Network -Tubulin and Disorganizes the Microtubule Α NK Cell Protease

Total Page:16

File Type:pdf, Size:1020Kb

Network -Tubulin and Disorganizes the Microtubule Α NK Cell Protease NK Cell Protease Granzyme M Targets α -Tubulin and Disorganizes the Microtubule Network This information is current as Niels Bovenschen, Pieter J. A. de Koning, Razi Quadir, Roel of September 24, 2021. Broekhuizen, J. Mirjam A. Damen, Christopher J. Froelich, Monique Slijper and J. Alain Kummer J Immunol 2008; 180:8184-8191; ; doi: 10.4049/jimmunol.180.12.8184 http://www.jimmunol.org/content/180/12/8184 Downloaded from References This article cites 34 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/180/12/8184.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology NK Cell Protease Granzyme M Targets ␣-Tubulin and Disorganizes the Microtubule Network1 Niels Bovenschen,* Pieter J. A. de Koning,* Razi Quadir,* Roel Broekhuizen,* J. Mirjam A. Damen,† Christopher J. Froelich,‡ Monique Slijper,† and J. Alain Kummer2* Serine protease granzyme M (GrM) is highly expressed in the cytolytic granules of NK cells, which eliminate virus-infected cells and tumor cells. The molecular mechanisms by which GrM induces cell death, however, remain poorly understood. In this study we used a proteomic approach to scan the native proteome of human tumor cells for intracellular substrates of GrM. Among other findings, this approach revealed several components of the cytoskeleton. GrM directly and efficiently cleaved the actin-plasma membrane linker ezrin and the microtubule component ␣-tubulin by using purified proteins, tumor cell lysates, and tumor cells undergoing cell death induced by perforin and GrM. These cleavage events occurred independently of caspases or other cysteine proteases. Kinetically, ␣-tubulin was more efficiently cleaved by GrM as compared with ezrin. Direct ␣-tubulin proteolysis by Downloaded from GrM is complex and occurs at multiple cleavage sites, one of them being Leu at position 269. GrM disturbed tubulin polymer- ization dynamics in vitro and induced microtubule network disorganization in tumor cells in vivo. We conclude that GrM targets major components of the cytoskeleton that likely contribute to NK cell-induced cell death. The Journal of Immunology, 2008, 180: 8184–8191. ytotoxic lymphocytes, i.e., CTLs and NK cells, are key proteins leads to DNA fragmentation and mitochondrial damage, http://www.jimmunol.org/ players in the effector arm of the immune response that respectively. GrA predominantly kills by cleaving nuclear (e.g., C eliminates virus-infected cells and tumor cells (1, 2). Cy- Ku70), mitochondrial, and cytoplasmic substrates (e.g., SET com- totoxic lymphocytes predominantly destroy their targets by releas- plex components) (2, 7–9). Cleavage of these substrates results in ing the content of their cytolytic granules. These granules contain single-stranded nicking of chromosomal DNA. perforin and a family of unique structurally homologous serine In contrast to GrA and GrB, far less is known about the other proteases known as granzymes (3, 4). Although perforin facilitates human granzymes. It has been demonstrated that granzyme M the entry of granzymes into the target cell, the latter induce cell (GrM), which is specifically expressed by NK cells, mediates a death by cleaving critical intracellular substrates (1, 2). novel major and perforin-dependent cell death pathway with by guest on September 24, 2021 In humans, five different granzymes (GrA, GrB, GrH, GrK, and unique morphological hallmarks that plays a significant role in NK GrM) are known that differ on the basis of their substrate speci- cell-induced death (10). The molecular mechanism by which GrM ficity (3, 4). Over the past few decades, it has been well established 3 induces cell death remains unclear. One study has found that GrM- that granzyme A (GrA) and granzyme B (GrB) serve as important induced cell death occurs independently of caspases, DNA frag- determinants of cellular cytotoxicity. Both granzymes induce nu- mentation, and reactive oxygen species (ROS) generation (10), clear and non-nuclear damage in target cells by cleaving distinct whereas other recent reports have demonstrated the opposite (11, nonoverlapping sets of substrates (1, 2). Two important intracel- 12). This suggests that GrM targets multiple independent cell death lular substrates of GrB include procaspase 3 (5) and the small pathways, which has also been demonstrated for GrA and GrB (1, Bcl-2 homology domain 3-only protein Bid (6). Cleavage of these 2, 5–9). In the present study, we used a proteomic approach to define potential substrates of GrM. We report that GrM targets the *Department of Pathology, University Medical Center, Utrecht; †Department of Bio- cytoskeleton in tumor cells by cleaving the actin-plasma mem- molecular Mass Spectrometry, Utrecht University, Utrecht, The Netherlands; and brane linker ezrin and the microtubule component ␣-tubulin. This ‡Department of Medicine, Evanston Northwestern Healthcare Research Institute, Evanston, IL 60201 likely contributes to the mechanism and the specific morphological Received for publication July 25, 2007. Accepted for publication April 14, 2008. changes that coincide with GrM-mediated target cell death. