations between French and German bacteriologists become more relaxed. A scientific and social network develops between them. It later extends to other fields of research at the Institut Pasteur, particularly therapeutic chemistry. The evolution of Franco-German relations at the Institut Pasteur is placed in the general framework of the way French universities con- sidered German science. PALABRAS CLAVE: Difteria, seroterapia, relaciones franco-alemanas, red científica, Roux, von Behring. KEYWORDS: diphtheria, serotherapy, Franco-German relations, scientific network, Roux, von Behring. 1. Introduction A violent debate between Louis Pasteur (1822-1895) and Robert Koch (1843- 1910) broke out in 1881 on the issue of the vaccination against anthrax soon after the International Congress of Medicine in London held in August of that year.
    [Show full text]
  • The Greatest Steps Towards the Discovery of Vibrio Cholerae
    REVIEW 10.1111/1469-0691.12390 The greatest steps towards the discovery of Vibrio cholerae D. Lippi1 and E. Gotuzzo2 1) Experimental and Clinical Medicine, University of Florence, Florence, Italy and 2) Institute of Tropical Medicine, Peruvian University, C. Heredia, Lima, Peru Abstract In the 19th century, there was extensive research on cholera: the disease was generally attributed to miasmatic causes, but this concept was replaced, between about 1850 and 1910, by the scientifically founded germ theory of disease. In 1883, Robert Koch identified the vibrion for the second time, after Filippo Pacini’s discovery in 1854: Koch isolated the comma bacillus in pure culture and explained its mode of transmission, solving an enigma that had lasted for centuries. The aim of this article is to reconstruct the different steps towards the explanation of cholera, paying particular attention to the events occurring in the pivotal year 1854. Keywords: Filippo Pacini, history of cholera, John Snow, Robert Koch, vibrion Article published online: 12 September 2013 Clin Microbiol Infect 2014; 20: 191–195 Corresponding author: D. Lippi, Experimental and Clinical Medicine, University of Florence, Florence, Italy E-mail: donatella.lippi@unifi.it seriously affected almost the whole world during many severe Introduction outbreaks in the course of the 19th century [2]. This diarrhoeal disease can lead to death by dehydration of an untreated In the 19th century, there was extensive research on cholera: patient within a few hours, and is extremely contagious in among the topics discussed were microbial vs. miasmatic causes communities without adequate sanitation. Even though it was and the relative merits of hygiene, sanitation and quarantine in hard to discriminate cholera from many other diseases controlling or preventing cholera’s spread, especially among associated with diarrhoea and vomiting, the first pandemic of European nations.
    [Show full text]
  • The Emergence of French Medical Entomology: the Influence of Universities, the Institut Pasteur and Military Physicians (1890–C.1938)
    Medical History, 2008, 52: 387–405 The Emergence of French Medical Entomology: The Influence of Universities, the Institut Pasteur and Military Physicians (1890–c.1938) ANNICK OPINEL* The term medical entomology (entomologie me´dicale) was used for the first time in France around 1910. As far as France is concerned,1 the study of arthropods as critical components in the propagation of severe diseases such as yellow fever, trypanosomiasis, and malaria gradually emerged after 1890 in three main types of institution: civilian faculties of medicine, a specialized military medical training centre, and the Institut Pasteur. In each of these settings, medical entomology developed from different ratio- nales and interests, and came to influence different spheres of activity. Although identified very early in France—in the last decade of the nineteenth century—as the necessary associate of parasitology and the study of tropical diseases, it was nearly twenty years before medical entomology became a defined field of knowledge within the wider dis- cipline of entomology. The present article surveys the respective roles of the three teaching and research institutions that played a part in the emergence of medical entomology in France. Not only were these institutions the major actors in the country at the time, but, despite their differences, they were destined in some way closely to collaborate or to create parallel international networks of research and teaching while generating a complex array of subsidiary institutions, nearly all dealing with
    [Show full text]
  • The Origin of the Production of Diphtheria Antitoxin in France, Between Philanthropy and Commerce
    The origin of the production of diphtheria antitoxin in France, between philanthropy and commerce Jonathan Simon LEPS (EA 4148), La Pagode, Université Lyon 1, F-69622 Villeurbanne Cedex, France. [email protected] Dynamis Fecha de recepción: 27 de septiembre de 2006 [0211-9536] 2007; 27: 63-82 Fecha de aceptación: 31 de enero de 2007 SUMMARY: 1.—Introduction. 2.—The origins of the serum. 3.—The production process. 4.—Serum at the Pasteur Institute; the pros and cons of media exposure. 5.—The serum and the finances of the Pasteur Institute. 6.—The serum legislation. 7.—French culture and the serum industry. 8.—Conclusion: serum in European cultures. ABSTRACT: Serotherapy for the treatment of diphtheria represented a major therapeutic in- novation at the end of the nineteenth century. The manner in which large-scale production of this medicament was undertaken and the regulations that governed its production and distribution were important elements of public health policy in France as in other European countries. This paper describes the dominance of the Pasteur Institute in this field and, starting from this observation, explores what this event in the history of medicine can tell us about the governance of public health in fin-de-siècle France. The particular organization of this institute and its monopoly of specialist microbiological knowledge allowed it to raise money for serum production from both private and public sources, walking the line between a com- mercial pharmaceutical venture and a philanthropic enterprise. PALABRAS CLAVE: seroterapia, Instituto Pasteur, Tercera República, cruz, Salud Pública. KEYWORDS: serotherapy, Pasteur Institute, Third Republic, Croup, Public Health.
