Gas Turbine Engines.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Gas Turbine Engines.Pdf GAS TURBINE ENGINES The simplified operation of the gas turbine engine is as follows: 1. Air is taken in, and compressed to a high pressure. 2. The compressed air is then mixed with a fuel and ignited, producing high-velocity, high- pressure gas. 3. This gas is then used to turn a turbine, providing useful work, and the exhaust gases emitted, sometimes through a nozzle. The turbine itself is used to power the compressor, through the use of a coupling shaft between turbine and compressor. For this reason a starter motor must be employed in order to bring the engine up to speed when starting. Below is a diagrammatic representation of a gas turbine engine showing the fundamental processes: A useful way of looking at the workings of the gas turbine engine is to view it as following the same process as a reciprocating IC engine. Air is drawn in, compressed, ignited, expanded and exhausted in the both the reciprocating IC and gas turbine engines. The difference is that in a gas turbine engine these processes are not carried out in one cylinder, but rather are spread over different components of the engine. The three main stages of the engine are now examined in further detail. Compression In this stage either centrifugal or axial compressors are employed to compress the ambient air to a high pressure. Some of this air will then be fed into the combustion chamber, whilst some will be used to cool the turbine. The ratio of final pressure to ambient pressure is called the pressure ratio and for a modern engine may be as high as 40:1.Centrifugal compressors, although cheaper to manufacture, are less widely used because they are unable to achieve such high pressure ratios. An axial compressor consists of alternate rows of stationary and rotating aerofoil blades along the shaft of the compressor. In most gas turbine engines, there will be a multiple compression stage. This is because current designs do not allow for air to be compressed to a high enough ratio in only one stage. Further Design Considerations: The blades of the compressor need to be designed to be resistant to vibrations, and to be light. In recent years CAD (Computer Aided Design) has been pivotal in developing advanced blade design. However, losses are inevitably still incurred due to flow friction and turbulence associated with secondary swirls of air after each set of blades. In order to increase the efficiency of the compressor, spooled shafts can be used. In this system, a shaft driving the low pressure end of the compressor runs inside the main shaft through to the low pressure output of the turbine. This enables different stages of the compressor to run at different speeds, and can be used to increase efficiency. This describes a twin-spool set up, but triple-spool engines have also been constructed. Combustion In this stage the compressed air is mixed with a fuel (often Kerosine) and ignited by a continuously burning flame. The combustion, which burns the mixture at temperature of up to 2000 degrees, may be carried out in one, or a number of parallel chambers. The major design consideration is enabling the ignition flame to continue burning despite the fast flowing air around it. In a modern engine this may be achieved by creating a purposeful turbulence around the flame. Turbine In the turbine stage, the hot, high velocity combustion products are expanded through blades, turning the turbine and thus providing useful work. However, the combustion products must be cooled before entering the turbine stage, since the temperature the gas may reach would exceed the melting point of many of the turbine's components. This cooling is achieved by adding compressed air which has been diverted around the combustion chambers. In addition, the turbine blades themselves may be air-cooled internally, or by 'film' technology, where air is leaked from small pores creating a layer of cooled air around the blade. In many engines, there will be a number of turbine stages, so that the compressor can be driven at different speeds. As mentioned above, this can be achieved using spooled shafts. Furthermore, some systems will incorporate separate turbine stages, whereby one turbine will be used to drive the compressor, and another separate turbine will be used to power any external equipment. Overall design improvements Heat exchangers - This is whereby hot exhaust gases are run through a heat-exchanger with the compressed air. Therefore the heat energy of the compressed air entering the combustion chamber will be increased, so less fuel will be needed to provide the same output. The following design additions are specific to aircraft and are used to provide a particular function. Afterburners - This is where the exhaust gases following the turbine stage are re-ignited. This increases exhaust velocity and therefore thrust. This works particularly well in a turbofan engine, where there is an abundance of excess oxygen. Afterburners provide short term thrust increases and so are typically used in military aircraft which require good acceleration. Vectored thrust - This is where the discharge nozzle can be angled to provide thrust in angled directions. This was developed to enable aircraft to take-off on short runways, or even vertically. Perhaps