Full Text [PDF]

Total Page:16

File Type:pdf, Size:1020Kb

Full Text [PDF] ® The European Journal of Plant Science and Biotechnology ©2011 Global Science Books Powdery Mildews on Ornamental Trees and Shrubs in Norway Venche Talgø1* • Leif Sundheim1 • Halvor B. Gjærum1 • Maria Luz Herrero1 • Aruppillai Suthaparan2 • Brita Toppe1 • Arne Stensvand1 1 Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, 1432 Ås, Norway 2 Norwegian University of Life Sciences, Department of Plant and Environmental Sciences, 1432 Ås, Norway Corresponding author : * [email protected] ABSTRACT This paper presents powdery mildew species recorded on woody ornamentals, with special emphasis on the latest arrivals; Erysiphe flexuosa on horse chestnut (Aesculus hippocastanum), Erysiphe syringae-japonicae on lilac (Syringa vulgaris) and Podosphaera spiraeae on white spirea (Spiraea betulifolia). The two former were found in 2006, while the latter was first detected in 2008. Chasmothecia (formerly named cleistothecia) were not found on white spirea until 2010. Several locations seemed to have optimal conditions for development of powdery mildew diseases in 2006. That year the long established Sawadaea bicornis on sycamore maple (Acer pseudo- platanus), was found for the first time on tatarian maple (Acer tataricum ssp. ginnala) and one cultivar from hedge maple (Acer campestre ‘Red Shine’). Also several species and cultivars of Rhododendron had massive attacks of powdery mildew in 2006. In 2010, chasmothecia of E. azaleae were found on severely affected R. ‘Magnifica’ in western Norway. Most powdery mildew species are host specific, but especially Phyllactinia guttata has a wider host range, e.g. hazel (Corylus spp.) and common ash (Fraxinus excelsior). _____________________________________________________________________________________________________________ Keywords: Acer, Aesculus, Erysiphe, Phyllactinia, Podosphaera, Rhododendron, Sawadaea, Spiraea, Syringa INTRODUCTION MATERIALS AND METHODS The aim of this paper was to publish an overview of pow- Fresh plant material or samples from our herbarium were exa- dery mildew species found on woody ornamental plants in mined by light microscope. Holomorphic features of the pathogen Norway, based on material from the herbarium collection at structures, host range, and previous reports (Jørstad 1925; Jørstad our institute, including some new detections. 1945; Junell 1967; Gjærum 1991) on powdery mildew detections Powdery mildews are common diseases on woody orna- in Norway were used to produce this paper. To identify Podo- mentals, and they often drastically reduce the aesthetical sphaera spp., conidia mounted in 3% KOH (potassium hydroxide value of their host plants. More than 500 powdery mildew > 85%, MERCK, Germany) solution were examined under light species on more than 7000 host plants have been recognized microscope to look for fibrosin bodies (crystals) (McGrath et al. worldwide. The temperate region of North America may 1996; Glawe 2008). Herbarium material was collected from all serve as an example of the situation on trees and shrubs, new host species. Taxonomy is in accordance with Index Fun- there at least 85 powdery mildew species representing 11 gorum (2010), except for E. penicillata, where the name Micro- genera have been found on woody ornamentals (Sinclair sphaera penicillata still appears in the index. Furthermore, a pow- and Lyon 2005). dery mildew on hydrangea (Hydrangea opuloides Koch.), cur- Worldwide, Erysiphales is by far the largest powdery rently named M. polonica in Index Fungorum, is mentioned as E. mildew order. During the last two decades, Erysiphales has polonica in this paper since Microsphaera now belongs to the been intensively studied by electron microscopy and mole- genus Erysiphe. cular