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Materials and Methods 1 This work was supported by the Netherlands Organization for Scientific Research Reagents Grant 916.66.044 (to N.B.), Dutch Cancer Society Grant UMCU-2004-3047 (to J.A.K.), and National Institutes of Health Grant R01 AI044941-07 (to C.J.F.). Abs were anti-␣-tubulin clone B-5-1-2 (Sigma-Aldrich), anti-ezrin clone 2 Address correspondence and reprint requests to Dr. J. Alain Kummer, Department 3C12 (Zymed Laboratories), anti-␤-actin clone 2A2.1 (United States Bio- of Pathology, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The logical), anti-caspase-3 clone H-277 (Tebu-bio), anti-GST tag (Santa Cruz Netherlands. E-mail address: [email protected] Biotechnology), and anti-His tag (BD Biosciences). E64, trans-epoxysuc- 3 Abbreviations used in this paper: GrA, granzyme A; GrB, granzyme B; GrM, gran- cinyl-L-leucylamido-(4-guanidino)butane, was from Sigma-Aldrich and zyme M; GrM-SA, GrM with S195A mutation in catalytic center; HSP, heat shock benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk) protein; MAP, microtubule-associated protein; MS, mass spectrometry; PI, propidium was from Biomol. The chromogenic caspase-3 substrate Ac-Asp-Glu-Val- iodide; ROS, reactive oxygen species; Ac-DEVD-pNA, acetyl-Asp-Glu-Val-Asp-p- Asp-p-nitroaniline (Ac-DEVD-pNA) was from Bachem. Purified recom- nitroaniline; E64, trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane; z-VAD- fmk, benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone. binant human GST-k-␣-1-tubulin was purchased from Cytoskeleton. Hu- man perforin was purified as described (13). Protein was quantified by the Copyright © 2008 by The American Association of Immunologists, Inc. 0022-1767/08/$2.00 Bradford method. www.jimmunol.org The Journal of Immunology 8185 Cell lines and cell-free protein extracts HeLa and Jurkat cells were grown in DMEM and RPMI 1640 medium, respectively, supplemented with 10% FCS, 0.002 M glutamine, 100 U/ml penicillin, and 100 ␮g/ml streptomycin (Invitrogen). Cell-free protein ex- tracts were generated from exponentially growing HeLa and Jurkat cells. Cells (108 cells/ml) were washed two times in a buffer containing 50 mM Tris (pH 7.4) and 150 mM NaCl, and lysed in the same buffer by three cycles of freezing/thawing. This method gently disrupts the plasma mem- brane and minimally affects cell compartment integrity (14). Samples were centrifuged for 10 min at 14,000 rpm at 4°C and cell-free protein extracts were stored at Ϫ80°C. Recombinant proteins The cDNA encoding mature human GrM (residues Ile26–Ala257) was am- FIGURE 1. Identification of GrM-induced cleavage events in tumor cell plified from IMAGE clone 5222281 and cloned into yeast expression vec- lysates. HeLa cell freeze/thaw lysates were incubated with GrM-SA (1 tor pPIC9 (Invitrogen). Catalytically inactive GrM-SA, in which the Ser195 ␮M) (A) or GrM (1 ␮M) (B) for 60 min at 37°C. Proteins were separated residue in the catalytic center is replaced by Ala (S195A), was generated by two-dimensional gel electrophoresis (10%) and visualized by silver by site-directed mutagenesis (Stratagene). Plasmids were transformed into staining. Proteins that are reduced in abundance after GrM incubation rep- the GS115 (his4) strain of Pichia pastoris and granzymes were expressed resent potential GrM substrates (A) and new spots that appear during GrM in conditioned medium for 72 h as described by the manufacturer (Invitro- treatment are cleavage products (B). This experiment was performed three gen). GrM and GrM-SA were purified to homogeneity by cation-exchange times with similar results and the changed protein spots (n ϭ 37) were chromatography (GE Healthcare) using a linear salt gradient for elution. Downloaded from excised from two-dimensional gels. Protein spots that could be identified GrM preparations were dialyzed against 50 mM Tris (pH 7.4) and 150 mM ϭ NaCl and stored at Ϫ80°C.
