Architecture and Energy

Total Page:16

File Type:pdf, Size:1020Kb

Architecture and Energy SET 2004 - 3rd International Conference on Sustainable Energy Technologies. Nottingham, UK, 28-30 June 2004 Page 1 of 3 Architecture and energy F. Leal and J. L. Wolpert Faculty of Architecture, Universidad Nacional Autónoma de México ABSTRACT: Architecture, before casting its sublime plastic and aesthetic shed adding to cultural fabric, provides shelter as a response to an aggressive surrounding, as interpreted by human beings. There is then a practical utility in its origin. It follows that a building should operate efficiently to fulfill this primary goal. Architecture is a public art that has its origin in the need for shelter; then it is only caustic for it to consider the environment and energy ratios in its interpretation and to promote a friendly dialogue there too. Keywords: Architecture, energy, comfort INTRODUCTION meteorological characteristics of any site on Earth are What is in Architecture a cultural and artistic the result of an entropic spenditure of some kind of manifestation is born of the duality: man’s need for energy i.e. solar, eolic, chemical or hydrological. protection and the sign of human congregation. Le Corbusier defined at some point Architecture as the ENERGY IN ARCHITECTURE wise game of volumes under light. Later and as a So energy is at the core of Architecture’s primordial result of his social views he dictated: A house is a raison d’etre. This explains why any project needs to machine for human operation. Both visions, although based upon a thorough analysis of the site. An contrasting, hide certain nostalgia of men for their architect must understand what energy and its work and immortality. In its semantic discourse, manifestations and possible transformations are to Architecture has encouraged a dialogue between determine how will the designed space interact men; from the Chauvert caves in the Ardeche Gorges efficiently with the environment. This is not to say that in the south of France to the Greater London cultural, traditional and aesthetic factors should be Authority Building in Southwark, London. The Thames negligible in Architecture; on the contrary, energy and the Rhone rivers, like the Tigris or the Yang Tse efficiency should enhance the intellectual processes Kiang in oriental cultures, are and have been symbols an architect undergoes when trying to express his or of human culture and congregation. We ask today her dialectic statements on the above for any project. what impulse lead Paleolithic men to paint their caves thirty-one centuries ago and what inspires them to Energy is the capacity any substance or body keep doing so. Wassily Kandinsky, who included processes that may result in the doing of work; being primitive painting interpretations in his plastic work a force excerted over a distance. Men have discourse, explains this drive as a consequence of found through civilizations ways to control nature by three levels of communication: the artisan, the kid one transforming energy resources into forms of energy always is and the public server. When we talk about that act in their favor. Heat, electricity and public art we must include Architecture. Public art mechanical, kinetic and chemical energies are some refers to the human natural need to live congregated. of these useful manifestations of energy that operate Every thing makes sense to man when he in a building. Science has studied over the century’s communicates with other men; even if it is to fight … energy sources almost readily found on Earth to as History has taught us. We are public animals. No power technology. This has led to irreversible wonder here in England bars are called public houses damage to the environment. Furthermore, human or “pubs”. development may be deterred due to the limited availability of non-renewable energy sources. In Mexican Architecture the dialogue between the Renewable energy is a sound, clean alternative to umbrage of interiority and the sanctity of the exterior conventional energy systems and using renewables is ubiquitous. I am talking of internal patios, fountains passively and actively could positively influence and wide and tall walls that impose textures to our Architecture. Solar, wind, biomass, geothermal and spirituality and dress our intimacy with colored masks. tidal energies are being considered by science to power new technologies as an alternative to the A building, as did a cave, closes in on itself to burning of fossil fuels; which contributes greatly to mediate between the raw ambient and human ozone depletion and global warming. Architects activities. Depending on the materials it is built with, it should be aware of these new technologies and filters temperature, humidity, light, wind, water, integrate them creatively into buildings and urban vegetation and landscape in a supposedly harmonic developments. Let us consider briefly air conditioning dosage and according to human comfort. The building services. SET2004 - 3rd Conference on Sustainable Energy Technologies. Nottingham, UK, 28-30 June 2004 Page 2 of 3 factors from global to local scales influences energy There has always been a need to condition indoors demand, production, supply and safe operation of temperature, air quality, humidity and climate to many energy systems. Renewable energy sources create an adequate atmosphere for any human are climate-sensitive. Global warming and climate activity held in an enclosed space. Heat gains from changes have been broadly analyzed at international solar irradiance and electric lightning cause summits including Rio in 1992 and Kyoto in 1997. unpleasant high room temperatures. Passive