methods. Among the taxonomic consequences from these studies is an emendation of the genus Erysiphe to RESULTS AND DISCUSSION include the previous genus Erysiphe and the genera Micro- sphaera, Uncinula and some others. Two new genera, Golo- Table 1 presents all powdery mildew species found on vinomyces and Neoerysiphe, have been established based on woody ornamentals in Norway, and in which county (Fig. the remaining sections of the genus Erysiphe. The previous 1) it was first detected during the period 1826-2010. They genus Sphaerotheca is now considered synonymous to are further presented under their respective genera shown Podosphaera (Cook et al. 1997; Takamatsu et al. 1998, below. 1999; Braun 1999; Braun and Takamatsu 2000). In addition to Erysiphe, three more powdery mildew Erysiphe genera are represented on woody ornamentals in Norway; Phyllactinia, Podosphaera, and Sawadaea. As seen from Table 1, a total of 17 species of Erysiphe Host range and geographical distribution of Erysiphales have been found on 19 woody ornamental plant species in in Norway have previously been treated by Jørstad (1925, Norway. 1945). In addition, the publication by Junell (1967) pro- Two Erysiphe-species were detected for the first time in vides valuable information on powdery mildews of Norway. the country during 2006; E. flexuosa (Peck) U. Braun & S. Preliminary results from some of the new powdery mildew Takam. (syn. Uncinula flexuosa Peck) on horse chestnut discoveries in 2006, were published in Norwegian (Talgø et (Aesculus hippocastanum L.) and E. syringae-japonicae (U. al. 2006a, 2006b, 2007). Also an overview of powdery mil- Braun) U. Braun & S. Takam. (syn. Microsphaera syringae- dew species on ornamental plants was previously published japonicae U. Braun) on lilac (Syringa vulgaris L.) (Fig. 2). in Norwegian (Talgø et al. 2008). Some of the earlier detec- Both were found relatively late in the growing season (end tions were published by Jørstad (1925, 1945) and Gjærum of August), and the damage was not very severe. By 2010, (1991). there were no indications that the situation had accelerated Received: 15 October, 2010. Accepted: 27 January, 2011. Original Research Paper The European Journal of Plant Science and Biotechnology 5 (1), 86-92 ©2011 Global Science Books Table 1 Powdery mildew species on woody ornamentals in Norway. The pathogens are arranged in alphabetical order. Year, location (county), and reference for the first detection is given for each powdery mildew species and host (unpub. = unpublished data). Powdery mildew Host Year County References Erysiphe adunca Populus sp. 1945 Oppland Jørstad, unpub. E. adunca Salix caprea (Fig. 4A) 1898 Oslo Schøyen WM, unpub. E. aquilegiae var. ran. Clematis sp. (Fig. 4B) 1980 Aust-Agder Gjærum, unpub. E. alphitoides Quercus sp. 1911 Vest-Agder Jørstad 1945 E. azaleae Rhododendron (Fig. 3) 2010 Hordaland Present publication E. berberidis Berberis vulgaris (Fig. 5A, 5B) 1947 Oslo Gjærum, unpub. E. berberidis Mahonia aquifolium (Fig. 5C, 5D) 1990 Akershus Gjærum, unpub. E. divaricata Frangula alnus 1948 Telemark Jørstad, unpub. E. flexuosa Aesculus hippocastanum (Fig. 2A-C) 2006 Akershus Talgø et al. 2006b E. friesii Rhamnus catharticus (Fig. 4C) 1961 Akershus Jørstad, unpub. E. hypophylla Quercus robur 1972 Oslo Roll-Hansen 1995 E. lonicerae Lonicera sp. (Fig. 4D) 1883 Akershus Jørstad 1945 E. ornata var. europaea Betula pubescens 1879 Vestfold Jørstad 1945 E. palczewskii Caragana arborescens (Fig. 4E) 1990 Akershus Gjærum 1991 E. penicillata Alnus incana 1887 Hordaland Jørstad 1945 E. polonica Hydrangea sp. 1924 Akershus Jørstad 1945 E. syringae-japonicae Syringa vulgaris (Fig. 2D-F) 2006 Akershus Talgø et al. 2006a E. vanbruntiana Sambucus sp. (Fig. 4F) 1985 Buskerud Gjærum 1991 E. viburnicola