Rapid and Predictable Evolution of Admixed Populations Between Two Drosophila Species Pairs

Total Page:16

File Type:pdf, Size:1020Kb

Rapid and Predictable Evolution of Admixed Populations Between Two Drosophila Species Pairs Genetics: Early Online, published on November 25, 2019 as 10.1534/genetics.119.302685 Rapid and predictable evolution of admixed populations between two Drosophila species pairs Daniel R. Matute1, Aaron A. Comeault2, Eric Earley1, Antonio Serrato-Capuchina1, David Peede1, Anaïs Monroy-Eklund1, Wen Huang3,4, Corbin D. Jones1, Trudy F. C. Mackay3,5, and Jerry A. Coyne6 1 2 1Biology Department, University of North Carolina, Chapel Hill, N.C. USA 3 2School of Natural Sciences, Bangor University, UK 4 3Program in Genetics and Department of Biological Science, North Carolina State 5 University, Raleigh, NC 27695-7614 6 6Ecology and Evolution, University of Chicago, Chicago IL 60637 7 8 4Current Address: Department of Animal Science, Michigan State University, East 9 Lansing, MI 48842 10 5Current Address: Center for Human Genetics and Department of Genetics and 11 Biochemistry, Clemson University, Self Regional Hall, 114 Gregor Mendel Circle, 12 Greenwood, SC 29646 13 14 ¶ Correspondence: 15 Biology Department, University of North Carolina, Chapel Hill, North Carolina 16 250 Bell Tower Drive, Genome Sciences Building 17 Chapel Hill, NC 18 27510, USA RUNNING TITLE: Admixed Drosophila species KEYWORDS Hybridization, Introgression, Reproductive isolation, Speciation 19 Copyright 2019. 20 ABSTRACT 21 22 The consequences of hybridization are varied, ranging from the origin of new lineages, 23 introgression of some genes between species, to the extinction of one of the hybridizing 24 species. We generated replicate admixed populations between two pairs of sister 25 species of Drosophila: D. simulans and D. mauritiana; and D. yakuba and D. santomea. 26 Each pair consisted of a continental species and an island endemic. The admixed 27 populations were maintained by random mating in discrete generations for over 20 28 generations. We assessed morphological, behavioral, and fitness-related traits from 29 each replicate population periodically, and sequenced genomic DNA from the 30 populations at generation 20. For both pairs of species, species-specific traits and their 31 genomes regressed to those of the continental species. A few alleles from the island 32 species persisted, but they tended to be proportionally rare among all sites in the 33 genome and were rarely fixed within the populations. This paucity of alleles from the 34 island species was particularly pronounced on the X-chromosome. These results 35 indicate that nearly all foreign genes were quickly eliminated after hybridization and that 36 selection against the minor species genome might be similar across experimental 37 replicates. 38 39 INTRODUCTION 40 41 Hybridization between species in nature is more common than biologists suspected a 42 few decades ago. At least 10% of animal species can produce progeny when crossed 43 with individuals from a different species (Mallet 2005); the proportion seems to be 44 higher in plants (Stebbins 1950). The fitness outcomes of hybridization and admixture 45 are varied (Taylor and Larson 2019). Research on hybrid zones has revealed the extent 46 of gene exchange in nature and in some cases has identified alleles able to cross 47 species boundaries (reviewed in (Taylor et al. 2015; Moore 2015; Gompert et al. 2017). 48 Alleles that reside on sex chromosomes, however, are less likely to be transferred from 49 one species to another (Payseur et al. 2004, Macholan et al. 2007, Carneiro et al. 50 2010, 2014; Garrigan et al. 2012; Turissini and Matute 2017), while mtDNA seems to be 51 easily transferred across species boundaries (Bachtrog et al. 2006; Wallis et al. 2017). 52 A question that remains open is what outcome is expected when two species engage 53 not in sporadic gene exchange, but rather form an admixed population carrying many 54 genes from each of the two parental species. 55 Mass hybridization has three possible outcomes in terms of species persistence. 56 The first is that the two genomes could sort themselves into their initial parental 57 arrangements after hybridization; this will occur in instances where admixed genomes 58 are unfit and penalized by selection (Rosenblum et al. 2012). A second possibility is that 59 genomes can exist as a mosaic, with both genes from both parental species ancestries 60 persisting in a stable manner with roughly equivalent contributions from the parental 61 species (Schumer et al. 2016). A third possibility is that after admixture occurs, a few 62 alleles from one of the parental species can remain in a genetic background that 63 evolves back to one largely resembling a single parental species. In this last case, we 64 refer to the species that contributes the majority of alleles in the admixed genome as the 65 ‘major species’, and the one that contributes the minority of admixture as the ‘minor 66 species.’ 