the only example of a vertical take-off aircraft is the Harrier Jump-Jet, which uses the Pegasus Turbofan engine. Reverse thrust - This is where some, or all of the exhaust stream can be mechanically deflected to a forward direction, therefore slowing the aircraft. Reverse thrust is common on commercial aircraft and is used to provide additional braking on landing. What follows is calculations for the work output of a gas turbine, from a thermodynamic stance. In a coupled system, where the compressor is powered directly by the turbine, it can be stated that the total work output is, Total work output = Turbine output - Compressor work Compressor: For a rotary air compressor, commonly used in gas turbines, the work done by the compressor is, Where = mass of airflow per second Cpa = specific heat capacity of air (constant pressure) T2 = final temperature T1 = intake temperature Turbine: For the turbine the output can be found in a similar way as above, Where = mass of combustion products per second Cpt = specific heat capacity of combustion products T3 = intake (to turbine) temperature T1 = exhaust temperature Net Work: If we ignore the mass of the added fuel as negligible, which is a fair assumption given the quantity of air involved, we can say that, And also then that, fuel ignored, So, the n et work output is, GAS-TURBINE THEORY A simple gas turbine is comprised of three main sections a compressor, a combustor, and a power turbine. The gas-turbine operates on the principle of the Brayton cycle, where compressed air is mixed with fuel, and burned under constant pressure conditions. The resulting hot gas is allowed to expand through a turbine to perform work. In a 33% efficient gas-turbine approximately two / thirds of this work is spent compressing the air, the rest is available for other work ie.( mechanical drive, electrical generation) The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. However there are variations... One variation of this basic cycle is the addition of a regenerator. A gas- turbine with a regenerator (heat exchanger) recaptures some of the energy in the exhaust gas, pre-heating the air entering the combustor. This cycle is typically used on low pressure ratio turbines. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Turbines using this cycle are: Solar Centaur / 3500 horsepower class up to the General Electric Frame 5 Gas-turbines with high pressure ratios can use an intercooler to cool the air between stages of compression, allowing you to burn more fuel and generate more power. Remember, the limiting factor on fuel input is the temperature of the hot gas created, because of the metallurgy of the first stage nozzle and turbine blades. With the advances in materials technology this physical limit is always climbing. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. One turbine using this cycle is: General Electric LM1600 / Marine version A gas-turbine employing reheat. The image cannot be display ed. Your computer may not have enough memory to open the image, or the image may hav e been corrupted. Restart y our computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may hav e been corrupted. Restart y our computer, and then open the file again. If the red x still appears, y ou may hav e to delete the image and then insert it again. ¢ ¤ ¡ £ A Interc ¡ ed & Rec erated Turbine © ¦ § ¨ ¦ GAS-TUR ¥ E STOR The history of the gas turbine begins with a quest for jet propulsion.
Recommended publications
  • Investigation of the Combined Effect of Variable Inlet Guide Vane Drift, Fouling, and Inlet Air Cooling on Gas Turbine Performance
    entropy Article Investigation of the Combined Effect of Variable Inlet Guide Vane Drift, Fouling, and Inlet Air Cooling on Gas Turbine Performance Muhammad Baqir Hashmi , Tamiru Alemu Lemma * and Zainal Ambri Abdul Karim Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bander Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan, Malaysia; [email protected] (M.B.H.); [email protected] (Z.A.A.K.) * Correspondence: [email protected]; Tel.: +605-368-7018 Received: 18 October 2019; Accepted: 28 November 2019; Published: 1 December 2019 Abstract: Variable geometry gas turbines are susceptible to various malfunctions and performance deterioration phenomena, such as variable inlet guide vane (VIGV) drift, compressor fouling, and high inlet air temperatures. The present study investigates the combined effect of these performance deterioration phenomena on the health and overall performance of a three-shaft gas turbine engine (GE LM1600). For this purpose, a steady-state simulation model of the turbine was developed using a commercial software named GasTurb 12. In addition, the effect of an inlet air cooling (IAC) technique on the gas turbine performance was examined. The design point results were validated using literature results and data from the manufacturer’s catalog. The gas turbine exhibited significant deterioration in power output and thermal efficiency by 21.09% and 7.92%, respectively, due to the augmented high inlet air temperature and fouling. However, the integration of the inlet air cooling technique helped in improving the power output, thermal efficiency, and surge margin by 29.67%, 7.38%, 32.84%, respectively. Additionally, the specific fuel consumption (SFC) was reduced by 6.88%.