There, discussions on how to limit emissions while ventilation is an ideal alternative for cooling when still enabling development have pointed out the sufficient wind currents are present. However, the importance of alternative clean technologies. Another relief provided by natural airflow through an open environmental consideration when using renewable window is only effective for a depth of about 20 feet energy powered cooling technologies is the ozone inward from glazing. This method of passive depletion potential of chlorofluorocarbons (CFC´s). ventilation allows noise, dust and other pollutants to When exhausted to the atmosphere, these refrigerant enter the building freely. Furthermore, if windows are agents contribute to the destruction of the ozone open, then even moderate wind speeds cause layer, which prevents the ultraviolet sunrays to reach excessive draughts, becoming worst on the lower the surface of the Earth. Concern for this problem floors of buildings. Although there are different originated discussions among the International techniques to enhance passive ventilation, various Community on the reduction and eventual banning of humane activities require specific ambient control CFC´s production and the need to find chlorine-free unachievable with passive methods. Air conditioning working fluid alternatives that resulted in the 1987 is used when a cooling and dehumidification function Montreal Protocol. The use of safe and clean is intended. Progress and industrialization in the late refrigerants to run renewable energy systems is nineteenth century derived in refrigeration and cooling imperative for them to become a viable alternative to technologies that use heat to drive mechanical conventional power generation and refrigeration. engines which may provide a cooling effect. Conventional heat sources for this purpose are fossil CONCLUSIONS fuels. Also, refrigerants developed in the early Along with the free market, an energy crisis has been twentieth century for cooling applications have been globalized in the last decades. One should not ignore found to damage our environment. Some passive this element while interpreting recent developments in methods used before the nineteenth century to cool the war against terrorism and Iraq’s occupation. In buildings include: roof gardens, double bricklaying this uncertain world order the role of the Architect walls, insulated ceilings and sun shades of various must be questioned. types. These passive techniques can be appreciated in different cultures. The use of a wet cloth hanged in Are we artists, professionals, public servers or front of windows and doorways in Middle Eastern designers? Our social role should be redefined cultures with dry climate to cool the air temperature considering the practical usefulness of our creativity down by water evaporation is still common. There are to enhance the operation of any space or void where modern applications for passive ventilation that human activities flow. And I am not talking of liquid include the use of heat exchangers that allow fresh Architecture. Of course, this means we should leave and cool air into the building while driving the hot air the comfortable nutshell Architecture has been out. confined to for far too long; where architects are a luxury and competition on aesthetic grounds and CLIMATE CONTROL IN ARCHITECTURE theoretical discourses debates take place within a Conventional cooling systems using electrical power limited universe, observed and approved by those few generated from non-renewable energy sources need who benefit from the current economic world order. economically viable and environmentally sound Two thirds of the world’s population do not have alternatives since the present rate of fossil fuel access to this system and lack some of what we consumption is unsustainable and the harm caused to acknowledge to be basic living standards such as the
Recommended publications
  • An Analysis of Leed and Breeam Assessment Methods for Educational Institutions
    AN ANALYSIS OF LEED AND BREEAM ASSESSMENT METHODS FOR EDUCATIONAL INSTITUTIONS Tracie J. Reed, M.St. IDBE, LEED AP,1 Peggi L. Clouston, P.Eng., Ph.D.,2 Simi Hoque, Ph.D.,3 and Paul R. Fisette4 ABSTRACT This study examines the differences between two environmental assessment methods for the K-12 education sector: the United States Green Building Council’s (USGBC) LEED Schools Version 3.0 and the British Research Estab- lishment’s (BRE) BREEAM Education issue 2.0. Credit requirements are compared side-by-side and against recom- mendations from researchers in areas such as acoustics, lighting and indoor environment quality. Strengths in the two schemes and areas for improvement are highlighted, with acknowledgement that each scheme offers components and techniques from which the other could benefit. KEY WORDS LEED, BREEAM, Environmental Assessment Methods, High Performance Schools INTRODUCTION The United Kingdom is credited with developing In the United States there are approximately 49 the first environmental assessment method in 1990, million students in the K-12 education system (US the British Research Establishment’s Environmental Dept. of Education 2006-07). A mid-1990’s report Assessment Method (BREEAM) (Howard, 2005). by the United States General Accounting Office This system was used by many countries, includ- found 14 million students attend roughly 25,000 ing the US in developing their assessment methods schools with substandard conditions (1995). Thus, (Scheuer, 2002). BREEAM’s latest version Issue improving the quality of schools has the ability to 2.0 was introduced in summer 2008. In the United have a real and lasting impact on our communities.
