5 Ways Vmware Vsphere Improves Backup and Recovery

Total Page:16

File Type:pdf, Size:1020Kb

5 Ways Vmware Vsphere Improves Backup and Recovery 5 Ways VMware vSphereChapter1. Improves An Introduction Backup and to VMware Recovery Virtualization CONTENTS CONTENTS..............................................................................................................2 INTRODUCTION......................................................................................................2 A BRIEF HISTORY OF VMWARE ..............................................................................3 VIRTUALIZATION ARCHITECTURE...........................................................................4 THE HYPERVISOR............................................................................................................................4 RINGS IN VIRTUALIZATION..............................................................................................................7 CPU SCHEDULER............................................................................................................................9 DIFFERENCES BETWEEN ESX & ESXI.............................................................................................9 WHAT IS A VIRTUAL MACHINE?...........................................................................12 ENCAPSULATION.......................................................................................................................... 12 VIRTUAL MACHINE HARDWARE ................................................................................................. 13 VIRTUAL MACHINE FILES ............................................................................................................ 14 VIRTUAL DISKS ............................................................................................................................ 18 VIRTUAL MACHINE MANAGEMENT .....................................................................20 THE VIRTUALIZATION LAYER ....................................................................................................... 21 HOW VIRTUAL MACHINES DIFFER FROM PHYSICAL SERVERS....................................................... 21 WHY VIRTUAL MACHINES REQUIRE VIRTUAL TOOLS ................................................................... 23 SUMMARY ...........................................................................................................25 ABOUT THE AUTHOR............................................................................................25 ABOUT THE SPONSOR..........................................................................................25 INTRODUCTION Virtualization is not just a fad and is definitely here to stay with most companies either currently using it or planning to in the near future. Running servers as virtual machines just makes sense on so many different levels when you factor in all the great benefits that they provide. Virtualization technology continues to mature at a very rapid pace with VMware leading the pack in almost all areas with their advanced features and widespread popularity. In this chapter we will cover some of the key concepts of virtualization and explain the different types of virtualization as well as go into detail into what a virtual machine actually is. We’ll also cover how virtual machines differ from traditional physical servers and why managing virtual machines requires a different mindset as well as the usage of applications designed specifically to work with virtual environments. Page | 2 5 Ways VMware vSphereChapter1. Improves An Introduction Backup and to VMware Recovery Virtualization A BRIEF HISTORY OF VMWARE VMware basically invented x86 server virtualization with their release of Workstation 1.0 in 1999 followed by ESX (Elastic Sky X) 1.0 and GSX (Ground Storm X) 1.0 in 2001. In 2003 VMware introduced VirtualCenter 1.0 with their groundbreaking new VMotion feature to migrate running virtual machines between hosts without interruption. In 2004 VMware released ESX 2.5 which was another major release for ESX. VMware Infrastructure 3 (VI3) came out in June of 2006 and was a major new release for VMware which introduced big new features like High Availability (HA) and Distributed Resource Scheduler (DRS) as well as a completely overhauled version of VirtualCenter (2.0). In 2007 VMware introduced their new hypervisor platform, ESX 3i that designed to eventually replace ESX. ESXi was designed with a much smaller footprint due to its smaller management console compared to the large Service Console that ESX uses. As a result VMware touted the new feature of being able to boot and run ESXi from a 1GB flash drive. Also in 2007 VMware released their next version of ESX (3.5) and VirtualCenter (2.5) that had more big new features like Distributed Power Management (DPM) and Storage VMotion. In 2008 VMware renamed ESX 3i to ESXi and announced they were going to give away the feature limited, entry level version of ESXi for free. This was mainly done in response to Microsoft making the move to give Hyper-V away for free. Also in 2008 VMware did some major product renaming and started to embrace the “v” naming convention for many of their products. As a result VirtualCenter was renamed to vCenter Server and the other management and automation products were all given the vCenter name as well (i.e. vCenter Lab Manager). In May of 