    [Show full text]
  • Manitoba Aerospace Directory
    WHERE VISION TAKES FLIGHT Manitoba Aerospace Directory 2013 - 2014 MANITOBA AEROSPACE MANITOBA, CANADA A World Centre for Cold Weather Testing In the HEART OF CANADA lies the beautiful province of Manitoba. Stretching from the northern United States border to the shores of Hudson Bay at the Arctic’s edge, Manitoba is ideal for cold weather and winter testing. The aerospace and automotive industries as well as equipment manufacturers and suppliers can be assured their equipment will be tested in cold weather, snow and ice. We are known as “Friendly Manitoba” so call us and we’ll help you and your company get started in the cold. General Electric Research & Development Test Centre located at the James Richardson International Airport in Winnipeg, Manitoba. The facility is operated by StandardAero. The Global Aerospace Centre for Icing and Environmental Research (GLACIER) facility and the not-for- profit Environmental Test, Research and Education Center (EnviroTREC)in Thompson Manitoba. A state-of-the- art cold weather testing and research facility. CONTACT: Robert Manson Entrepreneurship, Training and Trade Government of Manitoba T: 204-945-2475 E: [email protected] W: www.investinmanitoba.ca “Come chill with us!” AEROSPACE COMPANIES IN MaNITOBA 2013-2014 TABLE OF CONTENTS MESSAGE FROM THE MANITOBA AEROSPACE ASSOCIATION EXECUTIVE DIRECTOR . 3-4 SPECIAL FEATURE – MAGELLAN AEROSPACE IN SPACE – A CANADIAN SUCCESS STORY . 5-6 SPECIAL FEATURE – THE BLACK BRANT ROCKET – 50 YEARS OF OPERATIONAL EXCELLENCE . 7-9 SPECIAL PICTORIAL FEATURE - ENGINE TESTING IN MANITOBA – GLACIER AEROTEST (GLOBAL AEROSPACE CENTRE FOR ICING AND ENVIRONMENTAL RESEARch) . 10 SPECIAL PICTORIAL FEATURE - ENGINE TESTING IN MANITOBA – GE AVIATION ENGINE TESTING, RESEARCH AND DEVELOPMENT CENTRE .
    [Show full text]
  • BREATHING NEW LIFE INTO an AERO-DERIVATIVE GAS TURBINE CO-GENERATION PLANT VIA REFURBISHMENT and MODIFICATIONS by David C
    20th SYMPOSIUM ON INDUSTRIAL APPLICATIONS OF GAS TURBINES BREATHING NEW LIFE INTO AN AERO-DERIVATIVE GAS TURBINE CO-GENERATION PLANT VIA REFURBISHMENT AND MODIFICATIONS by David C. Bonin, P.Eng, Standard Aero Limited (Energy Division) Presented at the 20th Symposium on Industrial Application of Gas Turbines (IAGT) Banff, Alberta, Canada - October 2013 The IAGT Committee shall not be responsible for statements or opinions advanced in technical papers or in symposium or meeting discussions. Outline • Introduction to StandardAero Limited • Introduction to LHSC and the Westminster Power Plant • Co-generation Plant Refurbishment Project Overview • Project Challenges & Highlights • Conclusions Introduction to StandardAero Limited Standard Aero Limited • Independent provider of gas turbine engine overhaul, component repair, and customized power plant projects. • Supporting aviation and industrial gas turbines for over 100 years. • Service customers in over 80 countries. • Facilities in North America, Europe and Asia Pacific. • Extensive engineering and technical resources. • In-house component services in world-class facilities. Standard Aero Limited • The Standard Aero Energy division is located in Winnipeg, Manitoba (Canada). • Authorized gas turbine maintenance center for: – Rolls-Royce 501K – General Electric LM1600 – Vericor TF & ASE engine families • Authorized component repair center for General Electric and Rolls-Royce engine components. • Perform field service, comprehensive maintenance contracts, complete package upgrades & refurbishment. Introduction to LHSC and the Westminster Power Plant London Health Sciences Centre • One of Canada’s largest acute care teaching hospitals since 1875. • 15,000 employees across multiple London, Ontario sites. 1 million patient visits per year. • LHSC Westminster Power Plant provides electrical power and steam (district heating) for LHSC Victoria & Parkwood Hospital complexes.
