Geologic Mapping of the Hestia Rupes Quadrangle (V-22), Northern Ovda Regio, Venus

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Mapping of the Hestia Rupes Quadrangle (V-22), Northern Ovda Regio, Venus Lunar and Planetary Science XXXVIII (2007) 1936.pdf GEOLOGIC MAPPING OF THE HESTIA RUPES QUADRANGLE (V-22), NORTHERN OVDA REGIO, VENUS. M. S. Gilmore1 and R. S. Saunders2, 1Dept. of Earth and Environmental Sciences, Wesleyan University, 265 Church St., Middletown CT 06459, [email protected], 2NASA Headquarters, ste- [email protected]. Introduction: Approximately 8% of the surface of three ridge belts intersect at a triple junction marking a Venus comprises tessera terrain, defined as have two topographic low. or more sets of intersecting lineaments that contribute Regional plains, pr. Widespread plains that com- to high radar backscatter [1]. Most tessera occurrences prise the majority of the quadrangle. This unit is sub- lie are in elevated plateaus (~2-4 km above mean divided into two units. Regional plains unit 1, pr1, planetary radius), although tessera inliers can be found includes plains of low to moderate backscatter with at the elevation of the plains. Regional and global high concentration of lineaments and wrinkle ridges at mapping of tessera terrain show that tessera terrain is various orientations. May be smooth or mottled. Nu- embayed by plains materials [2,3,4, see 5 for a possible merous small domes, shields and cones are present exception), leading to the interpretation that tessera singly or as fields. Lineated plain occur throughout terrain is older than the plains and results from a for- the quadrangle and appear preserved in regions of high mation event of finite duration prior to plains em- topography within the plains. Regional plains unit 2, placement. Although several models exist for the for- pr2. Low radar backscatter, homogenous unit. Wrin- mation of tessera terrain [e.g., 6, 7] each include a kle ridges are common. Unit 2 embays unit 1 where transition from high surface strain (tessera formation) they are in contact. to lower strain prior to the production of plains lavas. Smooth plains, ps. Plains of moderate to low back- The history of this transition is recorded at plains- scatter, may contain small shields, domes or fractures. tessera boundaries. Largely confined to localized intratessera deposits. The Hestia Rupes quadrangle (V-22; 0°-25°N, 60°- Flow materials, fl. Radar dark or bright lobate, 90°E; Figure 1) includes the northern portion of Ovda sinuous, digitate flows, typically arranged radially Regio and the plains between Ovda and Tellus Regio. from a central edifice. At the northern boundary of Ovda, plains embay Corona materials, co. Moderate backscatter plains tessera structures and lie at the altitude of the plateau with fractures and small shields. Localized to corona boundary. A primary objective of mapping this quad- summits. rangle is to document this transition between tessera Crater materials,c. Impact crater and crater out- and plains formation. flow (cf) deposits. Eighteen named and 1 unnamed Material units: Mapping is performed on a Ma- crater occur in the quadrangle. Bright and dark pa- gellan SAR 1:5M basemap in Mercator projection pro- rabolas associated with the crater Adivar dominate the vided by the USGS; it includes Cycle 1 and some Cy- lower center of the map area. The crater Mead lies to cle 2 data. Eight major units have been defined in the the west of the map area, and its moderate backscatter quadrangle. Tectonic structures have been mapped deposits and aeolian reworking of these deposits cover independently of units, however, in some cases, tec- the western ¼ of the quadrangle. tonic deformation is an integral part of the unit and is Edifices: Four coronae (Ereshkigal, Kaltash, included in the definition. H’uraru, Habonde) and two large volcanoes (Uti Hiata, Tessera terrain, t. Radar bright material comprising Kunhild – which is a named corona, but is actually a intersecting folds, graben and lineaments. Variations volcano) are located in V22. H’uraru and Kaltash in the type, density and orientation of structures may coronae are clearly embayed by regional plains unit 2 occur over scales of 100s of km resulting in regions of and Kaltash fractures crosscut unit prb. Flows of Er- distinctive structural fabrics. Tessera terrain is limited eshkigal contribute to the regional plains materials. to the Ovda Regio highland, no inliers are observed in Flows emanating from the two volcanoes are younger the quadrangle. than regional plains unit 2, although fractures radial to Ridge belt plains material, prb. Plains of moderate Kunhild deform the regional plains. Kaltash and backscatter that have been deformed into moderate to Habonde coronae erupted within