Journal of Cave and Karst Studies Editor Malcolm S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GFS Fungal Remains from Late Neogene Deposits at the Gray
GFS Mycosphere 9(5): 1014–1024 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/5/5 Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA Worobiec G1, Worobiec E1 and Liu YC2 1 W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland 2 Department of Biological Sciences and Office of Research & Sponsored Projects, California State University, Fullerton, CA 92831, U.S.A. Worobiec G, Worobiec E, Liu YC 2018 – Fungal remains from late Neogene deposits at the Gray Fossil Site, Tennessee, USA. Mycosphere 9(5), 1014–1024, Doi 10.5943/mycosphere/9/5/5 Abstract Interesting fungal remains were encountered during palynological investigation of the Neogene deposits at the Gray Fossil Site, Washington County, Tennessee, USA. Both Cephalothecoidomyces neogenicus and Trichothyrites cf. padappakarensis are new for the Neogene of North America, while remains of cephalothecoid fungus Cephalothecoidomyces neogenicus G. Worobiec, Neumann & E. Worobiec, fragments of mantle tissue of mycorrhizal Cenococcum and sporocarp of epiphyllous Trichothyrites cf. padappakarensis (Jain & Gupta) Kalgutkar & Jansonius were reported. Remains of mantle tissue of Cenococcum for the fossil state are reported for the first time. The presence of Cephalothecoidomyces, Trichothyrites, and other fungal remains previously reported from the Gray Fossil Site suggest warm and humid palaeoclimatic conditions in the southeast USA during the late Neogene, which is in accordance with data previously obtained from other palaeontological analyses at the Gray Fossil Site. Key words – Cephalothecoid fungus – Epiphyllous fungus – Miocene/Pliocene – Mycorrhizal fungus – North America – palaeoecology – taxonomy Introduction Fungal organic remains, usually fungal spores and dispersed sporocarps, are frequently found in a routine palynological investigation (Elsik 1996). -
The Natural History, Distribution, and Phenotypic Variation of Cave-Dwelling Spring Salamanders, Gyrinophilus Spp
Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2005 The aN tural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia Michael Steven Osbourn Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Osbourn, Michael Steven, "The aN tural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia" (2005). Theses, Dissertations and Capstones. Paper 735. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. The Natural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia. Thesis submitted to The Graduate College of Marshall University In partial fulfillment of the Requirements for the degree of Master of Science Biological Sciences By Michael Steven Osbourn Thomas K. Pauley, Committee Chairperson Daniel K. Evans, PhD Thomas G. Jones, PhD Marshall University May 2005 Abstract The Natural History, Distribution, and Phenotypic Variation of Cave-dwelling Spring Salamanders, Gyrinophilus spp. Cope (Plethodontidae), in West Virginia. Michael S. Osbourn There are over 4000 documented caves in West Virginia, potentially providing refuge and habitat for a diversity of amphibians and reptiles. Spring Salamanders, Gyrinophilus porphyriticus, are among the most frequently encountered amphibians in caves. Surveys of 25 caves provided expanded distribution records and insight into ecology and diet of G. -
Meramec River Watershed Demonstration Project
MERAMEC RIVER WATERSHED DEMONSTRATION PROJECT Funded by: U.S. Environmental Protection Agency prepared by: Todd J. Blanc Fisheries Biologist Missouri Department of Conservation Sullivan, Missouri and Mark Caldwell and Michelle Hawks Fisheries GIS Specialist and GIS Analyst Missouri Department of Conservation Columbia, Missouri November 1998 Contributors include: Andrew Austin, Ronald Burke, George Kromrey, Kevin Meneau, Michael Smith, John Stanovick, Richard Wehnes Reviewers and other contributors include: Sue Bruenderman, Kenda Flores, Marlyn Miller, Robert Pulliam, Lynn Schrader, William Turner, Kevin Richards, Matt Winston For additional information contact East Central Regional Fisheries Staff P.O. Box 248 Sullivan, MO 63080 EXECUTIVE SUMMARY Project Overview The overall purpose of the Meramec River Watershed Demonstration Project is to bring together relevant information about the Meramec River basin and evaluate the status of the stream, watershed, and wetland resource base. The project has three primary objectives, which have been met. The objectives are: 1) Prepare an inventory of the Meramec River basin to provide background information about past and present conditions. 