    [Show full text]
  • Monsieur Roux, Un Bienfaiteur De L'humanité
    FBIO 345 INT.qxp 17/10/2018 16:14 Page51 BIOLOGIE ET HISTOIRE Émile Roux Monsieur Roux, un bienfaiteur de l’humanité M. SIMONET1 résumé Fils spirituel d’Émile Duclaux, assistant de Louis Pasteur, Émile Roux a été l’un des fondateurs de la micro- biologie et parmi les pionniers en pathologie infectieuse. Ses expérimentations animales sur la rage ont contri- bué à la mise au point du vaccin antirabique, mais son œuvre scientifique maîtresse reste l’étude de la diph- térie et ses recherches dans cette maladie ainsi que celles concernant le tétanos, une autre toxi-infection, qui ont fait de lui un bienfaiteur de l’humanité. Maître d’œuvre de l’Institut Pasteur, puis de l’hôpital pavillonnaire attenant destiné aux maladies contagieuses, Émile Roux dirigera l’institution à partir de 1904 et pendant près de 30 ans, assurant son développement et son expansion à travers le monde. Il a créé le premier cours de microbiologie au monde, de renommée internationale, qui formera au fil des ans de très nombreux élèves de diverses nationalités. mots-clés : toxine diphtérique, toxi-infection, sérothérapie, rage, Louis Pasteur, Émile Duclaux, Institut Pas- teur, cours de microbie technique. I. - INTRODUCTION II. - LA JEUNESSE, DE CONFOLENS AU PUY Les recherches de Louis Pasteur entreprises au Pierre Paul Émile Roux naît le 17 décembre 1853 tout début de la seconde moitié du XIXe siècle, au collège de Confolens (Charente). Ses parents sont concernant les fermentations et la putréfaction puis d’origine charentaise. Jean, son père, licencié ès-let- deux maladies des vers à soie (la pébrine et la flache- tres, est le Principal du collège ; Marthe-Pauline (née rie) dévastant les magnaneries des Cévennes, le Pintaud), sa mère, est la directrice de l’internat.
    [Show full text]
  • Historical Review of BCG Vaccine in Japan
    Jpn. J. Infect. Dis., 60, 331-336, 2007 Invited Review Historical Review of BCG Vaccine in Japan Saburo Yamamoto1,2* and Toshiko Yamamoto1 1Department of Microbial and Molecular Pathogenesis, Texas A & M University Health Science Center, College of Medicine, Texas, USA, and 2Ex Laboratory of Tuberculosis Control, Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Tokyo 208-0011, Japan (Received June 29, 2007) CONTENTS: 1. Introduction 4. Quality control 2. BCG vaccine in Japan 5. Vaccine efficacy 2-1. Freeze-dried vaccine 6. Adverse reactions 2-2. Percutaneous administration 7. Genetic characterization of BCG strains 3. Vaccine production 8. Aspects of BCG vaccines SUMMARY: Bacillus Calmette and Guérin (BCG) was introduced to Japan in 1924 by Kiyoshi Shiga and has been propagated for research purposes ever since propagation is accomplished using a glycerin-bile-potato mixture in the same manner used by Calmette and Guérin. To prepare a stable and safe freeze-dried BCG vaccine, several joint research projects were organized in 1949. At the National Institute of Infectious Diseases (formerly the National Institute of Health), the 172nd passage of BCG from the first culture was freeze-dried in 1961 and was used as the origin of the Japanese BCG strain, Tokyo-172. The Tokyo-172 was registered as an International Reference Strain in 1965 by the World Health Organization. In 1967, a multiple puncture method for BCG vaccination using a plastic cylinder implanted with nine fine needles at one end was introduced to Japan; there- after, percutaneous administration replaced intradermal injection. The efficacy and adverse reactions of BCG vaccines as well as recent knowledge on the genetic characterization of BCG is also discussed.