67 These scenarios have important implications for the way we understand genome 68 evolution and the general outcome of hybridization in nature. For example, under a 69 scenario where genomes do not tolerate introgression and behave as coadapted units, 70 we would expect admixed genotypes to be broadly selected against and the genetic 71 composition of hybrid populations to evolve towards that of a single parental species. 72 On the other hand, if the genomes of two species are largely compatible and can be 73 readily mixed (Mallet et al. 2016), potentially providing benefits to admixed individuals, 74 populations of hybrids would be expected to retain ancestry of both species and in 75 some instances even become isolated species themselves (i.e., hybrid speciation, 76 Mallet 2007, Chapman and Burke 2007, Mavarez and Linares 2008, Buerkle et al. 2000, 77 Schumer et al. 2013, Comeault and Matute 2018). These two outcomes are not 78 mutually exclusive, and in some cases large portions of the genome may be resistant to 79 admixture and introgression while other portions are free to move between species 80 boundaries, either as a result of being selectively neutral or selectively favored 81 (Schumer et al. 2014; Juric et al. 2016; Muirhead and Presgraves 2016). Both outcomes 82 have been observed. Hybridization can lead to purging of one of the genomes in which 83 the admixed individuals carry only a small proportion of one of the parental species 84 (Garrigan et al. 2012; Turissini and Matute 2017; Schrider et al. 2018), as well as to the 85 existence of stable and balanced mosaic genomes (Rieseberg et al. 2003; Fontaine et 86 al. 2015; Schumer et al. 2016). An aspect that remains largely unknown is whether 87 these outcomes are deterministic in repeated instances of hybridization. Evaluating this 88 hypothesis in nature is challenging because it requires identifying sets of species pairs 89 that show parallel instances of hybridization (e.g., parallel hybrid zones). 90 Alternatively, one can create fully admixed experimental populations in the lab, 91 where we can control the magnitude and nature of admixture, and directly observe the 92 outcome of hybridization between species. Using this experimental approach, we can 93 follow the evolution of phenotypes and genotypes after hybridization and determining if 94 certain parental traits or alleles are selectively favored or whether they can persist in a 95 fully admixed population. Additionally, if genomes persist as mosaics, this approach 96 may reveal whether independent instances of hybridization lead to the same genetic 97 mosaic in the genomes of admixed individuals. This approach has the advantage of 98 providing primary evidence of the amount of admixture that two genomes can tolerate 99 while also controlling for important features such as the timing of admixture and the 100 relative contribution of the parental species to the population of hybrids. Such an 101 experiment, therefore, has some advantages over studying admixture in natural 102 populations: aspects of demographic history can be controlled (and known) in an 103 experimental context. 104 Here we report the creation of replicate interspecific admixed populations using 105 two species pairs of Drosophila, followed by measuring the fate of multiple interspecific 106 trait differences in morphology and behavior as well as (via DNA sequencing) the 107 genetic composition of replicate populations of hybrids after 20 generations of 108 independent evolution. Each of the two species pairs was represented by a 109 continentally distributed species and a closely related island endemic. The island 110 parental species have experienced smaller long-term effective population sizes and 111 more “specialized” ecologies than the species distributed across the continent. The first 112 pair of species was D. simulans and D. mauritiana. D. simulans is widespread 113 throughout sub-Saharan Africa and has become an invasive species in much of the 114 world (Begun et al. 2007; Kofler et al. 2015). The species is presumed to have 115 originated either in East Africa or in Madagascar and populations from these regions 116 have the largest diversity of the whole range (Dean and Ballard 2004, Lachaise and 117 Silvain 2004, Kopp et al. 2006). D. mauritiana, on the other hand, is endemic to the 118 Indian Ocean island of Mauritius (David 1974). These two species are homosequential 119 in chromosome banding pattern: they do not differ in chromosome number or have 120 large-scale rearrangements that would impede recombination (Lemeunier and 121 Ashburner, 1976). The pair is thought to have diverged between 500 and 250 Kya 122 (Ks¾synonymous divergence¾ = 0.05) (Nunes et al. 2010; Garrigan et al. 2012). 123 Multiple barriers to gene flow separate the two species, including strong intraspecific 124 mating preferences and sterility of the hybrid males (Price et al. 2001; Lachaise et al. 125 2018). They also show multiple morphological and physiological differences (Coyne 126 1989; Laurie et al. 1997; Price et al. 2001). Even though no instances of natural 127 hybridization have been reported between these species, there is evidence of extensive 128 gene exchange in the recent past (Garrigan et al.