tessera terrain. bright anastomosing ridges typically 1-5 km across and Geologic history: The tessera terrain of Ovda Re- 10s to 100 kms in length. Unit prb occurs throughout gio is the oldest material unit in the map area. This the quadrangle. Ridges generally trend in an WNW to terrain and the plateau topography formed and appear NW orientation. In the western portion of the quad- to cease prior to the eruption of the oldest plains unit. rangle, ridges have multiple orientations; in one case The oldest plains embay tesserae and were subse- quently deformed into ridge belts throughout the map Lunar and Planetary Science XXXVIII (2007) 1936.pdf unit. This compressional deformation elevated the deformed by pervasive wrinkle ridges that are subse- ridge belts to 1-2 km above the regional plains imme- quently embayed by flows of the two large volcanoes. diately surrounding them, however the actual elevation Subsequent to plains formation, volcanic activity per- of the ridge belts is higher in the eastern portion of the sisted at and was largely confined to these volcanoes. quadrangle than the western portion where the ridge Conclusion: The general history of the quadrangle belts enter the lowlands of Akhtamar Planitia. The is one of waning deformation of tessera and plains general WNW trend of ridge belts throughout the units, early corona formation, some of which contrib- quadrangle records the primary regional direction of uted to regional plains materials. Initial regional plains compressional stress that broadly mimics the shape of with abundant small edifices yield to plains that lack the northern boundary of Ovda Regio and the folds them. Late volcanic activity was localized at two large therein, but whether this imposes a common genesis is volcanoes. unknown. References: [1] Barsukov V. L. et al. (1986) JGR Three and perhaps four coronae erupted after the 91 D378; Sukhanov A. L. (1992) in Venus Geology, formation of the ridge belts and were active prior to Geochemistry and Geophysics, Univ. Arizona Press, p. and, in the case of Ereshkigal, during the emplacement 82. [2] Ivanov M. A, and Head J. W. (1996). JGR 101 of two regional plains units. The first regional plains 591. [3] Basilevsky A. T. and Head J. W. (1995) PSS unit records a history of ubiquitous fracturing and the 43, 1523; ibid. EMP 66 285. [4] Hansen V. L. and widespread eruption of small shield volcanoes. This Willis J. J. (1986) Icarus 123, 296. [5] Guest J. E. and deformation and shield volcanism ceased prior to the Stofan E. R. (1999) Icarus 139, 55. [6] Bindschadler eruption of the second regional plains unit, seemly D. L. et al., (1992) JGR 97, 13495. [7] Hansen et al. indicating a change to more effusive volcanism; the (1999) Geology 27, 1071. sources of this unit are not apparent. Both units are Figure 1. Topographic/SAR composite of the Hestia Rupes quadrangle (V-22). Elevations scale from approximately – 1 to +5 km relative to MPR of 6051 km. .
Recommended publications
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • GEOLOGY of OVDA REGIO, APHRODITE TERRA, VENUS: Prelih4inar-Y RESULTS from MAGELLAN DATA, RS
    LPSC SSII 1169 GEOLOGY OF OVDA REGIO, APHRODITE TERRA, VENUS: PRELIh4INAR-Y RESULTS FROM MAGELLAN DATA, RS. Saundersl, J.W. Head m2,RJ. Phillips3, S.C. Solomon4, R. Herricl?, R. Grimm3, and E.R. Stofan1 Jet Propulsion Laboratory, Calif. Institute of Technology, Pasadena, CA 91109;%epartment of Geological Sciences, Brown University, Providence, RI 02912; 3Southern Methodist University, Dallas, TX 75275;'Massachusetts Institute of Technology, Cambridge, MA, 02139 Ovda Regio is located in Aphrodite Terra, a major highland region on Venus which straddles the equator between 75 and 100 degrees east longitude. Ovda is located in western Aphrodite Terra, and has now been mapped by the Magellan spacecraft. The morphology of highland regions on Venus varies from a high plateau surrounded by mountain belts in Ishtar Terra [1,2], highly deformed tessera terrain in Tellus and Alpha Regiones [3, 41 to volcanism and rifting in Beta Regio [S-71. Aphrodite Terra, previously imaged only by low resolution Pioneer Venus radar, has been the subject of much speculation, and is expected to reveal important information on the formation and evolution of highland terrains on Venus. Pioneer Venus topography indicates that Ovda is a 2000 x 3500 km highland region rising over 4 km above the surroundink plains. Its interior is relatively plateau-like, with steep outer margins. Pioneer Venus roughness and reflectivity data indicated that the surface may be composed of tessera-like terrain [8], while PVO gravity data gave a relatively shallow depth of compensation at Ovda [9]. Several theories have been proposed for Ovda Regio based on Pioneer Venus data.