2) Facilitate the reduction of riparian wetland losses through identification of priority areas for protection and management. 3) Identify potential partners and programs to assist citizens in selecting approaches to the management of the Meramec River system. These objectives are dealt with in the following sections titled Inventory, Geographic Information Systems (GIS) Analyses, and Action Plan. Inventory The Meramec River basin is located in east central Missouri in Crawford, Dent, Franklin, Iron, Jefferson, Phelps, Reynolds, St. Louis, Texas, and Washington counties. Found in the northeast corner of the Ozark Highlands, the Meramec River and its tributaries drain 2,149 square miles. -
Missouri Master Naturalist a Summary of Program Impacts and Achievements During 2017
Missouri Master Naturalist A summary of program impacts and achievements during 2017 Robert A. Pierce II Syd Hime Extension Associate Professor Volunteer and Interpretive Programs Coordinator and State Wildlife Specialist Missouri Department of Conservation University of Missouri 1 “The mission of the Missouri Master Naturalist program is to engage Missourians in the stewardship of the state’s natural resources through science-based education and community service.” Introduction Program Objectives The Missouri Master Naturalist program results 1. Improve public understanding of natural from a partnership created in 2004 between the resource ecology and management by Missouri Department of Conservation (MDC) developing a pool of local knowledge that and University of Missouri Extension. These can be used to enhance and expand two organizations are the sponsors of the educational efforts within local communities program at the state level. Within MU Extension, the Missouri Master Naturalist 2. Enhance existing natural resources Program has the distinction of being recognized education and outreach activities by as a named and branded educational program. providing natural resources training at the The MU School of Natural Resources serves as local level, thereby developing a team of the academic home for the program. dedicated and informed volunteers The program is jointly administered by state 3. Develop a self-sufficient Missouri Master coordinators that represent the MDC and MU Naturalist volunteer network through the Extension. The state program coordinators Chapter-based program. provide leadership in conducting the overall program and facilitate the development of An increasing number of communities and training and chapter development with Chapter organizations across the state have relied on Advisors representing both organizations as these skilled volunteers to implement natural interest is generated within a local community. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
2016 St. Louis Region Southern Small River Accesses Area Plan Page 3
2016 St. Louis Region Southern Small River Accesses Area Plan Page 3 OVERVIEW Area Area Year Acreage County Division with River Number Acquired Maintenance & Administrative Responsibilities Allenton Access 6807 1969 9.8 St. Louis Forestry Meramec Campbell 8402 *1983 10.0 Crawford Forestry Meramec Bridge Access Chouteau Claim 7928 1979 15.0 Franklin Forestry Meramec, Access Bourbeuse Mammoth 6815 1968 4.75 Jefferson Forestry Big River Access Mill Rock 7604 1976 10.1 Franklin Forestry Bourbeuse Access Riverview 6904 1969 5.6 Crawford Forestry Meramec Access Sand Ford 7707 1977 30.9 Franklin Forestry Meramec Access Sappington 8401 *1983 10.0 Crawford Forestry Meramec Bridge Access Uhlemeyer 9407 1993, 12.3 Franklin Forestry Bourbeuse Access 1998 Wenkel Ford 8225 1982 5.4 Franklin Forestry Bourbeuse Access *Leased to the state of Missouri from the U.S. Army Corps of Engineers Statements of Primary Purpose: A. Strategic Direction St. Louis Region Southern Small River Accesses are managed by the Missouri Department of Conservation (the Department) to provide access to the Meramec, Bourbeuse and Big Rivers; protect stream bank integrity; and provide compatible public recreational opportunities. B. Desired Future Condition The desired future condition is a natural landscape that protects the natural resources present, while providing compatible recreational opportunities for the public. C. Federal Aid Statements • Riverview Access, or a portion thereof, was developed with Land and Water Conservation Fund dollars to provide land or facilities for public outdoor recreation. 