    [Show full text]
  • Appendix B Supporting Material for BACT Review for Electrical Generation Technologies
    Appendix B Supporting Material for BACT Review For Electrical Generation Technologies I. INTRODUCTION Discussed in detail below are recommended emission levels for electrical generation sources using small gas turbines (rated at less than 50 MW in size), reciprocating engines using fossil fuel, and gas turbines / reciprocating engines using waste gas. The discussion below is based upon the requirements for determining Best Available Control Technology (BACT) in California and that BACT in California is equivalent to federal requirements for lowest achievable emission rate (LAER). BACT is generally specified as the most stringent emission level of these three alternative minimum requirements: 1) the most stringent emission control contained in any approved State Implementation Plan (SIP); 2) the most effective control achieved in practice; and 3) the most efficient emission control technique found by the district to be both technologically feasible and cost effective. This appendix provides the basis for the information presented in Chapter V (BACT for Electrical Generation Technologies). This appendix addresses BACT determinations for oxides of nitrogen (NOx), volatile organic compounds (VOC), carbon monoxide (CO), and particulate matter (PM). For the most effective control achieved in practice, examples were provided of emission levels specified in preconstruction permits issued by California districts and other states, and the most stringent emission levels achieved in practice. For each example cited, the following information is included: the name of the facility the equipment is located at, the applicable California district or State making the determination, a description of the basic equipment, and the method of control used to reduce emissions. In addition, for the control techniques required, the status of the permit (authority to construct/permit to construct or permit to operate) and the emission levels established by the permitting agency are provided.
    [Show full text]
  • Our New Edition of Our Annual Newsletter, Your Information Source to the Canadian Gas Turbine Industry. the IAGT
    Welcome to our new edition of our annual newsletter, your information source to the Canadian gas turbine industry. The IAGT Gas Turbine Newsletter summarizes some previous Committee activities, and addresses today’s developments to inform you about upcoming events and new developments of interest to all of us connected to the industry. The newsletter is available on the IAGT website at iagtcommittee.com. Contributions, feedback and suggestions to the Symposium and to the Newsletter are welcome and can be sent via e-mail to the addresses on the back page. The Industrial Application of Gas Turbines (IAGT) Committee, formed in 1973 under the sponsorship of the National Research Council of Canada, is a Technical Advisory Group to Canadian industry and government. The group provides a forum for the exchange and dissemination of ideas and the communication of new developments related to the industrial application of gas turbines in Canada. Presently under the sponsorship of the Canadian Gas Association and the National Research Council, the IAGT Committee's specific functions relate to the organization of a biennial technical symposium and a fall Forum held on alternate years from the Symposium. The Symposium provides the venue for the presentation of technical papers and discussion panels covering all aspects of industrial gas turbine operation as well as providing a forum for reviewing directives, guidelines, codes and practices, as issued by Regulatory Agencies, which impact directly on the application of gas turbines. The IAGT Committee members are listed on the website and we thank those members who volunteer their time and effort to the Canadian Gas Turbine Industry.