Recommended publications
  • Polymorphism and Divergence of Novel Gene Expression Patterns in Drosophila Melanogaster
    HIGHLIGHTED ARTICLE | INVESTIGATION Polymorphism and Divergence of Novel Gene Expression Patterns in Drosophila melanogaster Julie M. Cridland,1 Alex C. Majane, Hayley K. Sheehy, and David J. Begun Department of Evolution and Ecology, University of California, Davis, California 95616 ABSTRACT Transcriptomes may evolve by multiple mechanisms, including the evolution of novel genes, the evolution of transcript abundance, and the evolution of cell, tissue, or organ expression patterns. Here, we focus on the last of these mechanisms in an investigation of tissue and organ shifts in gene expression in Drosophila melanogaster. In contrast to most investigations of expression evolution, we seek to provide a framework for understanding the mechanisms of novel expression patterns on a short population genetic timescale. To do so, we generated population samples of D. melanogaster transcriptomes from five tissues: accessory gland, testis, larval salivary gland, female head, and first-instar larva. We combined these data with comparable data from two outgroups to characterize gains and losses of expression, both polymorphic and fixed, in D. melanogaster. We observed a large number of gain- or loss-of-expression phenotypes, most of which were polymorphic within D. melanogaster. Several polymorphic, novel expression phenotypes were strongly influenced by segregating cis-acting variants. In support of previous literature on the evolution of novelties functioning in male reproduction, we observed many more novel expression phenotypes in the testis and accessory gland than in other tissues. Additionally, genes showing novel expression phenotypes tend to exhibit greater tissue-specific expression. Finally, in addition to qualitatively novel expression phenotypes, we identified genes exhibiting major quantitative expression divergence in the D.
    [Show full text]
  • Wolbachia in the Drosophila Yakuba Complex: Pervasive Frequency Variation and Weak Cytoplasmic Incompatibility, but No Apparent Effect on Reproductive Isolation
    | INVESTIGATION Wolbachia in the Drosophila yakuba Complex: Pervasive Frequency Variation and Weak Cytoplasmic Incompatibility, but No Apparent Effect on Reproductive Isolation Brandon S. Cooper,*,1 Paul S. Ginsberg,* Michael Turelli,* and Daniel R. Matute† *Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California 95616 and †Biology Department, University of North Carolina, Chapel Hill, North Carolina 27510 ORCID IDs: 0000-0002-8269-7731 (B.S.C.); 0000-0003-1188-9856 (M.T.); 0000-0002-7597-602X (D.R.M.) ABSTRACT Three hybridizing species—the clade [(Drosophila yakuba, D. santomea), D. teissieri]—comprise the yakuba complex in the D. melanogaster subgroup. Their ranges overlap on Bioko and São Tomé, islands off west Africa. All three species are infected with Wolbachia—maternally inherited, endosymbiotic bacteria, best known for manipulating host reproduction to favor infected females. Previous analyses reported no cytoplasmic incompatibility (CI) in these species. However, we discovered that Wolbachia from each species cause intraspecific and interspecific CI. In D. teissieri, analyses of F1 and backcross genotypes show that both host genotype and Wolbachia variation modulate CI intensity. Wolbachia-infected females seem largely protected from intraspecific and interspecific CI, irrespective of Wolbachia and host genotypes. Wolbachia do not affect host mating behavior or female fecundity, within or between species. The latter suggests little apparent effect of Wolbachia on premating or gametic reproductive isolation (RI) between host species. In nature, Wolbachia frequencies varied spatially for D. yakuba in 2009, with 76% (N = 155) infected on São Tomé, and only 3% (N = 36) infected on Bioko; frequencies also varied temporally in D.