    [Show full text]
  • Ravenel, Mazÿck Porcher (1861-1946), Papers, 1884-1958, (C0578)
    C Ravenel, Mazÿck Porcher (1861-1946), Papers, 1884-1958 578 1.7 linear feet, 1 card file INTRODUCTION Papers of a bacteriologist and teacher, including correspondence, notes, and other material. Information on disease research, health organizations, other scientists, World War I army life, the University of Wisconsin in 1914, and effects of World War II on Columbia, Missouri. DONOR INFORMATION The papers were donated to the University of Missouri by the Medical Library on 30 October 1968 (Accession No. 3783). BIOGRAPHICAL SKETCH Mazÿck Porcher Ravenel was born in Pendleton, South Carolina, in 1861, the son of Henry Edmund and Selma E. Ravenel. He graduated from the University of the South in 1881, and received the M.D. at the Medical College of the State of South Carolina in 1884. He married Jennie Carlile Boyd in 1898, and in 1910, Adele Pettigru Vander Horst. A cofounder of the Charleston Medical School, he practiced medicine in Charleston for six years before leaving in 1894 to attend the Pasteur Institute in Paris, France, and work with Carl Fraenkel at the Hygienic Institute, University of Halle, Germany, 1895. Ravenel served as first director of the Hygienic Laboratory of the New Jersey State Board of Health, 1895; bacteriologist for the Pennsylvania State Live Stock Sanitary Board, 1896-1904; and instructor of bacteriology, Medical and Veterinary Schools, University of Pennsylvania, 1896. He challenged the bovine tuberculosis theory of Robert Koch at the Third International Tuberculosis Congress, London, England, 1901, and isolated a bovine tubercle bacilli from tuberculous children, 1902. He acted as assistant medical director and chief of the laboratory, Phipps Institute for the Study, Treatment and Prevention of Tuberculosis, 1904-1907; professor of bacteriology, University of Wisconsin, 1907-1914; director of the State Hygienic Laboratory of Wisconsin, 1908-1914; and president, Wisconsin Antituberculosis Society.
    [Show full text]
  • The Greatest Steps Towards the Discovery of Vibrio Cholerae
    REVIEW 10.1111/1469-0691.12390 The greatest steps towards the discovery of Vibrio cholerae D. Lippi1 and E. Gotuzzo2 1) Experimental and Clinical Medicine, University of Florence, Florence, Italy and 2) Institute of Tropical Medicine, Peruvian University, C. Heredia, Lima, Peru Abstract In the 19th century, there was extensive research on cholera: the disease was generally attributed to miasmatic causes, but this concept was replaced, between about 1850 and 1910, by the scientifically founded germ theory of disease. In 1883, Robert Koch identified the vibrion for the second time, after Filippo Pacini’s discovery in 1854: Koch isolated the comma bacillus in pure culture and explained its mode of transmission, solving an enigma that had lasted for centuries. The aim of this article is to reconstruct the different steps towards the explanation of cholera, paying particular attention to the events occurring in the pivotal year 1854. Keywords: Filippo Pacini, history of cholera, John Snow, Robert Koch, vibrion Clin Microbiol Infect Corresponding author: D. Lippi, Experimental and Clinical Medicine, University of Florence, Florence, Italy E-mail: donatella.lippi@unifi.it seriously affected almost the whole world during many severe Introduction outbreaks in the course of the 19th century [2]. This diarrhoeal disease can lead to death by dehydration of an untreated In the 19th century, there was extensive research on cholera: patient within a few hours, and is extremely contagious in among the topics discussed were microbial vs. miasmatic causes communities without adequate sanitation. Even though it was and the relative merits of hygiene, sanitation and quarantine in hard to discriminate cholera from many other diseases controlling or preventing cholera’s spread, especially among associated with diarrhoea and vomiting, the first pandemic of European nations.
    [Show full text]
  • Relevance of Bovine Tuberculosis Research to the Understanding of Human Disease
    Veterinary Immunology and Immunopathology 159 (2014) 113–132 Contents lists available at ScienceDirect Veterinary Immunology and Immunopathology j ournal homepage: www.elsevier.com/locate/vetimm Relevance of bovine tuberculosis research to the understanding of human disease: Historical perspectives, approaches, and immunologic mechanisms a,∗,1 a b W. Ray Waters , Mayara F. Maggioli , Jodi L. McGill , c a Konstantin P. Lyashchenko , Mitchell V. Palmer a Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States b Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, United States c Chembio Diagnostic Systems Inc., Medford, NY, United States a r t i c l e i n f o a b s t r a c t Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Keywords: Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual ben- Bovine tuberculosis efit approach, demonstrating a profound relevance of veterinary studies for biomedical Central memory T cells applications. Tuberculosis (TB), primarily due to Mycobacterium tuberculosis in humans and Multi-functional T cells ␥␦ T cells Mycobacterium bovis in cattle, is an exemplary model for the demonstration of this concept. IL-17 Early studies with cattle were instrumental in the development of the use of Koch’s tuber- IP-10 culin as an in vivo measure of cell-mediated immunity for diagnostic purposes. Calmette M. bovis specific antibody and Guerin demonstrated the efficacy of an attenuated M. bovis strain (BCG) in cattle prior to use of this vaccine in humans. The interferon-␥ release assay, now widely used for TB diagnosis in humans, was developed circa 1990 for use in the Australian bovine TB erad- ication program.