    [Show full text]
  • Manitoba Aerospace & Defence Directory
    Manitoba is home to a host of complementary world class aerospace companies that play a vital role in the global aerospace industry. Manitoba provides strategic advantages to the aerospace industry: a network of collaborating companies, a solid workforce, tailored education programs, international R&D capabilities, supportive governments, and an ideal geographic location. Together, these factors create a thriving and globally competitive business environment. If your company is looking for a partner with access to North American markets and advanced aerospace technology, look to the Manitoba aerospace industry. If you are seeking a cost-competitive site to do business, look to Manitoba, Canada. If you need a source of aerospace component manufacturing or engine maintenance services, engine icing Manitoba and other environmental testing, or composite materials manufacturing or R&D, look to Manitoba companies. Aerospace & Defence For more information on Manitoba aerospace opportunities Directory and our positive business environment, contact: WHERE VISION TAKES FLIGHT Manitoba Aerospace Inc. Manitoba Government 1000 Waverley Street 1050-259 Portage Avenue Winnipeg, Manitoba, Winnipeg, Manitoba, Canada R3T 0P3 Canada R3B 3P4 Tel: 204-272-2952 Tel: 204-945-8741 Email: [email protected] Email: [email protected] MANITOBA AEROSPACE AND DEFENCE DIRECTORY MANITOBA AEROSPACE AND DEFENCE DIRECTORY Table of Contents Message from Chief Executive Officer, Manitoba Aerospace ................................................ 4 Message from Minister
    [Show full text]
  • "Staff Report: 2002-07-01 Distributed Generation Guidance"
    GUIDANCE FOR THE PERMITTING OF ELECTRICAL GENERATION TECHNOLOGIES As Approved by the Air Resources Board on November 15, 2001 Stationary Source Division Project Assessment Branch July 2002 State of California California Environmental Protection Agency Air Resources Board Guidance for the Permitting of Electrical Generation Technologies As Approved by the Air Resources Board on November 15, 2001 Prepared by Project Assessment Branch Stationary Source Division Principal Author Grant Chin Supporting Authors Heidi Dixon John Kato Ada Komorniczak Reviewed by Kitty Martin, Manager Program Assistance Section Michael Tollstrup, Chief Project Assessment Branch Peter Venturini, Chief Stationary Source Division This report has been reviewed by the staff of the California Air Resources Board. Publication does not signify that the contents necessarily reflect the view and policies of the Air Resources Board, nor does mention of trade names constitute endorsement or recommendation for use. Revisions to the Draft Guidance At a public meeting held on November 15, 2001, the Air Resources Board approved the proposed Guidance for the Permitting of Electrical Generation Technologies, which was initially available September 18, 2001. Specific amendments to the Guidance that were discussed at the Board Meeting have been incorporated into this final version of the Guidance. The changes to the Guidance are summarized below. At the Board’s direction, the recommended Best Available Control Technology (BACT) level for gas turbine based electrical generation was revised to reflect the appropriate levels for simple cycle and combined cycle applications. The appropriate sections discussing the BACT recommendations were also revised to be consistent with the Board’s direction. Technical correction for the Precertification claim requested for the Xonon technology.
    [Show full text]
  • Tdi Turbostarttm
    TDI TURBOSTART TM TDI TURBOSTART TM AIR STARTERS FOR AIR STARTERS FOR GAS TURBINE ENGINES GAS TURBINE ENGINES Derived from Aerospace. Designed for Industry. Since 1958, TDI has been a significant player in the design, testing and manufacturing of turbine-related machinery for the world’s most sophisticated aircraft. So it’s no surprise that when TDI engineers put their minds to designing starters for industrial gas turbines, their TurboStart motors quickly garnered recognition for their power, reliability and efficiency. The honing and discipline of a demanding aerospace industry has enabled TDI to establish new standards for industrial turbine starters based on the concepts of more power and smaller packages. The result is a line of starters that display the precision and quality of aerospace components, yet designed to match the harsh environ-mental challenges facing industrial gas turbine engines. Our engineers introduced their first industrial gas turbine starter in 1984. Twelve models and hundreds of refinements later, they continue to introduce products that break new ground for power and reliability for industrial gas turbine starters. www.tdiairstarters.com Aerospace Quality. Industrial Pricing. AS9000 6800 Poe Avenue, P.O. Box 13557, Dayton, Ohio 45413-0557 • Tel: (937) 898-9600 Fax: (937) 898-8431 TURBOSTART,TURBOVALVE,TURBOSTART TWO, AND TURBOTWIN are trademarks of Tech Development Inc., Aerospace Quality. Industrial Pricing. U.S.A. © Copyright 1999, Tech Development Inc. U.S.A. Saturn and Centaur are registered trade names of Solar, Inc. Spey and Avon are registered trade names of Rolls Royce, Ltd. A part of Smiths Aerospace. AN01-139 9/01 www.tdiairstarters.com Contents 2–3 ............TurboStart Starting TM its turbine expertise to the design Better Design.
    [Show full text]