    [Show full text]
  • A Phylogenetic Study of the Family Tephritidae (Insecta: Diptera) Using a Mitochondrial DNA Sequence
    Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 439–443 A phylogenetic study of the family Tephritidae (Insecta: Diptera) using a mitochondrial DNA sequence P. Fernández, D. Segura, C. Callejas & M.D. Ochando* Departamento de Genética, Facultad de Ciencias Biológicas, Universidad Complutense, 28040 – Madrid, Spain Achievements in tephritid taxonomy have greatly contributed to both basic research and pest management programmes. However, despite the large amount of taxonomic data available, the higher classification of the family Tephritidae is still a matter of debate. A molecular approach could help to provide a more accurate classification. A molecular study was therefore undertaken to gain insight into the phylogenetic relationships within the family Tephritidae. A DNA region of the mitochondrial cytochrome oxidase II gene was compared in species representing six genera of the family, namely Ceratitis, Rhagoletis, Dacus, Bactrocera, Anastrepha and Toxotrypana. A dendrogram was constructed using the neighbour-joining method with Liriomyza huidobrensis and Drosophila yakuba as outgroups. Two main clusters were obtained in the tree, the first grouping being the Ceratitis species, C. capitata, C. rosa, and C. cosyra, and the second showing two main branches, one for Dacus, Bactrocera and Rhagoletis, and the other for Anastrepha and Toxotrypana. The results are discussed in relation to published phylogenies. INTRODUCTION a better understanding of the phylogenetic rela- Among the most devastating of agricultural tionships within the Tephritidae family (Han & pests, the family Tephritidae, commonly known as McPheron 1994, 1997, 2001; Malacrida et al. 1996; fruit flies, includes more than 4000 species in McPheron & Han 1997; Smith & Bush 1997; some 500 genera distributed all around the world Morrow et al.
    [Show full text]
  • Comparative Transcriptomics Between Drosophila Mojavensis and D
    www.nature.com/scientificreports OPEN Comparative transcriptomics between Drosophila mojavensis and D. arizonae reveals transgressive gene expression and underexpression of spermatogenesis‑related genes in hybrid testes Cecilia A. Banho1,2, Vincent Mérel2, Thiago Y. K. Oliveira3, Claudia M. A. Carareto1 & Cristina Vieira2* Interspecifc hybridization is a stressful condition that can lead to sterility and/or inviability through improper gene regulation in Drosophila species with a high divergence time. However, the extent of these abnormalities in hybrids of recently diverging species is not well known. Some studies have shown that in Drosophila, the mechanisms of postzygotic isolation may evolve more rapidly in males than in females and that the degree of viability and sterility is associated with the genetic distance between species. Here, we used transcriptomic comparisons between two Drosophila mojavensis subspecies and D. arizonae (repleta group, Drosophila) and identifed greater diferential gene expression in testes than in ovaries. We tested the hypothesis that the severity of the interspecies hybrid phenotype is associated with the degree of gene misregulation. We showed limited gene misregulation in fertile females and an increase in the amount of misregulation in males with more severe sterile phenotypes (motile vs. amotile sperm). In addition, for these hybrids, we identifed candidate genes that were mostly associated with spermatogenesis dysfunction. Speciation is a complex process resulting from the divergence of two populations from an ancestral lineage by reproductive barriers capable of preventing gene fow 1,2. Among these barriers, postzygotic isolation mechanisms contribute to hybrid incompatibility, and their consequences can be observed by the presence of two main traits, hybrid sterility and/or hybrid inviability, which can evolve at diferent rates.