Recommended publications
  • Conserved Microtubule–Actin Interactions in Cell Movement and Morphogenesis
    REVIEW Conserved microtubule–actin interactions in cell movement and morphogenesis Olga C. Rodriguez, Andrew W. Schaefer, Craig A. Mandato, Paul Forscher, William M. Bement and Clare M. Waterman-Storer Interactions between microtubules and actin are a basic phenomenon that underlies many fundamental processes in which dynamic cellular asymmetries need to be established and maintained. These are processes as diverse as cell motility, neuronal pathfinding, cellular wound healing, cell division and cortical flow. Microtubules and actin exhibit two mechanistic classes of interactions — regulatory and structural. These interactions comprise at least three conserved ‘mechanochemical activity modules’ that perform similar roles in these diverse cell functions. Over the past 35 years, great progress has been made towards under- crosstalk occurs in processes that require dynamic cellular asymme- standing the roles of the microtubule and actin cytoskeletal filament tries to be established or maintained to allow rapid intracellular reor- systems in mechanical cellular processes such as dynamic shape ganization or changes in shape or direction in response to stimuli. change, shape maintenance and intracellular organelle movement. Furthermore, the widespread occurrence of these interactions under- These functions are attributed to the ability of polarized cytoskeletal scores their importance for life, as they occur in diverse cell types polymers to assemble and disassemble rapidly, and to interact with including epithelia, neurons, fibroblasts, oocytes and early embryos, binding proteins and molecular motors that mediate their regulated and across species from yeast to humans. Thus, defining the mecha- movement and/or assembly into higher order structures, such as radial nisms by which actin and microtubules interact is key to understand- arrays or bundles.
    [Show full text]
  • Absence of NEFL in Patient-Specific Neurons in Early-Onset Charcot-Marie-Tooth Neuropathy Markus T
    ARTICLE OPEN ACCESS Absence of NEFL in patient-specific neurons in early-onset Charcot-Marie-Tooth neuropathy Markus T. Sainio, MSc, Emil Ylikallio, MD, PhD, Laura M¨aenp¨a¨a, MSc, Jenni Lahtela, PhD, Pirkko Mattila, PhD, Correspondence Mari Auranen, MD, PhD, Johanna Palmio, MD, PhD, and Henna Tyynismaa, PhD Dr. Tyynismaa [email protected] Neurol Genet 2018;4:e244. doi:10.1212/NXG.0000000000000244 Abstract Objective We used patient-specific neuronal cultures to characterize the molecular genetic mechanism of recessive nonsense mutations in neurofilament light (NEFL) underlying early-onset Charcot- Marie-Tooth (CMT) disease. Methods Motor neurons were differentiated from induced pluripotent stem cells of a patient with early- onset CMT carrying a novel homozygous nonsense mutation in NEFL. Quantitative PCR, protein analytics, immunocytochemistry, electron microscopy, and single-cell transcriptomics were used to investigate patient and control neurons. Results We show that the recessive nonsense mutation causes a nearly total loss of NEFL messenger RNA (mRNA), leading to the complete absence of NEFL protein in patient’s cultured neurons. Yet the cultured neurons were able to differentiate and form neuronal networks and neuro- filaments. Single-neuron gene expression fingerprinting pinpointed NEFL as the most down- regulated gene in the patient neurons and provided data of intermediate filament transcript abundancy and dynamics in cultured neurons. Blocking of nonsense-mediated decay partially rescued the loss of NEFL mRNA. Conclusions The strict neuronal specificity of neurofilament has hindered the mechanistic studies of re- cessive NEFL nonsense mutations. Here, we show that such mutation leads to the absence of NEFL, causing childhood-onset neuropathy through a loss-of-function mechanism.