    [Show full text]
  • Edmond Nocard (1850-1903) Et Le Centenaire De La Découverte Du Premier Mycoplasme (1898) *
    Edmond Nocard (1850-1903) et le centenaire de la découverte du premier mycoplasme (1898) * par Claude CHASTEL ** 1898 fut une année particulièrement riche en découvertes microbiologiques de premier plan : la mise en évidence expéri­ mentale, par P.L. Simond, du rôle de la puce du rat dans la transmission de la peste (1), la confirmation par M. Beijerinck (2) du caractère filtrant du virus de la mosaïque du tabac et l'énoncé, par le même auteur, du concept de Contagium vivum fluidum, d'ailleurs très mal accepté par les autres bactériologistes, enfin, la découverte du virus de la myxomatose du lapin par G. Sanarelli (3). Mais, surtout, c'est l'isolement du "virus" de la péripneumonie des bovidés (PPB), par E. Nocard, E. Roux, A. Borrel, A.T. Salimbeni et L. Dujardin-Baumetz, à Paris (4), qui retiendra notre attention, car cet événement eut un très large retentisse­ ment immédiat et des conséquences Edmond Nocard (1850-1903) durables pour la Microbiologie Générale et (Archives départementales - Val de Marne) la Virologie. Ce fut en effet le premier mycoplasme à être isolé, mais on était encore loin de le savoir. Ses découvreurs pensèrent qu'il s'agissait d'un autre virus fil­ trant (5). Ce travail fut publié dans les toutes nouvelles Annales de l'Institut Pasteur fondées par Emile Duclaux (1886). * Comité de lecture du 19 décembre 1998 de la Société française d'Histoire de la Médecine. ** Laboratoire de Virologie, Faculté de Médecine, 29285 Brest cedex. HISTOIRE DES SCIENCES MÉDICALES - TOME XXXIII - №4 - 1999 311 La découverte de l'agent de la péripneumonie des bovidés Au début de leur article, E.
    [Show full text]
  • L'œuvre Scientifique D'edmond Nocard ( 1850-1903
    Bull.soc.fr.hist.méd.sci.vét., 2003, 2 (2) L’ŒUVRE SCIENTIFIQUE D’EDMOND NOCARD ( 1850-1903) ________________________________________ par Gérard Orth *et Jean-Louis Guénet * Sommaire : les principales avancées scientifiques réussies par Edmond Nocard en chirurgie, en bactériologie, en épidémiologie, en prophylaxie des maladies infectieuses et en hygiène. Rappel sur sa collaboration scientifique étroite avec Louis Pasteur et Emile Roux. Mots-clés : Nocard - Œuvre scientifique - Pasteur- Roux ___________________________________ Title: The scientific achievements of Edmond Nocard ( 1850-1903) Content: The main scientific achievements of Edmond Nocard in surgery, bacteriology, epidemiology, hygiene and the prevention of infectious diseases. A review of his close collaboration with Louis Pasteur and Emile Roux. Key-words: Nocard - Pasteur- Roux - Scientific achievements Lorsque Edmond Nocard meurt le 2 août 1903, « à la fleur de son talent » (1:521), les nombreux hommages publiés en France ou à l’étranger attestent de la place qu’il occupait dans le monde scientifique (1,5,6et 19). C’est ainsi que G. Nahall, éditeur du Journal of Hygiene, écrit : « La mort prématurée du Professeur Nocard est un coup sévère (a severe blow) porté à la science médicale du monde entier. Un regard sur la longue liste d’articles importants qu’il a publiés, plus particulièrement durant ces dernières années, atteste de sa prodigieuse activité et de son exceptionnel talent d’expérimentateur. Son travail s’est inscrit dans la lignée de l’Ecole de Pasteur, en ce qu’il s’est d’abord attaqué à des problèmes d’intérêt purement scientifique dans le domaine de la biologie et que ses travaux ont conduit à de nombreuses applications pratiques d’une importance utilitaire et économique considérable » (6: 517).
    [Show full text]