    [Show full text]
  • Hybridization Occurs Between Drosophila Simulans and D
    doi: 10.1111/jeb.12391 Hybridization occurs between Drosophila simulans and D. sechellia in the Seychelles archipelago D. R. MATUTE* & J. F. AYROLES†‡ *Department of Human Genetics, University of Chicago, Chicago, IL, USA †Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA ‡Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA Keywords: Abstract adaptation; Drosophila simulans and D. sechellia are sister species that serve as a model to Drosophila; study the evolution of reproductive isolation. While D. simulans is a human reproductive isolation; commensal that has spread all over the world, D. sechellia is restricted to the speciation. Seychelles archipelago and is found to breed exclusively on the toxic fruit of Morinda citrifolia. We surveyed the relative frequency of males from these two species in a variety of substrates found on five islands of the Seychelles archipelago. We sampled different fruits and found that putative D. simulans can be found in a variety of substrates, including, surprisingly, M. citrifolia. Putative D. sechellia was found preferentially on M. citrifolia fruits, but a small proportion was found in other substrates. Our survey also shows the existence of putative hybrid males in areas where D. simulans is present in Seychelles. The results from this field survey support the hypothesis of cur- rent interbreeding between these species in the central islands of Seychelles and open the possibility for fine measurements of admixture between these two Drosophila species to be made. interspecific gene flow. In this case, it is likely the two Introduction populations will eventually fuse into a single species.
    [Show full text]
  • Large Scale Genome Reconstructions Illuminate Wolbachia Evolution
    ARTICLE https://doi.org/10.1038/s41467-020-19016-0 OPEN Large scale genome reconstructions illuminate Wolbachia evolution ✉ Matthias Scholz 1,2, Davide Albanese 1, Kieran Tuohy 1, Claudio Donati1, Nicola Segata 2 & ✉ Omar Rota-Stabelli 1,3 Wolbachia is an iconic example of a successful intracellular bacterium. Despite its importance as a manipulator of invertebrate biology, its evolutionary dynamics have been poorly studied 1234567890():,; from a genomic viewpoint. To expand the number of Wolbachia genomes, we screen over 30,000 publicly available shotgun DNA sequencing samples from 500 hosts. By assembling over 1000 Wolbachia genomes, we provide a substantial increase in host representation. Our phylogenies based on both core-genome and gene content provide a robust reference for future studies, support new strains in model organisms, and reveal recent horizontal transfers amongst distantly related hosts. We find various instances of gene function gains and losses in different super-groups and in cytoplasmic incompatibility inducing strains. Our Wolbachia- host co-phylogenies indicate that horizontal transmission is widespread at the host intras- pecific level and that there is no support for a general Wolbachia-mitochondrial synchronous divergence. 1 Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy. 2 Department CIBIO, University of Trento, Trento, Italy. ✉ 3Present address: Centre Agriculture Food Environment (C3A), University of Trento, Trento, Italy. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2020) 11:5235 | https://doi.org/10.1038/s41467-020-19016-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19016-0 ature is filled with exemplar cases of symbiotic interaction based on genomic data have found no clear evidence of intras- between bacteria and multicellular eukaryotes.
    [Show full text]
  • Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade
    A peer-reviewed open-access journal ZooKeys 540: 1–3 (2015) Editorial 1 doi: 10.3897/zookeys.540.6506 EDITORIAL http://zookeys.pensoft.net Launched to accelerate biodiversity research Editorial Marc De Meyer1, Anthony R. Clarke2, M. Teresa Vera3,4, Jorge Hendrichs5 1 Royal Museum for Central Africa, Tervuren, Belgium 2 Queensland University of Technology, Brisbane, Au- stralia 3 Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad National de Tu- cumán (UNT), San Miguel de Tucumán, Argentina 4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 5 Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International, Centre, Vienna, Austria Corresponding author: Marc De Meyer ([email protected]) Received 8 September 2015 | Accepted 10 September 2015 | Published 26 November 2015 http://zoobank.org/ Citation: De Meyer M, Clarke AR, Vera MT, Hendrichs J (2015) Editorial. In: De Meyer M, Clarke AR, Vera MT, Hendrichs J (Eds) Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade. ZooKeys 540: 1–3. doi: 10.3897/zookeys.540.6506 Tephritid fruit flies (Diptera: Tephritidae) are considered by far the most important group of horticultural pests worldwide. Female fruit flies lay eggs directly into ripening fruit, where the maggots feed causing fruit loss. Each and every continent is plagued by a number of fruit fly pests, both indigenous as well as invasive ones, causing tremendous economic losses. In addition to the direct losses through damage, they can negatively impact commodity trade through restrictions to market access. The quarantine and regulatory controls put in place to manage them are expensive, while the on-farm control costs and loss of crop affect the general well-being of growers.