Viburnum sp. 1948 Rogaland Ramsfjell, unpub. Phyllactinia guttata Alnus incana 1830 Oppland Jørstad 1945 P. guttata Betula odorata 1839 Oppland Jørstad 1945 P. guttata Corylus avellana (Fig. 6C, 6D) 1897 Akershus Schøyen TH, unpub. P. guttata Corylus maxima ‘Purpurea’ 2006 Akershus Talgø et al. 2008 P. guttata Corylus americana 2006 Akershus Talgø et al. 2008 P. guttata Fraxinus sp. (Fig. 6A, 6B) 1826 Akershus Jørstad 1945 P. guttata Fagus sylvatica 1879 Vestfold Jørstad 1945 P. guttata Sorbus aucuparia not r. not reported Jørstad 1945 Podosphaera aphanis Dasiphora fruticosa (Fig. 9A) 1967 Akershus Langnes, unpub. P. clandestina var. auc. Sorbus sp. 1947 Akershus Ramsfjell, unpub. P. clandestina var. auc. Fraxinus excelsior 1826 Akershus Jørstad 1945 P. clandestina var. clan. Amelanchier sp. (Fig. 9C, 9D) 1989 Akershus Gjærum, unpub. P. clandestina var. clan. Crataegus sp. (Fig. 9B) 1923 Oppland Jørstad 1945 P. leucotricha Malus baccata 1959 Sogn og Fj. Ramsfjell, unpub. P. mors-uvae Ribes sp. (Fig. 9E) 1904 Telemark Jørstad 1945 P. pannosa Rosa sp. (Fig. 9F) 1870 Oslo Jørstad 1945 P. spiraeae Spiraea betulifolia (Fig. 7) 2010 Oslo Present publication Podosphaera sp. Spiraea japonica (Fig. 8) 2010 Akershus Present publication Sawadaea bicornis Acer pseudoplatanus (Fig. 10B, 10C) 1924 Hordaland Jørstad 1945 S. bicornis A. campestre ‘Red Shine’ (Fig. 10E) 2006 Akershus Talgø et al. 2007 S. bicornis A. tataricum ssp. ginnala (Fig. 10D) 2006 Akershus Talgø et al. 2007 S. tulasnei A. platanoides (Fig. 10A) 1840 Oslo Jørstad 1945 Table 2 Morphological characteristics of four recently discovered teleomorph stages of powdery mildews on woody ornamentals in Norway; Erysiphe azaleae 2010, E. flexuosa 2006, E. syringae-japonicae 2006, and Podosphaera spiraeae (2010). Pathogen Host Chasmothecia Asci Ascospores Erysiphe azaleae Rhododendron ‘Magnifica’ Globose, 141 μm diameter (n=10), yellowish 27.6-(31.9)- Hyaline, ellipsoidal, measuring – becoming dark when mature, 35.9×34.8-(50.8)-
Recommended publications
  • Overview of the Genus Phyllactinia (Ascomycota, Erysiphales) in Azerbaijan
    Plant & Fungal Research (2018) 1(1): 9-17 © The Institute of Botany, ANAS, Baku, Azerbaijan http://dx.doi.org/10.29228/plantfungalres.2 December 2018 Overview of the genus Phyllactinia (Ascomycota, Erysiphales) in Azerbaijan Dilzara N. Aghayeva1 Key Words: distribution, ectoparasitism, endoparasit- Lamiya V. Abasova ism, host plant, plant pathogen, powdery mildews Institute of Botany, Azerbaijan National Academy of Sciences, Badamdar 40, Baku, AZ1004, Azerbaijan INTRODUCTION Susumu Takamatsu Graduate School of Bioresources, Mie University, Powdery mildews are one of the frequently encoun- 1577 Kurima-Machiya, Tsu 514-8507, Japan tered plant pathogens and most of them are epiphytic (14 genera from 18), in which they tend to produce hy- Abstract: Intergeneric diversity of powdery mildews phae and reproductive structures on surface of leaves, within the genus Phyllactinia in Azerbaijan was inves- young shoots and inflorescence [Braun, Cook, 2012; tigated using morphological approaches based on re-ex- Glawe, 2008]. These fungi absorb nutrients from plant amination of herbarium specimens kept in Mycological tissue via haustoria, which develops in epidermal cells Herbarium of the Institute of Botany (BAK), Azerbaijan of plants [Braun, Cook, 2012]. Among all powdery mil- National Academy of Sciences and collections of re- dews only four genera demonstrate endoparasitism, of cent years. To contribute detail taxonomic analysis data them Phyllactinia Lév., have partly endoparasitic na- given in literatures was revised. Modern taxonomic and ture. Fungi belonging to these genera penetrate into the nomenclature changes were considered. The host range plant cell via stomata and develop haustoria in paren- and geographical distribution of species residing to the chyma cells. Endoparasitic genera of powdery mildews genus within the country were clarified.