2009 VMware released their much anticipated and biggest release yet, vSphere 4.0. This release was packed with new features and enhancements including the new Fault Tolerance (FT) feature, vStorage APIs, Distributed vSwitches, Host Profiles and much more. The vSphere 4.0 release was followed up by vSphere 4.1 which was released in July 2010 and as usual VMware packed more great features into it including Storage & Network I/O control as well as enhancements to many existing features. vSphere 4.1 also signaled the end of the road for ESX as VMware announced that 4.1 would be the last major release to include ESX and VMware would instead focus their development efforts on ESXi. Page | 3 5 Ways VMware vSphereChapter1. Improves An Introduction Backup and to VMware Recovery Virtualization VIRTUALIZATION ARCHITECTURE Virtualization is a very general term for simulating a physical entity by using software. There are many different forms of virtualization that may be found in a data center including server, network and storage virtualization. When talking about server virtualization there are many unique terms and concepts that you may hear that are part of the technology that makes up server virtualization. In this section we will cover some of those concepts as well as explain some of the other forms of virtualization. The Hypervisor The hypervisor is essentially the brains of server virtualization and in ESX & ESXi it is also known as the VMkernel. A hypervisor is a program that allows multiple operating systems to share a single physical hardware host. Each guest operating system (virtual machine) running on the host appears to have exclusive access to the host’s processor, memory and other resources. However, the hypervisor is actually controlling the processor and other host resources and only allocates what is needed to each guest operating system while simultaneously ensuring that each guest operating system is isolated from the others and cannot disrupt each other. In this way each VM is living inside its own small little ecosystem inside the host, blissfully unaware that its home is actually shared with many other tenants. An analogy for this is that while a physical server may be considered a standalone house a virtual host is more of a townhouse building. Before Virtualization Operating System After Virtualization encapsulated inside a virtual machine There are two different types of hypervisor models, the first are considered bare-metal or type-1 hypervisors and the others are considered hosted or type-2 hypervisors. The characteristics of each type of hypervisor are listed in the below table. Page | 4 5 Ways VMware vSphereChapter1. Improves An Introduction Backup and to VMware Recovery Virtualization HOSTED HYPERVISOR CHARACTERISTICS BARE-METAL HYPERVISOR CHARACTERISTICS Requires a host operating system Installs directly on the bare metal of a (Windows/Linux/Mac), installs like an physical server application Virtual machines can use all the Virtual machines’ resource usage can hardware resources that the host can be limited by advanced resource see controls Maximum hardware compatibility as Runs on a narrower range of the operating system supplies all the hardware due to limited driver hardware device drivers support Overhead of a full general-purpose Because there is no overhead from a operating system between the full host operating system virtual machines and the physical performance is 83-98% of native. hardware results in performance 70- There is a small bit of overhead from 90% of native the virtualization layer of the hypervisor Limited feature support Many advanced features for resource management, high availability and security Because of less overhead of the virtualization layer, bare-metal hypervisors support more VMs per physical CPU than hosted hypervisors do. In VMware’s line of products their bare-metal hypervisors are ESX & ESXi, and their hosted hypervisors are Workstation, Server, Fusion and Player. Hosted Virtualization Host O/S between Bare-metal Virtualization virtualization layer and hardware Page | 5 5 Ways VMware vSphereChapter1. Improves An Introduction Backup and to VMware Recovery Virtualization The VMkernel is considered a microkernel as it has the bare minimum of software code to provide
Recommended publications
  • Using EMC VNX Storage with Vmware Vsphere Techbook CONTENTS
    Using EMC® VNX® Storage with VMware vSphere Version 4.0 TechBook P/N H8229 REV 05 Copyright © 2015 EMC Corporation. All rights reserved. Published in the USA. Published January 2015 EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without notice. The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license. EMC2, EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries. All other trademarks used herein are the property of their respective owners. For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com). 2 Using EMC VNX Storage with VMware vSphere TechBook CONTENTS Preface Chapter 1 Configuring VMware vSphere on VNX Storage Technology overview................................................................................... 18 EMC VNX family..................................................................................... 18 FLASH 1st.............................................................................................. 18 MCx multicore optimization..................................................................
