Automated Driving: Analysis of Standard-Setting Dynamics and Development of a Pedestrian Simulation Model
Total Page:16
File Type:pdf, Size:1020Kb
Benedikt Schwab Automated Driving: Analysis of Standard-Setting Dynamics and Development of a Pedestrian Simulation Model TECHNICALUNIVERSITYOFMUNICH TUM School of Management Thesis Master of Science November 30, 2017 AUTOMATEDDRIVING Analysis of Standard-Setting Dynamics and Development of a Pedestrian Simulation Model benedikt schwab Technical University of Munich Schöller Chair in Technology and Innovation Management Prof. Dr. Joachim Henkel M. Sc. Lisa Teubner Technical University of Munich Chair of Computational Modeling and Simulation Prof. Dr.-Ing. André Borrmann Dr. rer. nat. Peter Kielar ABSTRACT Automated driving has the potential to disrupt the automotive in- dustry. Realizing this technology will involve various industries and will lead to the emergence of uniform approaches, which will be adopted by multiple stakeholders from different areas. This includes standardization areas, such as communication, digital mapping, and minimum quality requirements. The intention of this work is to systematically analyze the standard- ization dynamics in the areas relevant to automated driving. Further- more, the industry’s key actors are identified and their positioning regarding standards organizations and consortia is reviewed. Hereby, the specification of tests to ensure properly functioning systems con- stitutes one of the most essential standardization topics. The verifica- tion of automated driving systems will include standardized scenario simulations, which model rural and urban traffic situations. Since particularly pedestrians are exposed to malfunctioning auto- mated driving systems, a realistic simulation of pedestrian behavior is crucial for the testing of such systems. Therefore, the second part of this work aims at the implementation of a model, which describes pedestrian behavior when interacting with cars in urban crossing sce- narios. The driving simulator Virtual Test Drive and the pedestrian simulation framework MomenTUMv2 are used for this purpose. ZUSAMMENFASSUNG Automatisiertes Fahren hat das Potential die Automobilindustrie dis- ruptiv zu verändern. Die Realisierung dieser Technologie involviert unterschiedliche Industrien und wird zu einer Entwicklung von ein- heitlichen Lösungsansätzen führen, die von zahlreichen Stakeholdern aus unterschiedlichen Bereichen übernommen werden. Dazu gehören Standardisierungsbereiche wie Kommunikation, digitale Kartierung und qualitative Mindestanforderungen. Ziel dieser Arbeit ist es, die Standardisierungsdynamiken in den für das automatisierte Fahren relevanten Bereichen systematisch zu analysieren. Darüber hinaus werden die Schlüsselakteure der Bran- che identifiziert und ihre Positionierung in Bezug auf Standardisie- rungsorganisationen und Konsortien inspiziert. Eines der wichtigs- ten Standardisierungsthemen ist dabei die Spezifikation von Tests zur Gewährleistung ordnungsgemäß funktionierender Systeme. Die Funktionalität automatisierter Fahrsysteme wird durch die Simulati- on von standardisierten Szenarien verifiziert werden, die ländliche und städtische Verkehrssituationen abbilden. Da insbesondere Fußgänger der Fehlfunktion von automatisierten Fahrsystemen ausgesetzt sind, ist eine realistische Simulation des Fußgängerverhaltens von entscheidender Bedeutung für das Testen solcher Systeme. Der zweite Teil dieser Arbeit zielt daher auf die Im- plementierung eines Modells ab, welches Fußgängerverhalten bei der Interaktion mit Autos in städtischen Kreuzungsszenarien beschreibt. Hierfür werden der Fahrzeugsimulator Virtual Test Drive und das Fuß- gängersimulationsframework MomenTUMv2 verwendet. ACKNOWLEDGMENTS Lisa Teubner, Dr. Peter Kielar, Christoph Sippl, Prof. Dr. Joachim Henkel, Prof. Dr. André Borrmann. Sarah, Mike. My parents, my sister, Lisa. I wish to express my sincere gratitude to you. CONTENTS 1 introduction1 1.1 Objectives . 2 1.2 Outline . 2 i standard-setting dynamics 2 standardization theory5 2.1 Types of Standards . 6 2.1.1 Quality Standards . 7 2.1.2 Compatibility Standards . 8 2.2 Market Extent . 8 2.3 Standardization Processes . 10 2.3.1 Unsponsored Standards . 11 2.3.2 Sponsored Standards . 13 2.3.3 Voluntary Standards . 15 2.3.4 Mandated Standards . 16 2.4 Control and Positioning . 16 2.5 Product Scope . 17 3 compatibility standardization dynamics 19 3.1 Terminilogy . 19 3.2 Sensors and Actuators . 21 3.3 Car2X Communication . 24 3.3.1 Automated Driving Use Cases . 24 3.3.2 IEEE 802.11p / ITS-G5 ........................... 25 3.3.3 Mobile Broadband . 27 3.4 Navigation and Mapping . 30 4 quality standardization dynamics 33 4.1 Technical Challenges . 33 4.2 Germany . 34 4.3 European Union . 35 4.4 EU-US-Japan Trilateral Cooperation . 