    [Show full text]
  • Investigating Mineral Stability Under Venus Conditions: a Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geochemistry Commons, Mineral Physics Commons, and the The unS and the Solar System Commons Recommended Citation Kohler, Erika, "Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies" (2016). Theses and Dissertations. 1473. http://scholarworks.uark.edu/etd/1473 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Space and Planetary Sciences by Erika Kohler University of Oklahoma Bachelors of Science in Meteorology, 2010 May 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________ Dr. Claud H. Sandberg Lacy Dissertation Director Committee Co-Chair ____________________________ ___________________________ Dr. Vincent Chevrier Dr. Larry Roe Committee Co-chair Committee Member ____________________________ ___________________________ Dr. John Dixon Dr. Richard Ulrich Committee Member Committee Member Abstract Radar studies of the surface of Venus have identified regions with high radar reflectivity concentrated in the Venusian highlands: between 2.5 and 4.75 km above a planetary radius of 6051 km, though it varies with latitude.
    [Show full text]
  • Geologic Investigations Series I-2808
    Prepared for the National Aeronautics and Space Administration Geologic Map of the Ovda Regio Quadrangle (V–35), Venus By Leslie F. Bleamaster, III, and Vicki L. Hansen Pamphlet to accompany Geologic Investigations Series I–2808 75° 75° V–1 V–2 V–4 50° 50° V–3 V–8 V–13 V–9 V–12 V–10 V–11 25° 25° V–20 V–25 V–21 V–24 V–22 V–23 0° 30° 60° 90° 120° 150° 180° 0° 0° V–34 V–35 V–33 V–36 V–32 V–37 –25° –25° V–46 V–47 V–45 V–48 V–44 V–49 V–57 –50° V–56 V–58 –50° V–62 2005 –75° –75° U.S. Department of the Interior U.S. Geological Survey 0 THE MAGELLAN MISSION comparable to the radar wavelength are responsible for variations in the SAR return. In either case, the echo The Magellan spacecraft orbited Venus from August strength is also modulated by the reflectivity of the sur- 10, 1990, until it plunged into the Venusian atmosphere face material. The density of the upper few wavelengths on October 12, 1994. Magellan had the objectives of (1) of the surface can have a significant effect. Low-density improving knowledge of the geologic processes, surface layers, such as crater ejecta or volcanic ash, can absorb properties, and geologic history of Venus by analysis of the incident energy and produce a lower observed echo. surface radar characteristics, topography, and morphol- On Venus, a rapid increase in reflectivity exists at a cer- ogy and (2) improving knowledge of the geophysics of tain critical elevation, above which high-dielectric miner- Venus by analysis of Venusian gravity.
    [Show full text]
  • An Explanation for Crustal Plateaus and Tessera Terrains
    Pulsating continents on Venus: An explanation for crustal plateaus and tessera terrains I. Ramea *, D.1.. Turcatte Department of Geology, University of California Davis, One Shields Avenue, Davis, 01. 95616-8605, US4 ABSTRACT We propose that tessera terrains on Venus represent continental crust that does not participate in the periodic recycling of the lithosphere through global subduction events. We have studied the force balance on the boundary of a continental area that survives a global subduction event using an analytical model. In the proposed model, the ratio between the crus tal and litho spheric mantle thicknesses controls the force balance. If the crust thickness is less than � 2/5 of the lithospheric mantle thickness, the continental area will be compressed, but if the crus tal thickness is higher than � 2/5 of the lithospheric mantle thickness, the continental area will spread out and collapse. Consequently, if the lithospheric mantle beneath a continental Keywords: region is delaminated during a giobal subduction event, the continent will collapse generating tessera inliers crustal plateau dominated by extensional tectonics. But if a significant portion of lithospheric mantle remains, then the continental crust continental area will be compressed generating a plateau by crustal shortening. The observed plateau heights global subduction event can be explained by this model, a "'2 km height plateau can be generated by a lithospheric mantle thickness tessera terrain of 40 km while a "'4 km height plateau can be generated by a 90 km thick lithospheric mantle. We have Venus modelled this crustal thickening of a continental area by tectonic contraction using a thin viscous sheet approach with a Newtonian viscosity for the crust.