    [Show full text]
  • Introduction to Virtualization Virtualization
    Introduction to Virtualization Prashant Shenoy Computer Science CS691D: Hot-OS Lecture 2, page 1 Virtualization • Virtualization: extend or replace an existing interface to mimic the behavior of another system. – Introduced in 1970s: run legacy software on newer mainframe hardware • Handle platform diversity by running apps in VMs – Portability and flexibility Computer Science CS691D: Hot-OS Lecture 2, page 2 Types of Interfaces • Different types of interfaces – Assembly instructions – System calls – APIs • Depending on what is replaced /mimiced, we obtain different forms of virtualization Computer Science CS691D: Hot-OS Lecture 2, page 3 Types of Virtualization • Emulation – VM emulates/simulates complete hardware – Unmodified guest OS for a different PC can be run • Bochs, VirtualPC for Mac, QEMU • Full/native Virtualization – VM simulates “enough” hardware to allow an unmodified guest OS to be run in isolation • Same hardware CPU – IBM VM family, VMWare Workstation, Parallels,… Computer Science CS691D: Hot-OS Lecture 2, page 4 Types of virtualization • Para-virtualization – VM does not simulate hardware – Use special API that a modified guest OS must use – Hypercalls trapped by the Hypervisor and serviced – Xen, VMWare ESX Server • OS-level virtualization – OS allows multiple secure virtual servers to be run – Guest OS is the same as the host OS, but appears isolated • apps see an isolated OS – Solaris Containers, BSD Jails, Linux Vserver • Application level virtualization – Application is gives its own copy of components that are not shared • (E.g., own registry files, global objects) - VE prevents conflicts – JVM Computer Science CS691D: Hot-OS Lecture 2, page 5 Examples • Application-level virtualization: “process virtual machine” • VMM /hypervisor Computer Science CS691D: Hot-OS Lecture 2, page 6 The Architecture of Virtual Machines J Smith and R.
    [Show full text]
  • IBM Virtual Machine Facility/370 : Systems Introduction
    GC20-1800-0 IBM Virtual Machine Facility/370 : Systems Introduction The IBM Virtual Machine Facility/370 (VM/370) is a System Control Program (SCP) that has been designed specifically for the IBM System/370. VM/370 manages the IBM System/370 in such a way that mUltiple remote terminal users appear to have a dedicated computing system at their disposal. Within this "virtual machine" the user may run the operaHng system of his choice, subject to the restrictions noted in "Appendix C: VM/370 Restrictions" of this manual. The design of VM/370 is based on the IBM Control Program-67/Cam­ bridge Monitor System (CP-67/CMS) which is executed on an IBM System/360 Model 67. The Conversational Monitor System (CMS) is the major subsystem ofVM/370. CMS provides problem solving and program development services to the user, as well as supporting facilities for a remote user who chooses to run some other operating system in his virtual machine. This manual provides introductory information about the facilities provided by VM/370, and defines the min­ imum equipment configuration necessary for execution. Preface This manual provides introductory information on the IBM Virtual Machine Facility/370 (VM/370) and its associated subsystem, the Conversational Monitor Sys­ tem (CMS), as well as an overview of the purpose and functions of VM/370. It is assumed that the user has a prior knowledge of virtual storage concepts as implemented on the IBM System/370 via dynamic address translation. The reader is referred to Part I of the student text publication Introduction to Virtual Storage in System/370, Order No.