36 ii pedestrian behavior model 5 literature review 41 5.1 Scales of Modelling . 41 5.2 Pedestrian Behavioral Levels . 42 5.3 Related Models . 42 5.3.1 Feng et al. 2013 ............................... 42 5.3.2 Hashimoto et al. 2016 ........................... 43 5.3.3 Anvari et al. 2015 .............................. 44 5.3.4 Zeng et al. 2014, 2017 ........................... 45 5.3.5 Overview of Models . 46 6 pedestrian behaviour model 47 x contents 6.1 Strategic Level . 47 6.2 Tactical Level . 48 6.3 Operational Level . 49 6.3.1 Driving Force . 50 6.3.2 Conflicting Pedestrian . 50 6.3.3 Conflicting Car . 52 6.3.4 Crosswalk Boundary . 53 7 implementation 55 7.1 Simulation Setup . 55 7.2 Virtual Test Drive . 56 7.3 Intermediary Process . 57 7.4 MomenTUMv2 ................................... 58 7.4.1 Car Manager . 60 7.4.2 Additional Areas . 60 7.4.3 Geometry . 61 7.4.4 Visualization . 62 7.4.5 Tactical Model . 62 7.4.6 Operational Model . 63 8 dataset 65 8.1 Ko-PER Intersection Dataset . 65 8.2 Dataset Preparation . 66 iii concluding discussion 9 discussion 71 9.1 Pedestrian Simulation Model . 71 9.1.1 Tactical Model . 71 9.1.2 Operational Model . 74 9.2 Standardization Potentials . 79 10 conclusion and outlook 83 iv appendix a companies per industry 87 a.1 Automotive . 87 a.2 Telecommunication . 89 a.3 Navigation and Mapping . 90 b model parameters 91 bibliography 93 LISTOFFIGURES Figure 2.1 Statistics on the Standards War Betamax–VHS ............. 5 Figure 2.2 Network Effect . 10 Figure 2.3 Standards Reinforcement Mechanism . 13 Figure 3.1 Replacing the Human Driver with Technology . 19 Figure 3.2 Protocol Stack of DSRC and C-ITS .................... 26 Figure 3.3 Building Blocks of the NDS Specification . 32 Figure 4.1 Generic V Model . 34 Figure 4.2 Central Issues of the PEGASUS Project . 35 Figure 4.3 Organization Chart of the Trilateral Cooperation . 38 Figure 5.1 Distributed Simulation Setup . 41 Figure 5.2 Pedestrians on a Square Lattice . 43 Figure 5.3 DBN of the Pedestrian Behavior Model by Hashimoto et al. 43 Figure 5.4 Social Force Model for Shared Spaces by Anvari et al. 44 Figure 5.5 Signalized Crosswalk of Zeng et al.’s Model . 45 Figure 6.1 Exemplary Intersection with Origin and Destination Areas . 47 Figure 6.2 Exemplary Pedestrian Crossing with Navigation Graph . 48 Figure 6.3 Potentially Colliding Pedestrians i and j ................ 50 Figure 6.4 Tangential Force Exerted from Pedestrian j on Pedestrian i ..... 51 Figure 6.5 Angle ji,j between Pedestrian i and j .................. 52 Figure 6.6 Car k Exerting Repulsive Forces on Pedestrian i and j ........ 53 Figure 6.7 Social Forces of Pedestrian i and j on the Crosswalk . 53 Figure 7.1 Distributed Simulation Setup . 55 Figure 7.2 Road Network and Scenario Creation with VTD ........... 56 Figure 7.3 Structure of MomenTUMv2 ........................ 59 Figure 7.4 Layers and Layer Groups of AutoCAD ................. 60 Figure 7.5 Possible Intersections of Two Rays . 61 #„ Figure 7.6 Ellipse with Pedestrian at Point x and Normal Vector n ....... 62 Figure 7.7 Segment Splitting . 62 Figure 7.8 3D View of MomenTUMv2’s Visualization Tool . 63 Figure 8.1 Public Crossing in Aschaffenburg . 65 Figure 8.2 Ko-PER Intersection Drawn in AutoCAD . 66 Figure 8.3 Trajectories of the Ko-PER Dataset . 67 Figure 9.1 Trajectories of Pedestrians Simulated with ms = 0.2 . 72 Figure 9.2 Trajectories of Pedestrians Simulated with ms = 0.3 . 73 Figure 9.3 Ko-PER Sequence 1b........................... 74 Figure 9.4 Simulated Pedestrians with Different Pedestrian Interaction Forces 75 Figure 9.5 Pedestrians Before Collision . 75 Figure 9.6 Pedestrian Trajectories of the Ko-PER Dataset . 76 Figure 9.7 Trajectories of Simulated Pedestrians Crossing the Street . 76 Figure 9.8 Strength of Social Forces Exerted by a Crosswalk on a Pedestrian . 77 Figure 9.9 Pedestrian Crossing without Cars Located Nearby . 77 Figure 9.10 Repulsive Effect of a Starting Car . 78 Figure 9.11 Strength of Social Forces Exerted on a Pedestrian by a Car . 79 Figure 9.12 Database Concept for Testing Highly Automated Driving Systems 80 LISTOFTABLES Table 2.1 Types of Standards . 7 Table 2.2 Standard Properties Regarding Market Extent . 9 Table 2.3 Standardization Processes . 11 Table 2.4 Control and Positioning Regarding Standards . 17 Table 2.5 Strategic Positioning in the Standards War Betamax–VHS ...... 17 Table 2.6 Standard Properties Regarding Product Scope . 18 Table 3.1 Organizations Involved in Defining and Standardizing the Termi- nology . 20 Table 3.2 Automated Driving Levels . 21 Table 3.3 Protocols for Inner Car Communication . 22 Table 3.4 Promoting and Adopting Members of the OPEN Alliance SIG .... 23 Table 3.5 Firm Members of the Working Group IEEE P802.11 and the Car-2- Car Communication Consortium . 26 Table 3.6 SDOs cooperating within 3GPP.