    [Show full text]
  • Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
    Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10
    [Show full text]
  • New Powdery Mildew on Tomatoes
    NEW POWDERY MILDEW ON TOMATOES Heather Scheck, Plant Pathologist Ag Commissioner’s Office, Santa Barbara County POWDERY MILDEW BIOLOGY Powdery mildew fungi are obligate, biotrophic parasites of the phylum Ascomycota of the Kingdom Fungi. The diseases they cause are common, widespread, and easily recognizable Individual species of powdery mildew fungi typically have a narrow host range, but the ones that infect Tomato are exceptionally large. Photo from APS Net POWDERY MILDEW BIOLOGY Unlike most fungal pathogens, powdery mildew fungi tend to grow superficially, or epiphytically, on plant surfaces. During the growing season, hyphae and spores are produced in large colonies that can coalesce Infections can also occur on stems, flowers, or fruit (but not tomato fruit) Our climate allows easy overwintering of inoculum and perfect summer temperatures for epidemics POWDERY MILDEW BIOLOGY Specialized absorption cells, termed haustoria, extend into the plant epidermal cells to obtain nutrition. Powdery mildew fungi can completely cover the exterior of the plant surfaces (leaves, stems, fruit) POWDERY MILDEW BIOLOGY Conidia (asexual spores) are also produced on plant surfaces during the growing season. The conidia develop either singly or in chains on specialized hyphae called conidiophores. Conidiophores arise from the epiphytic hyphae. This is the Anamorph. Courtesy J. Schlesselman POWDERY MILDEW BIOLOGY Some powdery mildew fungi produce sexual spores, known as ascospores, in a sac-like ascus, enclosed in a fruiting body called a chasmothecium (old name cleistothecium). This is the Teleomorph Chasmothecia are generally spherical with no natural opening; asci with ascospores are released when a crack develops in the wall of the fruiting body.
    [Show full text]
  • Early Detection and Identification of the Main Fungal Pathogens
    Article Early Detection and Identification of the Main Fungal Pathogens for Resistance Evaluation of New Genotypes of Forest Trees Konstantin A. Shestibratov 1, Oleg Yu. Baranov 2, Natalya M. Subbotina 1, Vadim G. Lebedev 1, Stanislav V. Panteleev 2, Konstantin V. Krutovsky 3,4,5,6,* and Vladimir E. Padutov 2 1 Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospect Nauki, Pushchino, Moscow 142290, Russia; [email protected] (K.A.S.); [email protected] (N.M.S.); [email protected] (V.G.L.) 2 Laboratory for Genetics and Biotechnology, Forest Research Institute, National Academy of Sciences of Belarus, 71 Proletarskaya Str., Gomel 246001, Belarus; [email protected] (O.Y.B.); [email protected] (S.V.P.); [email protected] (V.E.P.) 3 Department of Forest Genetics and Forest Tree Breeding, George-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany 4 Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, Moscow 119991, Russia 5 Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Akademgorodok, 50a/2, Krasnoyarsk 660036, Russia 6 Department of Ecosystem Sciences and Management, Texas A&M University, College Station, TX 77843-2138, USA * Correspondence: [email protected]; Tel.: +49-551-339-3537 Received: 31 October 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: The growing importance of forest plantations increases the demand for phytopathogen resistant forest trees. This study describes an effective method for early detection and identification of the main fungal phytopathogens in planting material of silver birch (Betula pendula) and downy birch (B.