    [Show full text]
  • System Administration Guide
    Experion PKS Release 516 System Administration Guide EPDOC-X139-en-516A August 2020 DISCLAIMER This document contains Honeywell proprietary information. Information contained herein is to be used solely for the purpose submitted, and no part of this document or its contents shall be reproduced, published, or disclosed to a third party without the express permission of Honeywell International Sàrl. While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a purpose and makes no express warranties except as may be stated in its written agreement with and for its customer. In no event is Honeywell liable to anyone for any direct, special, or consequential damages. The information and specifications in this document are subject to change without notice. Copyright 2020 - Honeywell International Sàrl 2 Contents CONTENTS Contents 3 Chapter 1 - About this guide 9 Before reading this guide 10 Chapter 2 - System administration 11 Administering users 12 Windows user accounts 12 Users and groups 12 Passwords administration 13 Deleting a user 13 Experion Operator accounts 14 Control Builder client licenses 14 Administering displays 15 Changing service account passwords 16 Service account scope types 18 Changing passwords for single-machine scope accounts 21 Changing passwords for multi-machine scope accounts 22 Preparing to change passwords for system-wide scope accounts 23 Changing passwords for system-wide scope accounts 26 Changing DSA Advanced Security
    [Show full text]
  • Virtual Machine Benchmarking Kim-Thomas M¨Oller Diploma Thesis
    Universitat¨ Karlsruhe (TH) Institut fur¨ Betriebs- und Dialogsysteme Lehrstuhl Systemarchitektur Virtual Machine Benchmarking Kim-Thomas Moller¨ Diploma Thesis Advisors: Prof. Dr. Frank Bellosa Joshua LeVasseur 17. April 2007 I hereby declare that this thesis is the result of my own work, and that all informa- tion sources and literature used are indicated in the thesis. I also certify that the work in this thesis has not previously been submitted as part of requirements for a degree. Hiermit erklare¨ ich, die vorliegende Arbeit selbstandig¨ und nur unter Benutzung der angegebenen Literatur und Hilfsmittel angefertigt zu haben. Alle Stellen, die wortlich¨ oder sinngemaߨ aus veroffentlichten¨ und nicht veroffentlichten¨ Schriften entnommen wurden, sind als solche kenntlich gemacht. Die Arbeit hat in gleicher oder ahnlicher¨ Form keiner anderen Prufungsbeh¨ orde¨ vorgelegen. Karlsruhe, den 17. April 2007 Kim-Thomas Moller¨ Abstract The resurgence of system virtualization has provoked diverse virtualization tech- niques targeting different application workloads and requirements. However, a methodology to compare the performance of virtualization techniques at fine gran- ularity has not yet been introduced. VMbench is a novel benchmarking suite that focusses on virtual machine environments. By applying the pre-virtualization ap- proach for hypervisor interoperability, VMbench achieves hypervisor-neutral in- strumentation of virtual machines at the instruction level. Measurements of dif- ferent virtual machine configurations demonstrate how VMbench helps rate and predict virtual machine performance. Kurzfassung Das wiedererwachte Interesse an der Systemvirtualisierung hat verschiedenartige Virtualisierungstechniken fur¨ unterschiedliche Anwendungslasten und Anforde- rungen hervorgebracht. Jedoch wurde bislang noch keine Methodik eingefuhrt,¨ um Virtualisierungstechniken mit hoher Granularitat¨ zu vergleichen. VMbench ist eine neuartige Benchmarking-Suite fur¨ Virtuelle-Maschinen-Umgebungen.
    [Show full text]
  • Virtualization with Cisco UCS, Nexus 1000V, and Vmware Technology Design Guide
    Virtualization with Cisco UCS, Nexus 1000V, and VMware TECHNOLOGY DESIGN GUIDE August 2013 Table of Contents Preface ........................................................................................................................................1 CVD Navigator .............................................................................................................................2 Use Cases .................................................................................................................................. 2 Scope ......................................................................................................................................... 2 Proficiency .................................................................................................................................. 3 Introduction .................................................................................................................................4 Technology Use Cases ............................................................................................................... 4 Use Case: Reduce Application Deployment Time ................................................................... 5 Use Case: Simplify Network Management in the Data Center ................................................ 5 Use Case: Increase Network Performance in the Hypervisor Environment ............................. 5 Design Overview ........................................................................................................................
    [Show full text]
  • Simuboost: Scalable Parallelization of Functional System Simulation
    SimuBoost: Scalable Parallelization of Functional System Simulation Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften von der KIT-Fakultät für Informatik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Dipl.-Inform. Marc Rittinghaus aus Iserlohn Tag der mündlichen Prüfung: 19.07.2019 Hauptreferent: Prof. Dr. Frank Bellosa Karlsruher Institut für Technologie Korreferent: Prof. Dr. Hans P. Reiser Universität Passau KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Abstract Gathering detailed run-time information such as memory access traces in operating system and security research often involves functional full system simulation (FFSS). The simulator runs the workload of interest in a virtual machine (VM), gradually interpreting or translating instructions so that they operate on the state of the VM and allow for comprehensive instrumentation. While functional full system simulation is a powerful tool, a severe limitation is its immense slowdown. For QEMU, we have measured average slowdowns of 30x and 60x for plain simulation and tracing of memory accesses, respectively. Simulators offering more advanced instrumentation capabilities can even be an order of magnitude slower. This quickly renders functional simulation impractical for long-running, networked, or interactive workloads. Furthermore, the slowdown creates unrealistic timing behavior whenever activities external to the virtual machine (e.g., I/O) are involved. In this thesis, we present SimuBoost, a method for drastically accelerating func- tional full system simulation. SimuBoost runs the workload in a fast and interactive hardware-assisted virtual machine while periodically taking checkpoints. These checkpoints then serve as starting points for simulations, enabling to simulate and analyze each interval simultaneously in one job per interval.