    [Show full text]
  • Building Services Job Book
    A BSRIA Guide www.bsria.co.uk Building Services Job Book A project framework for engineering services by Glenn Hawkins BG 1/2009 Acknowledgements The Building Services Job Book is a stage-by-stage set of procedures for delivering engineering services in buildings. It is therefore an essential reference document for building services professionals. The job book has been written by BSRIA’s Glenn Hawkins with additional information provided by Kevin Pennycook and David Churcher, and has been designed and produced by Ruth Radburn. BSRIA would also like to thank the following organisations and people for providing information and guidance during the production of this job book: Companies NG Bailey Mace Bovis Lend Lease Carillion Building WSP Cudd Bentley Skanska Rashleigh Weatherfoil Oxford University Estates Directorate London Borough of Hammersmith and Fulham Individuals Bárbara Galanes-Álvarez Mike Wigg Paul Sims John Sharp Ian Perrott Prem Kalia Peter Ledger Tom Smith Keith Varley Richard McMurray Zara Lamont Jim Mellish Doug Churchyard Jan Robinson Alan Thomson David Williams This publication has been printed on Nine Lives Silk recycled paper, which is manufactured from 100% recycled fibre. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or mechanical including photocopying, recording or otherwise without prior written permission of the publisher. ©BSRIA BG 1/2009 July 2009 ISBN 978 0 86022 681 9 Printed by ImageData Ltd BUILDING SERVICES
    [Show full text]
  • Services Integration with Concrete Buildings
    Services Integration with Concrete Buildings Guidance for a defect-free interface By Roderic Bunn, Deryk Simpson and Stephen White Interface Engineering Publications is a Co-Construct initiative supported by What is Co-Construct? Co-Construct is a network of five leading construction research and information organisations - Concrete Society, BSRIA, CIRIA, TRADA and SCI - who are working together to produce a single point of communication for construction professionals. BSRIA covers all aspects of mechanical and electrical services in buildings, including heating, air conditioning, and ventilation. Its services to industry include information, collaborative research, consultancy, testing and certification. It also has a worldwide market research and intelligence group, and offers hire calibration and sale of instruments to the industry. The Construction Industry Research and Information Association (CIRIA ) works with the construction industry to develop and implement best practice, leading to better performance. CIRIA's independence and wide membership base makes it uniquely placed to bring together all parties with an interest in improving performance. The Concrete Society is renowned for providing impartial information and technical reports on concrete specification and best practice. The Society operates an independent advisory service and offers networking through its regions and clubs. The Steel Construction Institute (SCI) is an independent, international, member- based organisation with a mission to develop and promote the effective use of steel in construction. SCI promotes best practice through a wide range of training courses, publications, and a members advisory service. It also provides internet- based information resources. TRADA provides timber information, research and consultancy for the construction industry. The fully confidential range of expert services extends from strategic planning and market analysis through to product development, technical advice, training and publications.