    [Show full text]
  • Testing Evolutionary Models for Venus with the DAVINCI+ Mission
    EPSC Abstracts Vol. 14, EPSC2020-534, 2020 https://doi.org/10.5194/epsc2020-534 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Venus, Earth's divergent twin?: Testing evolutionary models for Venus with the DAVINCI+ mission Walter S. Kiefer1, James Garvin2, Giada Arney2, Sushil Atreya3, Bruce Campbell4, Valeria Cottini2, Justin Filiberto1, Stephanie Getty2, Martha Gilmore5, David Grinspoon6, Noam Izenberg7, Natasha Johnson2, Ralph Lorenz7, Charles Malespin2, Michael Ravine8, Christopher Webster9, and Kevin Zahnle10 1Lunar and Planetary Institute/USRA, Houston, Texas, United States of America ([email protected]) 2NASA Goddard Space Flight Center, Greenbelt MD USA 3Planetary Science Laboratory, University of Michigan, Ann Arbor MI USA 4Center for Earth and Planetary Studies, Smithsonian Institution, Washington DC USA 5Dept. of Earth and Environmental Science, Wesleyan University, Middletown CT USA 6Planetary Science Institute, Tucson AZ USA 7Applied Physics Lab, Johns Hopkins University, Laurel MD USA 8Malin Space Science Systems, San Diego CA USA 9Jet Propulsion Laboratory, California Insitute of Technology, Pasadena CA USA 10NASA Ames Research Center, Moffet Field CA USA Understanding the divergent evolution of Venus and Earth is a fundamental problem in planetary science. Although Venus today has a hot, dry atmosphere, recent modeling suggests that Venus may have had a clement surface with liquid water until less than 1 billion years ago [1]. Venus today has a nearly stagnant lithosphere. However, Ishtar Terra’s folded mountain belts, 8-11 km high, morphologically resemble Tibet and the Himalaya mountains on Earth and apparently require several thousand kilometers of surface motion at some time in Venus’s past.
    [Show full text]
  • 18Th Meeting of the Venus Exploration Analysis Group (Vexag)
    18TH MEETING OF THE VENUS EXPLORATION ANALYSIS GROUP (VEXAG) Program and Abstracts LPI Contribution No. 2356 18th Meeting of the Venus Exploration Analysis Group November 16–17, 2020 Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Noam Izenberg Johns Hopkins Applied Physics Laboratory Darby Dyar Mount Holyoke College Science Organizing Committee Darby Dyar Planetary Science Institute, Mount Holyoke College Noam Izenberg JHU Applied Physics Laboratory Megan Andsell NASA Headquarters Natasha Johnson NASA Goddard Jennifer Jackson California Institute of Technology Jim Cutts Jet Propulsion Laboratory Tommy Thompson Jet Propulsion Laboratory Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Compiled in 2020 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 This material is based upon work supported by NASA under Award No. 80NSSC20M0173. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. ISSN No. 0161-5297 Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/vexag2020/ Abstracts can be cited as Author A.