    [Show full text]
  • Understanding Abstraction and Virtualization
    12/07/2016 Understanding Abstraction and Virtualization Víctor J. Sosa S. [email protected] VIRTUALIZATION Virtualization is a technology that allows creating an abstraction (a virtual version) of computer resources , such as hardware architecture, operating system, storage, network, etc. With this abstraction, for example, a single machine can act like many machines working independently. The usual goal of virtualization is to centralize administrative tasks while improving scalability and workloads. It is not a new concept or technology in computer sciences. Virtual machine concept was in existence since 1960s when it was first developed by IBM to provide concurrent, interactive access to a mainframe computer. 1 12/07/2016 VIRTUALIZATION Reduce power consumption (air conditioning needs, trim the building space and land requirements associated with server farm growth), High availability for critical applications , and streamlines application deployment and migrations, Simplifies IT operations and allow IT organizations to respond faster to changing business demands , Greenhouse gas reduction The socio-political ramifications of global warming requiring good corporate citizens to meet targets, creates an added incentive for virtualization. 2 12/07/2016 EXAMPLE OF USE OF A VIRTUAL MACHINE MONITOR (VMM) APPLICATION PROGRAMMING INTERFACE , A PPLICATION BINARY INTERFACE , AND INSTRUCTION SET ARCHITECTURE . A N APPLICATION USES LIBRARY FUNCTIONS (A1), MAKES SYSTEM CALLS (A2), AND EXECUTES MACHINE INSTRUCTIONS (A3). 3 12/07/2016 VIRTUAL MACHINE MONITOR : EXAMPLES VM technology allows multiple virtual machines to run on a single physical machine. App App App App App Xen Guest OS Guest OS Guest OS (Linux) (NetBSD) (Windows) VMWare VM VM VM Virtual Machine Monitor (VMM) / Hypervisor UserModeLinux Hardware Denali etc.
    [Show full text]
  • Block-Level Storage Virtualization
    Virtulization Nelson L. S. da Fonseca IEEE ComSoc Summer Scool Albuquerque, July 17-21, 2017 Acknowledgement • Some slides in this set of slides were kindly provided by: • Luiz Fernando Bittencourt, University of Campinas • EMC Corporation Virtualization “Virtualization means to create a virtual version of a device or resource, such as a server, storage device, network or even an operating system where the framework divides the resource into one or more execution environments. Devices, applications and human users are able to interact with the virtual resource as if it were a real single logical resource.” http://www.webopedia.com/TERM/V/virtualization.html Virtualization - Features • Sharing of resources • Isolation • Agregation Virtualization - advantages • Fast deployment • Scalability • Load consolidation • Flexibility • Mobility • Green Virtualized Data Center (VDC) Virtualize Network Virtualize Storage Virtualize Compute Classic Data Center (CDC) Server Virtualization Compute Virtualization • It is a technique of masking or abstracting the physical compute hardware and enabling multiple operating systems (OSs) to run concurrently on a single or clustered physical machine(s). • Virtual Machine is a logical entity that looks and behaves like physical machine • Virtualization layer resides between hardware and VMs (hypervisor) • VMs are provided with standardized hardware resources Process Virtual Machine X System Virtual Machine Virtual Machine • From a user’s perspective, a logical compute system • Runs an operating system (OS) and
    [Show full text]
  • Implementation of Nested Virtual Laboratory System