    [Show full text]
  • Ventilation Heat Recovery Ventilation Glazing; Equipment Insulation
    Town of Warner Building Energy Performance Reports Social Services Government Roads Police Fire Waste Material Waste Water Garage 1 2008 Town Building Energy Use 2 4 5 Oil: 4567 gallons Oil: 4057 gallons LP: 5,122 gallons Elec: 20,160KWH Elec: 19,428KWH Elec: 21,120KWH 72KBtu/ft2 57.4KBtu/ft2 48.4KBtu/ft2 3 8 6* LP: 2,033 gallons Oil: 817 gallons Kerosene: 934 gallons Elec: 19,750KWH Elec: 7,290KWH Elec: 18,731KWH 59.6KBtu/ft2 29.4KBtu ft2 45KBtu/ft2 1 Gallons Btu’s Dollars 7 Oil 10,706 1,483MM $32,118 LP: 2200 gallons LP 9,455 861MM $11,555 Oil: 152 gallons Elec: 130,968KWH Elec 237,906 812MM $37,332 Elec: 459KWH *289KBtu/ft2 TOTALS 2,946MM $81,000 33.8KBtu/ft2 2 Town Building 2008 Utility Costs 3 4 2 $17,615 $15,413 $19,081 5 7 6 $7,005 $9,217 $3,869 8 1 $24,500 $658 3 Town Building 2008 Greenhouse Emissions 2 3 4 120,054lbs 104,184lbs 78,508lbs 5 7 6 34,109lbs 39,232lbs 23,379lbs 8 1 121,507lbs 3,712lbs 4 Town Building Air Leakage Rates 6ACH50 8ACH50 .79cfm/ft2shell 1.21cfm/ft2shell Not tested 2 16ACH50 9ACH50 Not tested 1.3cfm/ft2shell .99cfm/ft2shell ACH50 – Air changes per hour at - 50Pa; relative to building volume 1 6ACH50 33 ACH50 .45cfm/ft2shell Cfm/ft2 shell – cubic feet of air per minute relative to surface area of shell 2.22cfm/ft2shell 5 Summary of Prominent De-ficiencies Insulation Heat Recovery Insulation Ventilation Heat Recovery Ventilation Glazing; Equipment insulation Air Sealing Air Sealing Air Sealing Insulation insulation Equipment Insulation Air Sealing Electric Loads glazing AS / HRV insulation 6 Prioritize by
    [Show full text]
  • Design Checks for Electrical Services
    A BSRIA Guide www.bsria.co.uk Design Checks for Electrical Services A quality control framework for electrical engineers By Kevin Pennycook Supported by BG 3/2006 Design considerations Design issues Calculations Systems and equipment PREFACE Donald Leeper OBE The publication of Design Checks for Electrical Services is a welcome addition to the well received and highly acclaimed Design Checks for HVAC, published in 2002. The design guidance sheets provide information on design inputs, outputs and practical watch points for key building services design topics. The guidance given complements that in CIBSE Guide K, Electricity in Buildings, and is presented in a format that can be easily incorporated into a firm’s quality assurance procedures. From personal experience I have seen the benefit of such quality procedures. Once embedded within a process information management system, the guidance in this book will ensure consistent and high quality design information. When used for validation and verification, the design checks and procedures can also make a key contribution to a risk management strategy. The easy-to-follow layout and the breadth of content makes Design Checks for Electrical Services a key document for all building services engineers. Donald Leeper OBE President, CIBSE 2005-06 Consultant, Zisman Bowyer and Partners LLP DESIGN CHECKS FOR ELECTRICAL SERVICES © BSRIA BG 3/2006 Design considerations Design issues Calculations Systems and equipment ACKNOWLEDGEMENTS BSRIA would like to thank the following sponsors for their contributions to this application guide: Griffiths and Armour Professional Risk hurleypalmerflatt Atkins Consultants Limited Mott MacDonald Limited Faber Maunsell EMCOR Group (UK) plc Bovis Lend Lease Limited The project was undertaken under the guidance of an industry steering group.