    [Show full text]
  • Plant Science 2018: Resistance to Powdery Mildew (Blumeria Graminis F. Sp. Hordei) in Winter Barley, Poland- Jerzy H Czembor, Al
    Extended Abstract Insights in Aquaculture and Biotechnology 2019 Vol.3 No.1 a Plant Science 2018: Resistance to powdery mildew (Blumeria graminis f. sp. hordei) in winter barley, Poland- Jerzy H Czembor, Aleksandra Pietrusinska and Kinga Smolinska-Plant Breeding and Acclimatization Institute – National Research Institute Jerzy H Czembor, Aleksandra Pietrusinska and Kinga Smolinska Plant Breeding and Acclimatization Institute – National Research Institute, Poland Powdery mildew (Blumeria graminis f. sp. hordei) is Barley powdery mildew is brought about by Blumeria the most ecomically important barley pathogen. This graminis f. sp. hordei (Bgh) is one of the most wind borne fungus causes foliar disease and yield damaging foliar maladies of grain. This growth is the loses rich up to 20-30%. Resistance for powdery main types of the family Blumeria however it has mildew is the aim of numerous breeding programmes. recently been treated as a types of Erysiphe. As per The transfer of the MLO gene for resistance to Braun (1987), it varies from all types of Erysiphe since powdery mildew into winter barley cultivars using its anamorph has special highlights, for instance, Marker-Assisted Selection (MAS) strategy is digitate haustoria, auxiliary mycelium with bristle-like presented. These cultivars are characterized by high hyphae and bulbous swellings of the conidiophores, and stable yield under polish conditions. Field testing and as a result of the structure of the ascocarps. Braun of the obtained lines with MLO resistance for their (1987) thinks about that, in view of these distinctions, agricultural value was conducted. Four cultivars there ought to be a detachment at conventional level.
    [Show full text]
  • Basal Resistance of Barley to Adapted and Non-Adapted Forms of Blumeria Graminis
    Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis Reza Aghnoum Thesis committee Thesis supervisors Prof. Dr. Richard G.F. Visser Professor of Plant Breeding Wageningen University Dr.ir. Rients E. Niks Assistant professor, Laboratory of Plant Breeding Wageningen University Other members Prof. Dr. R.F. Hoekstra, Wageningen University Prof. Dr. F. Govers, Wageningen University Prof. Dr. ir. C. Pieterse, Utrecht University Dr.ir. G.H.J. Kema, Plant Research International, Wageningen This research was conducted under the auspices of the Graduate school of Experimental Plant Sciences. II Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis Reza Aghnoum Thesis Submitted in partial fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Tuesday 16 June 2009 at 4 PM in the Aula. III Reza Aghnoum Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis 132 pages. Thesis, Wageningen University, Wageningen, NL (2009) With references, with summaries in Dutch and English ISBN 978-90-8585-419-7 IV Contents Chapter 1 1 General introduction Chapter 2 15 Which candidate genes are responsible for natural variation in basal resistance of barley to barley powdery mildew? Chapter 3 47 Transgressive segregation for extreme low and high level of basal resistance to powdery mildew in barley
    [Show full text]
  • Descriptors for Hazelnut (Corylus Avellana L.)