    [Show full text]
  • Gene Flow Between <I>Drosophila Yakuba</I>
    ORIGINAL ARTICLE doi:10.1111/evo.12718 Gene flow between Drosophila yakuba and Drosophila santomea in subunit V of cytochrome c oxidase: A potential case of cytonuclear cointrogression Emily A. Beck,1 Aaron C. Thompson,2 Joel Sharbrough,2 Evgeny Brud,2 and Ana Llopart1,2,3 1Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa 52242 2The Department of Biology, The University of Iowa, Iowa City, IA 52242 3E-mail: [email protected] Received January 12, 2014 Accepted June 16, 2015 Introgression is the effective exchange of genetic information between species through natural hybridization. Previous ge- netic analyses of the Drosophila yakuba—D. santomea hybrid zone showed that the mitochondrial genome of D. yakuba had introgressed into D. santomea and completely replaced its native form. Since mitochondrial proteins work intimately with nuclear- encoded proteins in the oxidative phosphorylation (OXPHOS) pathway, we hypothesized that some nuclear genes in OXPHOS coin- trogressed along with the mitochondrial genome. We analyzed nucleotide variation in the 12 nuclear genes that form cytochrome c oxidase (COX) in 33 Drosophila lines. COX is an OXPHOS enzyme composed of both nuclear- and mitochondrial-encoded proteins and shows evidence of cytonuclear coadaptation in some species. Using maximum-likelihood methods, we detected significant gene flow from D. yakuba to D. santomea for the entire COX complex. Interestingly, the signal of introgression is concentrated in the three nuclear genes composing subunit V, which shows population migration rates significantly greater than the background level of introgression in these species. The detection of introgression in three proteins that work together, interact directly with the mitochondrial-encoded core, and are critical for early COX assembly suggests this could be a case of cytonuclear cointrogression.
    [Show full text]
  • Morphological and Molecular Taxonomy of Dendrolimus Sibiricus Chetverikov Stat.Rev
    © Entomologica Fennica. 13 June 2008 Morphological and molecular taxonomy of Dendrolimus sibiricus Chetverikov stat.rev. and allied lappet moths (Lepidoptera: Lasiocampidae), with description of a new species Kauri Mikkola & Gunilla Ståhls Mikkola, K. & Ståhls, G. 2008: Morphological and molecular taxonomy of Den- drolimus sibiricus Chetverikov stat.rev. and allied lappet moths (Lepidoptera: Lasiocampidae), with description of a new species. — Entomol. Fennica 19: 65– 85. The populations of the well-known forest pest, Dendrolimus sibiricus Chet- verikov, 1908 stat.rev., were sampled in the European foothills of the Ural Moun- tains, Russia. D. sibiricus is a species distinct from the Japanese taxon D. supe- rans (Butler, 1877). Another taxon from the Southern Urals, taxonomically close to D. pini (Linnaeus), is described here as D. kilmez sp.n. The synthetic female pheromones prepared for D. pini and D. sibiricus attracted equally well all three taxa present, and thus cannot be used to identify these species. The Ural popula- tions of D. sibiricus show differences in external appearance, and as already in the 1840s Eversmann indicated that the species had caused local forest damage, D. sibiricus must be a long-established species in the Ural area. Thus, natural spreading westward of the pest is not to be expected. The five Dendrolimus spe- cies of the northern Palaearctic and the male genitalia are illustrated, and the dis- tinguishing characters are listed. Two Matsumura lectotypes are designated. K. Mikkola, Finnish Museum of Natural History, P.O. Box 17, FI-00014 Univer- sity of Helsinki, Finland; E-mail: [email protected] G. Ståhls, Finnish Museum of Natural History, P.O.Box 17, FI-00014 University of Helsinki, Finland; E-mail: [email protected] Received 8 January 2008, accepted 26 April 2008 1.