    [Show full text]
  • Introduction to BSRIA Making Buildings Better
    Introduction to BSRIA Making buildings better Presented by Tracey Tilbry April 2017 What will you find out today 2 Making buildings better BSRIA A test, consultancy, instrument, research and market research organisation Specialists in construction and building services Member based association Our values are to be authoritative, collaborative, independent and innovative Our Mission is to • Make Buildings Better 3 Making buildings better History of the BSRIA name Formed as the H&V Became the BSRIA trading Research Council Building name established Services Research And Information Association 1955 1975 2000 4 Making buildings better Key statistics • £13.7M (2015-16) Turnover • 23% exported • 220 Staff • 4,000 square metres of laboratory space Operations • Offices in UK, France, Spain, China, United States, Japan and Brazil Contractors • Over 755 corporate Consulting engineers Membership members Manufacturers Clients and building operators Academics, institutions and associations 0 100 200 5 Making buildings better Turnover breakdown 6 Making buildings better BSRIA Membership Membership Services . Access to Information via: – Information Centre Experts – Library loans, eg British Standards – Technical support & experts – Market Experts – Published research – sent quarterly – Free consultancy – BSRIA Business Bulletin – Webinars – Delta T 8 Making buildings better Member Networks (Continual evolution) • O&M Benchmarking • Energy & Sustainability • Chief Engineers • BIM • Innovation • Soft Landings • Young Engineers • Residential • Chief Executives 9 Making buildings better On-line Member Services . Access dedicated member information via: – BSRIA members resource – www.bsria.co.uk – Personal Password – Library – 85,000 abstracts – On-line Bookshop – Downloads/Topic Guides – Webinars on-demand – Legislation & compliance – Enquiries – Monthly e-news 10 Making buildings better Membership – Saving money & Raising Profile .
    [Show full text]
  • Global Air-Conditioning Market Set for Growth and Technology Changes
    INDUSTRY NEWS This article was published in ASHRAE Journal, June 2020. Copyright 2020 ASHRAE. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit www.ashrae.org. Global Air-Conditioning Market Set For Growth and Technology Changes BRACKNELL, BERKSHIRE, U.K.—Air conditioning already repre- GLOBAL HVAC AND BUILDING AUTOMATION CONTROL SYSTEMS (BACS) MARKET, 2019, $US BILLION sents the biggest segment of the global HVAC market, 51.4 62.4 44.4 8.7 18.9 and with rising global average temperatures, the need for cooling will keep growing, according to a BSRIA Commercial AC Residential AC Traditional Heating market report published in March. Renewable Heating BACS However, as the world’s focus will remain on the efforts SOURCE: BSRIA to limit global warming, the air-conditioning market DX SPLITS VS CHILLERS, BY VOLUME (COMPOUND ANNUAL GROWTH RATE, 2018-2024) will keep shifting toward more efficient products, the 14% use of refrigerants with lower global warming potential 12% and toward connectivity that will allow for remote moni- 10% toring of units and systems bringing vital energy and 8% operational efficiencies. 6% 4% In 2019 the global sales of air-conditioning units 2% increased by 2.3% year-on-year in volume and by 2.5% in 0% terms of USD value. Global Europe MEIA ASIA Pacific Americas In the United States, the AC market recorded overall Mini-VRF Maxi-VRF Multi-Splits Total Chillers SOURCE: BSRIA SOURCE: BSRIA growth in 2019, despite being a mature market, driven by a heathy economic growth, accessible and afford- three markets.