    Descriptors for Hazelnut(Corylus avellana L.) List of Descriptors Allium (E, S) 2001 Pearl millet (E/F) 1993 Almond (revised)* (E) 1985 Pepino (E) 2004 Apple* (E) 1982 Phaseolus acutifolius (E) 1985 Apricot* (E) 1984 Phaseolus coccineus* (E) 1983 Avocado (E/S) 1995 Phaseolus lunatus (P) 2001 Bambara groundnut (E, F) 2000 Phaseolus vulgaris* (E, P) 1982 Banana (E, S, F) 1996 Pigeonpea (E) 1993 Barley (E) 1994 Pineapple (E) 1991 Beta (E) 1991 Pistachio (A, R, E, F) 1997 Black pepper (E/S) 1995 Pistacia (excluding Pistacia vera) (E) 1998 Brassica and Raphanus (E) 1990 Plum* (E) 1985 Brassica campestris L. (E) 1987 Potato variety* (E) 1985 Buckwheat (E) 1994 Quinua* (E) 1981 Cañahua (S) 2005 Rambutan 2003 Capsicum (E/S) 1995 Rice* (E) 2007 Cardamom (E) 1994 Rocket (E, I) 1999 Carrot (E, S, F) 1998 Rye and Triticale* (E) 1985 Cashew* (E) 1986 Safflower* (E) 1983 Cherry* (E) 1985 Sesame (E) 2004 Chickpea (E) 1993 Setaria italica and S. pumilia (E) 1985 Citrus (E, F, S) 1999 Shea tree (E) 2006 Coconut (E) 1995 Sorghum (E/F) 1993 Coffee (E, S, F) 1996 Soyabean* (E/C) 1984 Cotton (revised)* (E) 1985 Strawberry (E) 1986 Cowpea (E, P)* 1983 Sunflower* (E) 1985 Cultivated potato* (E) 1977 Sweet potato (E/S/F) 1991 Date Palm (F) 2005 Taro (E, F, S) 1999 Durian (E) 2007 Tea (E, S, F) 1997 Echinochloa millet* (E) 1983 Tomato (E, S, F) 1996 Eggplant (E/F) 1990 Tropical fruit (revised)* (E) 1980 Faba bean* (E) 1985 Ulluco (S) 2003 Fig (E) 2003 Vigna aconitifolia and V.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Erysiphe Salmonii (Erysiphales, Ascomycota), Another East Asian Powdery Mildew Fungus Introduced to Ukraine Vasyl P
    Гриби і грибоподібні організми Fungi and Fungi-like Organisms doi: 10.15407/ukrbotj74.03.212 Erysiphe salmonii (Erysiphales, Ascomycota), another East Asian powdery mildew fungus introduced to Ukraine Vasyl P. HELUTA1, Susumu TAKAMATSU2, Siska A.S. SIAHAAN2 1 M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska Str., Kyiv 01004, Ukraine [email protected] 2 Department of Bioresources, Graduate School, Mie University 1577 Kurima-Machiya, Tsu 514-8507, Japan [email protected] Heluta V.P., Takamatsu S., Siahaan S.A.S. Erysiphe salmonii (Erysiphales, Ascomycota), another East Asian powdery mildew fungus introduced to Ukraine. Ukr. Bot. J., 2017, 74(3): 212–219. Abstract. In 2015, a powdery mildew caused by a fungus belonging to Erysiphe sect. Uncinula was recorded on two species of ash, Fraxinus excelsior and F. pennsylvanica (Oleaceae), from Ukraine (Kyiv, two localities). Based on the comparative morphological analysis of Ukrainian specimens with samples of Erysiphe fraxinicola and E. salmonii collected in Japan and the Far East of Russia, the fungus was identified as E. salmonii. This identification was confirmed using molecular phylogenetic analysis. This is the first report of E. salmonii not only in Ukraine but also in Europe. It is suggested that the records of E. fraxinicola from Belarus and Russia could have been misidentified and should be corrected to E. salmonii. In 2016, the fungus was found not only in Kyiv but also outside the city. The development of the fungus had symptoms of a potential epiphytotic disease. Thus, it may become invasive in Ukraine and spread to Western Europe in the near future.