    Jaakko Nurmi Implementation of Nested Virtual Laboratory System Bachelor thesis Information Technology March 2016 Tekijä/Tekijät Tutkinto Aika Jaakko Nurmi Insinööri (AMK) maaliskuu 2016 Opinnäytetyön nimi 39 sivua Implementation of nested Virtual Laboratory System 3 liitesivua Toimeksiantaja Kymenlaakson ammattikorkeakoulu Ohjaaja Lehtori Vesa Kankare Tiivistelmä Tämän opinnäytetyön tarkoituksena oli luoda helppokäyttöinen virtualisoitu laboratorio- alusta tietoverkkotekniikan ja kyberturvallisuuden käytännön harjoituksiin. Työssä hyö- dynnettiin paljon jo olemassa olevaa teknologiaa ja lisäksi luotiin muutamia omia tek- nologioita. Yksi niistä on virtuaalinen kytkentäkaapeli, joka kykenee simuloimaan kaa- pelissa tapahtuvia häiriöitä. Työssä käsitellään sisäkkäistä virtualisointia (Nested virtualization) ja muita käytettyjä teknologioita sekä niiden ominaisuuksia. Käytännön osuudessa käsitellään virtuaalisen laboratorioympäristön toimintaa, ominaisuuksia ja etuja verrattuna fyysisiin laitteisiin sekä muutamia kehitysideoita tulevaisuuden varalle. Lopputuloksena syntyi helppokäyttöinen virtualisoitu tietoverkkolaboratorioympäristö, joita käytettiin ja kokeiltiin muun muassa Advanced routing-, Network security equip- ment ja Service provider networks -kursseilla pääsääntöisesti hyvin lopputuloksin. Si- vutuotteena syntyi kaksi virtuaalista demoskenaariota kyberturvallisuuden opettami- seen. Näitä skenaarioita kokeiltiin penetraatiotestaus-kurssilla. Työn loppupuolella toteutettiin pieni käyttäjäkysely, jolla mitattiin loppukäyttäjien
    [Show full text]
  • Dynamic Load Balancing of Virtual Machines Hosted on Xen
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2008-12-10 Dynamic Load Balancing of Virtual Machines Hosted on Xen Terry Clyde Wilcox Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Computer Sciences Commons BYU ScholarsArchive Citation Wilcox, Terry Clyde, "Dynamic Load Balancing of Virtual Machines Hosted on Xen" (2008). Theses and Dissertations. 1654. https://scholarsarchive.byu.edu/etd/1654 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. DYNAMIC LOAD BALANCING OF VIRTUAL MACHINES HOSTED ON XEN by Terry C. Wilcox Jr. A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Computer Science Brigham Young University April 2009 Copyright c 2009 Terry C. Wilcox Jr. All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Terry C. Wilcox Jr. This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. Date Phillip J. Windley, Chair Date Kelly J. Flanagan Date Tony R. Martinez BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Terry C. Wilcox Jr. in its final form and have found that (1) its format, citations, and bibli- ographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.
    [Show full text]
  • A Taxonomy of Virtual Machines
    Aula 02 - Virtualização Livro texto Virtualization for Datacenter Automation to serve millions of clients, simultaneously . Server Consolidation in Virtualized Datacenter . Virtual Storage Provisioning and Deprovisioning . Cloud Operating Systems for Virtual Datacenters . Trust Management in virtualized Datacenters Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 3 Difference between Traditional Computer and Virtual machines (Courtesy of VMWare, 2008) Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 4 What is Virtualization ? Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 5 Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 6 Virtual Machine, Guest Operating System, and VMM (Virtual Machine Monitor) : The Virtualization layer is the middleware between the underlying hardware and virtual machines represented in the system, also known as virtual machine monitor (VMM). Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 7 (Courtesy of VMWare, 2008) Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 8 VMM : Virtual Machine Monitor (Courtesy of Mendel Rosenblum, 2005) Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 9 Low-Level VMM Operations (1) (Courtesy of Mendel Rosenblum, 2006) Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 10 Low-Level VMM Operations (2) (Courtesy of Mendel Rosenblum, 2006) Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 11 Low-Level VMM Operations (3) (Courtesy of Mendel Rosenblum, 2006) Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 12 Low-Level VMM Operations (4) (Courtesy of Mendel Rosenblum, 2006) Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 13 Copyright © 2012, Elsevier Inc. All rights reserved. 3 - 14 Virtualization at ISA level: Emulating a given ISA by the ISA of the host machine.
    [Show full text]