    [Show full text]
  • Microtubule-Associated Protein Tau (Molecular Pathology/Neurodegenerative Disease/Neurofibriliary Tangles) M
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 4051-4055, June 1988 Medical Sciences Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau (molecular pathology/neurodegenerative disease/neurofibriliary tangles) M. GOEDERT*, C. M. WISCHIK*t, R. A. CROWTHER*, J. E. WALKER*, AND A. KLUG* *Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and tDepartment of Psychiatry, University of Cambridge Clinical School, Hills Road, Cambridge CB2 2QQ, United Kingdom Contributed by A. Klug, March 1, 1988 ABSTRACT Screening of cDNA libraries prepared from (21). This task is made all the more difficult because there is the frontal cortex ofan zheimer disease patient and from fetal no functional or physiological assay for the protein(s) of the human brain has led to isolation of the cDNA for a core protein PHF. The only identification so far possible is the morphol- of the paired helical fiament of Alzheimer disease. The partial ogy of the PHFs at the electron microscope level, and here amino acid sequence of this core protein was used to design we would accept only experiments on isolated individual synthetic oligonucleotide probes. The cDNA encodes a protein of filaments, not on neurofibrillary tangles (in which other 352 amino acids that contains a characteristic amino acid repeat material might be occluded). One thus needs a label or marker in its carboxyl-terminal half. This protein is highly homologous for the PHF itself, which can at the same time be used to to the sequence ofthe mouse microtubule-assoiated protein tau follow the steps of the biochemical purification.
    [Show full text]
  • Neurofilaments: Neurobiological Foundations for Biomarker Applications
    Neurofilaments: neurobiological foundations for biomarker applications Arie R. Gafson1, Nicolas R. Barthelmy2*, Pascale Bomont3*, Roxana O. Carare4*, Heather D. Durham5*, Jean-Pierre Julien6,7*, Jens Kuhle8*, David Leppert8*, Ralph A. Nixon9,10,11,12*, Roy Weller4*, Henrik Zetterberg13,14,15,16*, Paul M. Matthews1,17 1 Department of Brain Sciences, Imperial College, London, UK 2 Department of Neurology, Washington University School of Medicine, St Louis, MO, USA 3 a ATIP-Avenir team, INM, INSERM , Montpellier university , Montpellier , France. 4 Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom 5 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada 6 Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada. 7 CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada 8 Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland. 9 Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA. 10Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, 11 Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA. 12Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA 13 University College London Queen Square Institute of Neurology, London, UK 14 UK Dementia Research Institute at University College London 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden 16 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 17 UK Dementia Research Institute at Imperial College, London * Co-authors ordered alphabetically Address for correspondence: Prof.
    [Show full text]
  • The Relationship Between Intermediate Filaments and Microfilaments Before and During the Formation of Desmosomes and Adherens-Ty
    Published May 1, 1987 The Relationship between Intermediate Filaments and Microfilaments before and during the Formation of Desmosomes and Adherens-type Junctions in Mouse Epidermal Keratinocytes Kathleen J. Green, Benjamin Geiger,* Jonathan C. R. Jones, John C. Talian, and Robert D. Goldman Department of Cell Biology and Anatomy, Northwestern University Medical School, Chicago, Illinois 60611; and * Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel Abstract. Actin, keratin, vinculin and desmoplakin ermost of the concentric MFB. Individual IF often organization were studied in primary mouse keratino- splay out, becoming interwoven into these MFB in the cytes before and during Ca2+-induced cell contact forma- region of cell-substrate contact. In the first 30 min af- tion. Double-label fluorescence shows that in cells cul- ter the Ca 2+ switch, areas of submembranous dense Downloaded from tured in low Ca 2÷ medium, keratin-containing inter- material (identified as adherens junctions), which are mediate filament bundles (IFB) and desmoplakin- associated with the perpendicular MFB, can be seen at containing spots are both concentrated towards the cell newly formed cell-ceU contact sites. By 1-2 h, IFB- center in a region bounded by a series of concentric desmosomal component complexes are aligned with microfilament bundles (MFB). Within 5-30 min after the perpendicular MFB as the complexes become jcb.rupress.org raising Ca 2+ levels, a discontinuous actin/vinculin-rich, redistributed to cell-cell interfaces. Cytochalasin D submembranous zone of fluorescence appears at cell- treatment causes the redistribution of actin into numer- cell interfaces. This zone is usually associated with ous patches; keratin-containing Lr:B undergo a con- short, perpendicular MFB, which become wider and comitant redistribution, forming foci that coincide with longer with time.