    [Show full text]
  • Colorcoat Renew SC Design Guide
    Uniclass L5141:P41 CI/SfB (41) Nh2 January 2016 Colorcoat Renew SC® Design guide 2 +44 (0) 1244 892199 | www.tatasteelconstruction.com Contents 1. Colorcoat Renew SC® system overview 4 3.4 Other physical solar collector design considerations 15 1.1 Introduction 4 3.4.1 Perforation diameter and pitch 15 1.2 Working principles of Colorcoat Renew SC® 4 3.4.2 Profile options 16 1.3 Benefits of a Colorcoat Renew SC® system 5 3.4.3 Cavity (plenum) 16 1.4 Colorcoat Renew SC® integration 6 3.4.4 Solar collector integration 17 1.4.1 Suitable building types 6 4. Construction 17 2. System performance factors 7 4.1 Requirements and regulations 17 2.1 General design factors 7 4.2 Collector components 17 2.1.1 Solar collector orientation 7 4.3 Typical construction details 18 2.1.2 Collector angle (Tilt) 8 4.4 Fasteners 21 2.1.3 Shading 8 4.5 Maintenance recommendations 21 2.2 Colour selection and influence on performance 9 5. Mechanical and electrical design considerations 22 2.2.1 Guarantee Colorcoat Renew SC® 10 5.1 Building heating and ventilation 3. Collector design and sizing 11 requirements 22 3.1 Building geometry, occupancy and function 11 5.1.1 Intake air quality 22 3.2 Solar collector sizing - description 12 5.2 Relationship between airflow, temperature increase and efficiency 23 3.2.1 Choosing the wall 5.2.1 Temperature rise 23 3.2.2 Determining the volume of the building space to be heated 5.2.2 Wind considerations 24 3.2.3 Determining the volume of air 5.2.3 Transition duct sizing 24 required by the building ventilation system 5.2.4 Pressure drop 24 3.2.4 Determining the optimum balance 5.3 Operating modes 25 of heating and ventilation requirement 5.4 System control and metering 25 3.2.5 Collector sizing guidelines 6.
    [Show full text]
  • Program and Abstracts CONFERENCE COMMITTEE
    ICC 19 San Diego, CA · June 20-23, 2016 P Program and Abstracts CONFERENCE COMMITTEE Conference Chairman Program Committee Dean Johnson Carl Kirkconnell, West Coast Solutions, Jet Propulsion Laboratory, USA USA - Chair Email: [email protected] Mark Zagarola, Creare, USA, - Deputy Chair Conference Co-Chairmen Tonny Benchop, Thales Cryogenics BV, Netherlands Jose Rodriguez Peter Bradley, NIST, USA Jet Propulsion Laboratory, USA Ted Conrad, Raytheon, USA Email: [email protected] Gershon Grossman, Technion, Israel Elaine Lim, Aerospace Corporation, USA Sidney Yuan Jennifer Marquardt, Ball Aerospace, Aerospace Corporation, USA USA Jeff Olson, Lockheed Martin, USA Email : [email protected] John Pfotenhauer, University of Wisconsin – Madison, USA Treasurer Alex Veprik, SCD, Israel Ray Radebaugh Sonny Yi, Aerospace Corporation, USA National Institute of Standards and Technology (NIST), USA ICC Board Email: [email protected] Dean Johnson, JPL, USA-Chairman Ray Radebaugh, NIST, USA – Treasurer Proceedings Co-editors Ron Ross, JPL, USA – Co-Editor Saul Miller Jeff Raab, Retired, USA – Past Chairman Retired Rich Dausman, Cryomech, Inc., USA - Email: icc [email protected] Past Chairman Paul Bailey, University of Oxford, UK Peter Bradley, NIST, USA Ron Ross Martin Crook, RAL, UK Jet Propulsion Laboratory, USA Lionel Duband, CEA, France Email: [email protected] Zhihua Gan, Zhejiang University, China Ali Kashani, Atlas Scientific, USA Takenori Numezawa, National Institute for Program Chair Material Science, Japan Carl Kirkconnell Jeff Olson, Lockheed Martin Space System West Coast Solutions, USA Co., USA Email: [email protected] Limin Qiu, Zhejiang University, China Thierry Trollier, Absolut System SAS, Deputy Program Chair France Mark Zagarola, Creare, USA Mark V.