    [Show full text]
  • Kentucky Nursery LISTSERV Bulletin University of Kentucky Nursery Crops Team End of August 2015
    Kentucky Nursery LISTSERV Bulletin University of Kentucky Nursery Crops Team End of August 2015 Why are (x) species of trees damaged or defoliated? Is it a disease? Without inspecting the affected plant and a tissue sample, we cannot diagnose a disease. However, we have been receiving questions from growers, landscapers, and arborists around the state about certain species “looking terrible” this summer. Nursery Crops Team The combination of record low temperatures, wind, low humidity, and sun over the winter of 2014-2015 has resulted in widespread winter injury to numerous species Winston Dunwell which are only marginally hardy in our climate, which had survived previous milder Extension Professor winters. 270.365.7541 x209 Examples include: Japanese aucuba (Aucuba japonica) Dewayne Ingram Boxwood (Buxus spp.) Extension Professor 859.257.8903 Chinese holly, Burford holly (Ilex cornuta) Meserve hollies (Ilex x meserveae ‘China Girl’ and other cultivars) Carey Grable Monkey grass (Mondo japonica) Extension Associate Southern magnolia (Magnolia grandifolia) 270-348-1494 Laurel cherries, schip laurels (Prunus laurocerasus) Leyland cypress (x Cupressocyparis leylandii) Joshua Knight Extension Associate Sunscald is another form of winter injury which is almost always limited to young, 859.257.1273 recently installed landscape trees. It is more common on species with thin bark https://nursery-crop- than trees with thick or exfoliating bark. Problematic species include: extension.ca.uky.edu/ Maple (Acer spp.) Linden (Tilia spp.) Pear (Pyrus spp.) Crabapple (Malus spp.) Cherry, plum (Prunus spp.) Willow (Salix spp.) In This Issue Powdery mildew of Dogwood Bacterial leaf scorch Boxwood blight Spider mites Two-spotted Spider Mite on wild rose — Photo: Peter J.
    [Show full text]
  • Shropshire Fungus Checklist 2010
    THE CHECKLIST OF SHROPSHIRE FUNGI 2011 Contents Page Introduction 2 Name changes 3 Taxonomic Arrangement (with page numbers) 19 Checklist 25 Indicator species 229 Rare and endangered fungi in /Shropshire (Excluding BAP species) 230 Important sites for fungi in Shropshire 232 A List of BAP species and their status in Shropshire 233 Acknowledgements and References 234 1 CHECKLIST OF SHROPSHIRE FUNGI Introduction The county of Shropshire (VC40) is large and landlocked and contains all major habitats, apart from coast and dune. These include the uplands of the Clees, Stiperstones and Long Mynd with their associated heath land, forested land such as the Forest of Wyre and the Mortimer Forest, the lowland bogs and meres in the north of the county, and agricultural land scattered with small woodlands and copses. This diversity makes Shropshire unique. The Shropshire Fungus Group has been in existence for 18 years. (Inaugural meeting 6th December 1992. The aim was to produce a fungus flora for the county. This aim has not yet been realised for a number of reasons, chief amongst these are manpower and cost. The group has however collected many records by trawling the archives, contributions from interested individuals/groups, and by field meetings. It is these records that are published here. The first Shropshire checklist was published in 1997. Many more records have now been added and nearly 40,000 of these have now been added to the national British Mycological Society’s database, the Fungus Record Database for Britain and Ireland (FRDBI). During this ten year period molecular biology, i.e. DNA analysis has been applied to fungal classification.
    [Show full text]