    [Show full text]
  • Myosin-Driven Actin-Microtubule Networks Exhibit Self-Organized Contractile Dynamics Gloria Lee1, Michael J
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.11.146662; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Myosin-driven actin-microtubule networks exhibit self-organized contractile dynamics Gloria Lee1, Michael J. Rust2, Moumita Das3, Ryan J. McGorty1, Jennifer L. Ross4, Rae M. Robertson-Anderson1* 1Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA 2Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA 3School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA 4Department of Physics, Syracuse University, Syracuse, NY 13244, USA Abstract The cytoskeleton is a dynamic network of proteins, including actin, microtubules, and myosin, that enables essential cellular processes such as motility, division, mechanosensing, and growth. While actomyosin networks are extensively studied, how interactions between actin and microtubules, ubiquitous in the cytoskeleton, influence actomyosin activity remains an open question. Here, we create a network of co-entangled actin and microtubules driven by myosin II. We combine dynamic differential microscopy, particle image velocimetry and particle-tracking to show that both actin and microtubules in the network undergo ballistic contraction with surprisingly indistinguishable characteristics. This controlled contractility is distinct from the faster turbulent motion and rupturing that active actin networks exhibit. Our results suggest that microtubules can enable self-organized myosin-driven contraction by providing flexural rigidity and enhanced connectivity to actin networks.
    [Show full text]
  • Signaling Function of Α-Catenin in Microtubule Regulation
    [Cell Cycle 7:15, 2377-2383; 1 August 2008]; ©2008 Landes Bioscience Report Signaling function of α-catenin in microtubule regulation Michael Shtutman,1,* Alexander Chausovsky,2 Masha Prager-Khoutorsky,2 Natalia Schiefermeier,2,† Shlomit Boguslavsky,2 Zvi Kam,2 Elaine Fuchs,3 Benjamin Geiger,2 Gary G. Borisy4 and Alexander D. Bershadsky2 1Cancer Center, Ordway Research Institute; Albany, New York USA; 2Department of Molecular and Cellular Biology; The Weizmann Institute of Science; Rehovot, Israel; 3Howard Hughes Medical Institute; Laboratory of Mammalian Cell Biology and Development; The Rockefeller University; New York, New York USA; 4Marine Biological Laboratory; Woods Hole; Massachusetts, USA †Current address: Innsbruck Medical University; Biocenter, Innsbruck, Austria Abbreviations: APC, adenomatous polyposis coli protein; AJ, adherens junction; CHO, chinese hamster ovary cells; DMEM, Dulbecco’s Modified Eagle’s Medium; EGFP, enhanced green fluorescent protein; GFP, green fluorescent protein; IL2R, interleukin-2 receptor; MAPK, mitogen-activated protein kinase; mDia1, mouse diaphanous related formin 1; MT, microtubule; PBS, phosphate buffered saline; SD, stan- dard deviation; SEM, standard error of mean Key words: alpha-catenin, microtubules, beta-catenin, p120ctn, adherens junction, centrosome, cadherins, cytoplasts Centrosomes control microtubule dynamics in many cell stability depends on the minus end being anchored in the centrosome, types, and their removal from the cytoplasm leads to a shift from more precisely in the pericentriolar material surrounding the mother dynamic instability to treadmilling behavior and to a dramatic centriole.1,2 In contrast, epithelial and neuronal cells maintain decrease of microtubule mass (Rodionov et al., 1999; PNAS large populations of MTs that have no apparent connection to the 96:115).