    [Show full text]
  • Covid-19 Ventilation Faqs
    COVID-19 VENTILATION FAQS Updated July 9, 2021 Limiting COVID-19 transmission in the workplace involves critical elements outlined in the University’s COVID-19 Prevention Plan for the Workplace. Maintaining building systems, including central heating, ventilation, and air conditioning (HVAC) systems, to support safe occupancy is a supplemental effort to the University’s COVID-19 prevention measures. This document contains responses to frequently asked questions from occupants in University facilities. Building coordinators and facility managers may share the responses with occupants as appropriate. Which standards and guidelines does the University follow for maintaining HVAC systems? • American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) o Coronavirus (COVID-19) Response Resources from ASHRAE and Others • Centers for Disease Control and Prevention (CDC) – Ventilation in Buildings • Seattle Mechanical Code / International Mechanical Code • Washington State Department of Labor & Industries o General Coronavirus Prevention Under Stay Home-Stay Healthy Order o COVID-19 Guidance on Ventilation in the Workplace What do I need to know about ventilation in University buildings? UW buildings are typically supplied with a percentage of outside air either via mechanical fans (a mechanical HVAC system), or natural ventilation (e.g., operable windows), dependent on each building and system. Those systems are maintained to provide ventilation and thermal comfort as designed through the following activities: • In most cases, air filters in buildings equipped with central heating, ventilation, and air conditioning (HVAC) systems are rated at MERV-13 or higher as recommended by the CDC and have been inspected and changed per maintenance procedures and schedules. • Building HVAC systems have continued to operate normally during all phases of the pandemic, even while buildings were unoccupied or at reduced occupancy.
    [Show full text]
  • Ventilation for Acceptable Indoor Air Quality
    ANSI/ASHRAE Addendum n to ANSI/ASHRAE Standard 62-2001 Ventilation for Acceptable Indoor Air Quality Approved by the ASHRAE Standards Committee on June 28, 2003; by the ASHRAE Board of Directors on July 3, 2003; and by the American National Standards Institute on January 8, 2004. This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instruc- tions, and deadlines may be obtained in electronic form from the ASHRAE web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edition of an ASHRAE Stan- dard and printed copies of a public review draft may be pur- chased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: [email protected]. Fax: 404-321- 5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527- 4723 (for orders in U.S. and Canada). ©Copyright 2003 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ISSN 1041-2336 ASHRAE Standard Project Committee 62.1 Cognizant TC: TC 4.3, Ventilation Requirements and Infiltration SPLS Liaison: Fredrick H. Kohloss Andrew K. Persily, Chair* Roger L. Hedrick Walter L. Raynaud* David S. Bulter, Sr., Vice-Chair* Thomas P. Houston* Lisa J. Rogers Leon E. Alevantis* Eli P. Howard, III* Robert S. Rushing* Michael Beaton Ralph T. Joeckel Lawrence J.
    [Show full text]
  • Using K-Factors with the PH721 Application Note AF-137
    Ventilation Test Instruments Using K-Factors with the PH721 Application Note AF-137 Capture Hoods and Correction Factors (K-Factors) In an ideal world, all capture hoods would provide accurate readings in all flow conditions. This would be true regardless of diffuser size, shape, throw pattern or delivery duct parameters such as shape, size, construction material and proximity of dampers or elbows. In the real world, however, all of these variables can affect the performance of a capture hood. To obtain the most reliable measurements with a capture hood, therefore, it is necessary to use correction factors, or K-Factors, to account for these varying flow effects. The need for K-Factors has been recognized by the most respected organizations in the Heating Ventilating and Air-Conditioning profession, who recommend1-5 the use of correction factors when using any capture hood. ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.) recommends1 that, “All flow measuring instruments should be field verified by running pitot-tube traverses to establish correction and/or density factors.” ASHRAE also recommends2 & 3 comparing duct traverses to capture hood readings for performance checks in the field. Similarly, AABC (Associated Air Balance Council) recommends5, “take a traverse of the duct and determine correction factors as necessary.” The Importance of K-Factors If measurement accuracy is important, then the use of K-Factors is imperative. As stated earlier, it is well known that many factors affect readings taken with capture hoods. The uncertainties introduced by the wide variety of possible flow conditions make K-Factors vital in achieving accurate capture hood measurements.
    [Show full text]