2016 St. Louis Region Southern Small River Accesses Area Plan Page 4 • Allenton Access and Mammoth Access, or a portion thereof, were acquired with Land and Water Conservation Fund dollars to provide land or facilities for public outdoor recreation. -
The Political Appropriation of Caves in the Upper Belize Valley
APPROVAL PAGE FOR GRADUATE THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR DEGREE OF MASTER OF ARTS AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES BY Michael J. Mirro Candidate Anthropology Field of Concentration TITLE: The Political Appropriation of Caves in the Upper Belize Valley APPROVED: Dr. James E. Brady Faculty Member Signature Dr. Patricia Martz Faculty Member Signature Dr. Norman Klein Faculty Member Signature Dr. ChorSwang Ngin Department Chairperson Signature DATE___________________ THE POLITICAL APPROPRIATION OF CAVES IN THE UPPER BELIZE VALLEY A Thesis Presented to The Faculty of the Department of Anthropology California State University, Los Angeles In Partial Fulfillment Of the Requirements for the Degree Master of Arts By Michael J. Mirro December 2007 © 2007 Michael J. Mirro ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS First, I would like to thank Jaime Awe, of the Department of Archaeology in Belmopan, Belize for providing me with the research opportunities in Belize, and specifically, allowing me to co-direct research at Barton Creek Cave. Thank you Jaime for sending Vanessa and I to Actun Tunichil Muknal in the summer of 1996; that one trip changed my life forever. Thank you Dr. James Brady for guiding me through the process of completing the thesis and for you endless patience over the last four years. I appreciate all the time and effort above and beyond the call of duty that you invested in assisting me. I would specifically like to thank Reiko Ishihara and Christophe Helmke for teaching me the ins-and-outs of Maya ceramics and spending countless hours with me classifying sherds. Without your help, I would never have had enough data to write this thesis. -
New Records of Colubrids from the Late Hemphillian Gray Fossil Site of Northeastern Tennessee Derek J
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2016 New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee Derek J. Jurestovsky East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Geology Commons, and the Paleontology Commons Recommended Citation Jurestovsky, Derek J., "New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee" (2016). Electronic Theses and Dissertations. Paper 3030. https://dc.etsu.edu/etd/3030 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee A thesis presented to the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences by Derek Jurestovsky May 2016 Dr. Jim I. Mead, Chair Dr. Steven C. Wallace Dr. Blaine W. Schubert Keywords: Colubridae, Gray Fossil Site, Hemphillian, Miocene, Natricinae, Serpentes ABSTRACT New Records of Colubrids from the late Hemphillian Gray Fossil Site of Northeastern Tennessee by Derek Jurestovsky The Gray Fossil Site is a rich Hemphillian (North American Land Mammal Age) locality located in northeastern Tennessee which has produced tens-of-thousands of fossils of multiple taxa including hundreds of individual snake skeletal remains. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
Arrival Belize/ San Ignacio 5 Nights Options, Such As Actun Tunichil Muknal (Challenging, the Arrival Belize International Airport