    [Show full text]
  • INTERMEDIATE FILAMENT Dr Krishnendu Das Assistant Professor Department of Zoology City College
    INTERMEDIATE FILAMENT Dr Krishnendu Das Assistant Professor Department of Zoology City College Q.What are the intermediate filaments? State their role as cytoskeleton. How its functional significance differs from others? This component of cytoskeleton intermediates between actin filaments (about 7 nm in diameter) and microtubules (about 25 nm in diameter). In contrast to actin filament and microtubule the intermediate filaments are not directly involved in cell movements, instead they appear to play basically a structural role by providing mechanical strength to cells and tissues. (Figure 1: Structure of intermediate filament proteins- intermediate filament proteins contain a central α-helical rod domain of approximately 310 amino acids (350 amino acids in the nuclear lamins). The N-terminal head and C-terminal tail domains vary in size and shape. Q.How intermediate filaments differ from actin filaments and microtubules in respect of their components? Actin filaments and microtubules are polymers of single types of proteins (e.g; actin tubulins), whereas intermediate filaments are composed of a variety of proteins that are expressed in different types of cells (as given in the tabular form) Type Protein Size (kd) Site of expression I Acidic keratin 40-60 Epithelial cells II Neutral or basic keratin 50-70 Do III Vimentin 54 Fibroblasts, WBC and other cell types Desmin 53 Muscle cells Periferin 57 Peripheral neurons IV Neurofilament proteins NF-L 67 Neurons NF-M 150 Neurons NF-H 200 Neurons V Nuclear lamins 60-75 Nuclear lamina of all cell types VI nestin 200 Stem cells, especially of the central nervous system Q.How do intermediate filaments assemble? (Figure 2) The central rod domains of two polypeptides wind around each other in a coiled-coil structure to form dimmers.
    [Show full text]
  • Snapshot: Actin Regulators II Anosha D
    SnapShot: Actin Regulators II Anosha D. Siripala and Matthew D. Welch Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA Representative Proteins Protein Family H. sapiens D. melanogaster C. elegans A. thaliana S. cerevisiae Endocytosis and Exocytosis ABP1/drebrin mABP1, drebrin, drebrin- †Q95RN0 †Q9XUT0 Abp1 like EPS15 EPS15 Eps-15 EHS-1 †Q56WL2 Pan1 HIP1R HIP1R †Q8MQK1 †O62142 Sla2 Synapsin synapsin Ia, Ib, IIa, IIb, III Synapsin SNN-1 Plasma Membrane Association Anillin anillin Scraps ANI-1, 2, 3 Annexins annexin A1–11, 13 (actin Annexin B9-11 NEX-1–4 ANN1-8 binding: 1, 2, 6) ERM proteins ezrin, radixin, moesin DMoesin ERM-1 MARCKS MARCKS, MRP/ Akap200 MACMARCKS/F52 Merlin *merlin/NF2 Merlin NFM-1 Protein 4.1 4.1R, G, N, B Coracle Spectrin α-spectrin (1–2), β-spectrin α-spectrin, β-spectrin, β heavy- SPC-1 (α-spectrin), UNC-70 (1–4), β heavy-spectrin/ spectrin/Karst (β-spectrin), SMA-1 (β heavy- karst spectrin) Identifi ed Cellular Role: X Membrane traffi cking and phagocytosis Cell-Cell Junctions X Cytokinesis α-catenin α-catenin 1–3 α-catenin HMP-1 X Cell surface organization and dynamics X Cell adhesion Afadin afadin/AF6 Canoe AFD-1 X Multiple functions ZO-1 ZO-1, ZO-2, ZO-3 ZO-1/Polychaetoid †Q56VX4 X Other/unknown Cell-Extracellular Matrix Junctions †UNIPROT database accession number *Mutation linked to human disease Dystrophin/utrophin *dystrophin, utrophin/ Dystrophin DYS-1 DRP1, DRP2 LASP LASP-1, LASP-2, LIM- Lasp †P34416 nebulette Palladin palladin Parvin α-, β-, χ-parvin †Q9VWD0 PAT-6
    [Show full text]
  • Presynaptic Spectrin Is Essential for Synapse Stabilization