    [Show full text]
  • VENUS Corona M N R S a Ak O Ons D M L YN a G Okosha IB E .RITA N Axw E a I O
    N N 80° 80° 80° 80° L Dennitsa D. S Yu O Bachue N Szé K my U Corona EG V-1 lan L n- H V-1 Anahit UR IA ya D E U I OCHK LANIT o N dy ME Corona A P rsa O r TI Pomona VA D S R T or EG Corona E s enpet IO Feronia TH L a R s A u DE on U .TÜN M Corona .IV Fr S Earhart k L allo K e R a s 60° V-6 M A y R 60° 60° E e Th 60° N es ja V G Corona u Mon O E Otau nt R Allat -3 IO l m k i p .MARGIT M o E Dors -3 Vacuna Melia o e t a M .WANDA M T a V a D o V-6 OS Corona na I S H TA R VENUS Corona M n r s a Ak o ons D M L YN A g okosha IB E .RITA n axw e A I o U RE t M l RA R T Fakahotu r Mons e l D GI SSE I s V S L D a O s E A M T E K A N Corona o SHM CLEOPATRA TUN U WENUS N I V R P o i N L I FO A A ght r P n A MOIRA e LA L in s C g M N N t K a a TESSERA s U . P or le P Hemera Dorsa IT t M 11 km e am A VÉNUSZ w VENERA w VENUE on Iris DorsaBARSOVA E I a E a A s RM A a a OLO A R KOIDULA n V-7 s ri V VA SSE e -4 d E t V-2 Hiei Chu R Demeter Beiwe n Skadi Mons e D V-5 S T R o a o r LI s I o R M r Patera A I u u s s V Corona p Dan o a s Corona F e A o A s e N A i P T s t G yr A A i U alk 1 : 45 000 000 K L r V E A L D DEKEN t Baba-Jaga D T N T A a PIONEER or E Aspasia A o M e s S a (1 MM= 45 KM) S r U R a ER s o CLOTHO a A N u s Corona a n 40° p Neago VENUS s s 40° s 40° o TESSERA r 40° e I F et s o COCHRAN ZVEREVA Fluctus NORTH 0 500 1000 1500 2000 2500 KM A Izumi T Sekhm n I D .
    [Show full text]
  • Formation and Evolution of the Westernmost Corona of Aphrodite Terra, Venus
    Planet. Space Sci.. Vol. 44, No. 8, pp. 833-841, 1996 Pergamon Copyright a 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0032-0633/96 $15.00+0.00 PII: S0032-0633(96)00011-6 Formation and evolution of the westernmost corona of Aphrodite Terra, Venus V. Ansan’ and Ph. Blond& ‘Laboratoire de Geologic Dynamique de la Terre et des Planetes. Bat. 509, Universite Paris-Sud, 91405 Orsay cedex. France ‘Institute of Oceanographic Sciences, Deacon Laboratory, Brook Road, Wormley, Godalming GU8 5UB, U.K. Received 29 July 1995: accepted 13 December 1995 Abstract. Previous knowledge of Venus equatorial more than 90% of the surface of Venus (Saunders and highlands has been greatly extended by Magellan SAR Pettengill, 199 1 ; Saunders et al., 1991, 1992). The Mag- imagery. Spanning over more than 15,000 km, with a ellan SAR (Synthetic Aperture Radar) has imaged 97% mean elevation of 3 km, Aphrodite Terra is a key region of the planetary surface with a high resolution varying for the comprehension of Venusian geology and tecton- from 120m at the equator to 300m at the pole. These ics. Surface geology is investigated with the high-res- images show that the surface is mainly affected by volcanic olution Magellan radar imagery. This study focuses and tectonic processes (Saunders and Pettengill, 1991 ; on the westernmost part of Aphrodite Terra, an area Solomon and Head, 199 1 ; Saunders et al., 199 1, 1992). On 2000 km in diameter centred on Verdandi Corona. an altimetric map, a prominent feature is the equatorial Structural interpretation is based on conventional highland of Aphrodite Terra (Fig.
    [Show full text]
  • Surface Processes in the Venus Highlands: Results from Analysis of Magellan and a Recibo Data
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. E], PAGES 1897-1916, JANUARY 25, 1999 Surface processes in the Venus highlands: Results from analysis of Magellan and A recibo data Bruce A. Campbell Center for Earth and Planetary Studies, Smithsonian Institution, Washington, D.C. Donald B. Campbell National Astronomy and Ionosphere Ceiitei-, Cornell University, Ithaca, New York Christopher H. DeVries Department of Physics and Astronomy, University of Massachusetts, Amherst Abstract. The highlands of Venus are characterized by an altitude-dependent change in radar backscattcr and microwave emissivity, likely produced by surface-atmosphere weathering re- actions. We analyzed Magellan and Arecibo data for these regions to study the roughness of the surface, lower radar-backscatter areas at the highest elevations, and possible causes for areas of anomalous behavior in Maxwell Montes. Arecibo data show that circular and linear radar polarization ratios rise with decreasing emissivity and increasing Fresnel reflectivity, supporting the hypothesis that surface scattering dominates the return from the highlands. The maximum values of these polarization ratios are consistent with a significant component of multiple-bounce scattering. We calibrated the Arecibo backscatter values using areas of overlap with Magellan coverage, and found that the echo at high incidence angles (up to 70") from the highlands is lower than expected for a predominantly diffuse scattering regime. This behavior may be due to geometric effects in multiple scattering from surface rocks, but fur- ther modeling is required. Areas of lower radar backscatter above an upper critical elevation are found to be generally consistent across the equatorial highlands, with the shift in micro- wave properties occurring over as little as 5ÜÜ m of elevation.