water cave system in a canoe equipped with a powerful spotlight. While canoeing through the cave, see large and colorful formations, skeletal remains and other cultural artifacts left behind by the Maya centuries ago. BLD DAY FOUR – Lamanai Ruins & River Cruise Getting to Lamanai Ruins is half the fun! After a comfortable highway drive, board a riverboat at Tower Hill Bridge and head up the New River. The river is lined with hardwood trees, orchids and bromeliads, and you might see dainty wading birds called jacanas lightly walking on lily pads, while elusive crocodiles bask in the morning sunlight. At the entrance to the New River Lagoon, the ruins of Lamanai (Maya for "Submerged Crocodile") rise into view. Embark on a jungle hike to visit the Temple of the Mask, one of the tallest Mayan pyramids; the stucco mask of the Sun God "Kinich Ahau"; and the Temple of the Jaguar Masks. These impressive sites appear to materialize out of the rainforest amid the chatter of birds and the haunting call of the howler monkeys. BLD DAY FIVE – Dia libre / options Enjoy a day at your resort, shop, explore the adjacent ruins of Cahal Pech ($5), or select (additional fee) from popular DAY ONE – Arrival Belize/ San Ignacio 5 nights options, such as Actun Tunichil Muknal (challenging, the Arrival Belize International Airport. Your Interact ultimate jungle and Maya cave adventure), Caracol ruins, zip- Representative will greet you in the airport lobby. Transfer to lining, river rafting, or horseback riding. Fees vary from $85 to the Maya Heartland via the Hummingbird Highway. -
Late Miocene Tapirus(Mammalia
Bull. Fla. Mus. Nat. Hist. (2005) 45(4): 465-494 465 LATE MIOCENE TAPIRUS (MAMMALIA, PERISSODACTYLA) FROM FLORIDA, WITH DESCRIPTION OF A NEW SPECIES, TAPIRUS WEBBI Richard C. Hulbert Jr.1 Tapirus webbi n. sp. is a relatively large tapir from north-central Florida with a chronologic range of very late Clarendonian (Cl3) to very early Hemphillian (Hh1), or ca. 9.5 to 7.5 Ma. It is about the size of extant Tapirus indicus but with longer limbs. Tapirus webbi differs from Tapirus johnsoni (Cl3 of Nebraska) by its larger size, relatively shorter diastema, thicker nasal, and better developed transverse lophs on premolars. Tapirus webbi is more similar to Tapirus simpsoni from the late early Hemphillian (Hh2, ca. 7 Ma) of Nebraska, but differs in having narrower upper premolars and weaker transverse lophs on P1 and P2. Tapirus webbi differs from North American Plio-Pleistocene species such as Tapirus veroensis and Tapirus haysii in its polygonal (not triangu- lar) interparietal, spicular posterior lacrimal process, relatively narrow P2-M3, and lack of an extensive meatal diverticulum fossa on the dorsal surface of the nasal. In Florida, Hh2 Tapirus is known only from relatively incomplete specimens, but at least two species are represented, both of significantly smaller size than Tapirus webbi or Tapirus simpsoni. One appears to be the dwarf Tapirus polkensis (Olsen), previously known from the very late Hemphillian (Hh4) in Florida and the Hemphillian of Tennessee (referred specimens from Nebraska need to be reexamined). Previous interpretations that the age of T. polkensis is middle Miocene are incorrect; its chronologic range in Florida is Hh2 to Hh4 based on direct association with biochronologic indicator taxa such as Neohipparion eurystyle, Dinohippus mexicanus and Agriotherium schneideri. -
Outline of Chiquibul National Park Management Plan
ChiquibulChiquibul CaveCave SystemSystem ManagementManagement PlanPlan 20102010--20152015 Meerman & Moore 2009 Table of Contents Index 1 List of Figures 2 List of Tables 3 List of Boxes 3 Executive Summary 4 Acknowledgements 6 Acronyms 7 1. Introduction 1-1 1.1. Background and Context 1-1 1.2. Purpose and Scope of Management Plan 1-5 1.3. Delineation of the Chiquibul Cave System 1-7 2. Current Status 2-1 2.1. Location 2-1 2.2. Regional Context 2-3 2.3. National Context 2-4 2.3.1. Policy Framework 2-5 2.3.2. Legal and Administrative Framework 2-7 2.3.3. Socio-economic Context 2-9 2.4. Physical Environment of CCS 2-13 2.4.1. Climate 2-13 2.4.2. Hydrology 2-14 2.4.4. Geology 2-16 2.4.5. Soils 2-17 2.5. Biodiversity of CCS 2-17 2.5.1. Ecosystems 2-17 2.5.2. Flora 2-19 2.5.3. Fauna 2-20 2.5.4. Past and Present Research 2-21 2.6. Cultural and Socio-Economic Value of CCS 2-22 2.6.1. Community and Other Stakeholder Use 2-22 2.6.2. Archaeological Sites 2-23 2.6.3. Tourism and Recreation Use 2-24 2.6.4. Other Economic Use 2-25 2.6.5. Education Use 2-25 3. Analysis of Conservation & Cultural Targets and Threats 3-1 3.1. Conservation and Cultural Targets 3-1 Meerman-Moore 2009 - Management Plan Chiquibul Cave System | Index 1 3.2. Threats to Biodiversity and Cultural Resources 3-6 4.