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology, Vol. 15, 918–928, May 24, 2005, ©2005 Elsevier Ltd All rights reserved. DOI 10.1016/j.cub.2005.04.030 Presynaptic Spectrin Is Essential for Synapse Stabilization Jan Pielage,1 Richard D. Fetter,2 aptic nerve terminal. The basic unit of the spectrin skel- and Graeme W. Davis1,* eton is a heterotetramer composed of α- and β-Spectrin 1Department of Biochemistry and Biophysics subunits. These heterotetramers can interact with short Program in Neuroscience actin filaments to form a spectrin-actin filamentous net- University of California, San Francisco work that is localized to the plasma membrane [5]. San Francisco, California 94143 Spectrin can directly associate with membrane phos- 2 Laboratory of Neural Circuits and Behavior pholipids and may provide support for cell shape in this The Rockefeller University manner [5]. The spectrin skeleton has also been termed 1230 York Avenue a “protein accumulation machine” because of its in- New York, New York 10021 volvement in ion-channel, cell-adhesion-molecule, and adaptor-protein localization [6]. In the nervous system, the spectrin skeleton is abun- Summary dant both pre- and postsynaptically at both central and peripheral synapses [5, 7, 8]. However, little is known Background: Precise neural circuitry is established and regarding the function of spectrin in the postembryonic maintained through a regulated balance of synapse nervous system owing to the embryonic lethality of mu- stabilization and disassembly. Currently, little is known tations in most spectrin isoforms. In Drosophila, null about the molecular mechanisms that specify synapse mutations in a- or b-spectrin are late embryonic/early stability versus disassembly.
    [Show full text]
  • Neurofilaments and Neurofilament Proteins in Health and Disease
    Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Neurofilaments and Neurofilament Proteins in Health and Disease Aidong Yuan,1,2 Mala V. Rao,1,2 Veeranna,1,2 and Ralph A. Nixon1,2,3 1Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962 2Department of Psychiatry, New York University School of Medicine, New York, New York 10016 3Cell Biology, New York University School of Medicine, New York, New York 10016 Correspondence: [email protected], [email protected] SUMMARY Neurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neuro- filament middle]; NF-H [neurofilament heavy]; and a-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expan- sion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons exten- sively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionallyspecialized networkthat undergoes exceptionallyslow local turnoverand serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskel- eton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon.
    [Show full text]
  • The Microtubule-Associated Protein Tau Mediates the Organization Of
    The Journal of Neuroscience, January 10, 2018 • 38(2):291–307 • 291 Cellular/Molecular The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones Sayantanee Biswas and Katherine Kalil Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705 Proper organization and dynamics of the actin and microtubule (MT) cytoskeleton are essential for growth cone behaviors during axon growth and guidance. The MT-associated protein tau is known to mediate actin/MT interactions in cell-free systems but the role of tau in regulating cytoskeletal dynamics in living neurons is unknown. We used cultures of cortical neurons from postnatal day (P)0–P2 golden Syrian hamsters (Mesocricetus auratus) of either sex to study the role of tau in the organization and dynamics of the axonal growth cone cytoskeleton. Here, using super resolution microscopy of fixed growth cones, we found that tau colocalizes with MTs and actin filaments and is also located at the interface between actin filament bundles and dynamic MTs in filopodia, suggesting that tau links these two cytoskeletons. Live cell imaging in concert with shRNA tau knockdown revealed that reducing tau expression disrupts MT bundling in the growthconecentraldomain,misdirectstrajectoriesofMTsinthetransitionregionandpreventssingledynamicMTsfromextendinginto growth cone filopodia along actin filament bundles. Rescue experiments with human tau expression restored MT bundling, MT penetra- tion into the growth cone periphery and close MT apposition to actin filaments in filopodia. Importantly, we found that tau knockdown reduced axon outgrowth and growth cone turning in Wnt5a gradients, likely due to disorganized MTs that failed to extend into the peripheral domain and enter filopodia.
    [Show full text]