    [Show full text]
  • Summary Venus Exploration Analysis
    Summary Venus Exploration Analysis Group (VEXAG) Meeting #13 Tuesday-Thursday, OCtober 27–29, 2015 James Webb Auditorium, NASA Headquarters 75 members of the Venus community participated in the VEXAG Meeting #13, held at NASA Headquarters, Washington, DC on October 27–29, 2015. Lori Glaze, VEXAG Chair, welcomed the attendees and noted that the primary goal for this meeting was to keep the Venus momentum going. Key items for this meeting were learning about what’s happening at NASA Headquarters (about items that are germane to Venus research and exploration); status reports on the European Venus Express, Japanese Akatsuki, Russian Venera-D, and European Envision as well as on future Venus Discovery missions; recent and upcoming Venus workshops and conferences; and (most importantly) thinking about the year ahead and what’s next for Venus. Group Photo – Thursday, October 29, 2105 Current important VEXAG and Venus related events include: • Two Venus Discovery mission proposals are accepted for Phase-A studies. These are VERITAS (Sue Smrekar, JPL, PI), an orbiting mission to produce high-resolution topography and imaging as well as global surface composition; and DAVINCI (Lori Glaze, Goddard, PI), an atmospheric probe mission to study the origin, evolution, and chemical processes of the atmosphere, • A Venus III Book based on Venus Express results, is in preparation. It will be a Special Issue of Space Science Reviews as well as a hard-copy book, • Venus Exploration Targets Workshop, May 2014 (LPI, Houston, Texas) – Report being finalized, • Venus Science Priorities for Laboratory Measurements and Instrument Definition Workshop held in Hampton, Virginia in April, • Comparative Tectonics and Geodynamics of Venus, Earth, and Exoplanets Conference, Caltech, Pasadena, May, 2015 Summary – Venus Exploration Analysis Group (VEXAG) Meeting #13, Washington, D.C., Oct.
    [Show full text]
  • General Venus Geology Venus Statistics Mariner 2 Venera 4
    Venus Statistics • Mass = 80% Earth’s mass General Venus Geology • Uncompressed density = 5250 kg/m3 • Equatorial radius = 6052 km • Orbital period = 225 days GLY 424/524 • Rotational period = 243 (backwards) March 18, 2002 • Gravity = 8.82 m/s2 • Mean surface temp = 482°C • Mean surface pressure = 92 bars Mariner 2 • First successful Venus flyby Venera 4 • December 1962/January 1963 • Objectives • Soviet mission – Atmosphere, magnetic field, charged particle • October, 1967 environment, mass • Atmospheric probe • Results • Penetrated to ~25 km above surface – Retrograde rotation – Atmosphere hot – Hot, high-pressure surface – High pressure – CO2 atmosphere – Permanent clouds – No magnetic field Venera 7 • Venus Lander Venera 8 • August, 1970 • June, 1972 • Returned signals for 23 minutes from • Probe and lander surface before failing • Returned signals for 53 minutes after • First transmission from another planet! landing • Results – Confirmed high surface temps, pressures – High surface temperature – Determined natural light suitable for – High surface pressure photography 1 Venus Mariner 10 Mariner 10 • Slingshot around Venus to reach Mercury • February, 1974 • Confirmed opaque clouds, “chevron” pattern suggesting high-altitude winds Venera 9 Results Venera 9 • Clouds 30-40 km thick with bases at 30-35 km altitude • Orbiter and Lander • Atmospheric constituents including HCl, • October, 1975 HF, Br, and I • Survived for 53 minutes after landing • Surface pressure about 90 (Earth) atmospheres • Surface temperature 485°C • Light levels
    [Show full text]