    [Show full text]
  • Phylogenetic Incongruence in the Drosophila Melanogaster Species Group
    Molecular Phylogenetics and Evolution 43 (2007) 1138–1150 www.elsevier.com/locate/ympev Phylogenetic incongruence in the Drosophila melanogaster species group Alex Wong *, Jeffrey D. Jensen, John E. Pool, Charles F. Aquadro Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA Received 15 June 2006; revised 18 August 2006; accepted 1 September 2006 Available online 9 September 2006 Abstract Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) the node joining the Drosophila erecta–Drosophila orena, Drosophila mel- anogaster–Drosophila simulans, and Drosophila yakuba–Drosophila teissieri lineages, and (2) the node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta–D. orena and D. yakuba–D. teissieri. By con- trast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii, and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations.
    [Show full text]
  • Molecular Identification of Arthropods by Cytochrome B Analysis
    International Congress Series 1261 (2004) 398–400 www.ics-elsevier.com Molecular identification of arthropods by cytochrome b analysis M.M. de Pancorboa,b,*, A. Castrob,c, I. Ferna´ndez-Ferna´ndezb,c, N. Cuevasc, M. Castillod, M. Salon˜aa a Dpto. de Z. Dina´mica Celular A., Facultad de Farmacia, Universidad del Paı´s Vasco, Vitoria-Gasteiz, Spain b Instituto Vasco de Criminologı´a, Universidad del Paı´s Vasco, San Sebastia´n-Donostia, Spain c DataGene Ltda. (Grupo Adirondack), Parque Tecnolo´gico, Derio (Bizkaia) Spain d Albalate St. 13, 2250 Binaced–Huesca, Spain Abstract. This work has been developed to improve the analysis of cadaveric entomofauna. Taking into account that the cytochrome b is widely use to identify vertebrates, we have used it for the identification of some necrophagous species involved in the postmortem process. D 2004 Published by Elsevier B.V. Keywords: Cytochrome b; Lucilia sericata; Piophila casei; Dermestes frischii 1. Introduction Entomological knowledge can reveal the manner or location of death, although is most often used to estimate the time of death, or postmortem interval (PMI). Insects collected as evidence during a postmortem investigation should be preserved as eggs, larva or adult. Preimaginal stages can be difficult or impossible to identify to specific level, and an incorrect or uncertain identification can seriously harm or impede an investigation. This is because adult arrival times, egg phase duration and larval growth rates can vary between species. Proper species identification is usually an essential first step in the use of entomological evidence in a legal investigation [1]. An alternative source for species identification information is mitochondrial DNA.
    [Show full text]
  • Recurrent Specialization on a Toxic Fruit in an Island Drosophila
    Recurrent specialization on a toxic fruit in an island SEE COMMENTARY Drosophila population Amir Yassina,1, Vincent Debatb, Héloïse Bastidea, Nelly Gidaszewskib, Jean R. Davidb,c,2, and John E. Poola,2 aLaboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53706; bInstitut de Systématique, Evolution, Biodiversité, UMR7205, CNRS, Université Pierre et Marie Curie, École Pratique des Hautes Études, Muséum National d’Histoire Naturelle, Sorbonne Universités, 75005 Paris, France; and cLaboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, Université Paris-Sud, Institut de Recherche pour le Développement, Université Paris-Saclay, 91198 Gif-sur-Yvette, France Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved March 8, 2016 (received for review November 14, 2015) Recurrent specialization on similar host plants offers a unique degree of ripeness/decay exist, with species using less decaying opportunity to unravel the evolutionary and genetic mechanisms material evolving capabilities to resist plant defensive toxins, digest underlying dietary shifts. Recent studies have focused on ecological living plant material, and detect the appropriate host and ripening races belonging to the same species, but it is hard in many cases to stage (9–12). Such an “ecological gradient” makes drosophilids untangle the role of adaptive introgression versus distinct mutations ideal for the study of the genetic basis of dietary shifts. A peculiar in facilitating recurrent evolution. We discovered on the island of example is the specialization of Drosophila sechellia,whichisen- Mayotte a population of the generalist fly Drosophila yakuba that is demic on the Seychelles islands in the Indian Ocean, on noni Morinda citrifolia (Morinda citrifolia) fruits that are highly toxic to other drosophilids strictly associated with noni ( ).
    [Show full text]