A Hybrid Vehicle for Aerial and Terrestrial Locomotion

Total Page:16

File Type:pdf, Size:1020Kb

A Hybrid Vehicle for Aerial and Terrestrial Locomotion A HYBRID VEHICLE FOR AERIAL AND TERRESTRIAL LOCOMOTION by Richard J. Bachmann Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Dr. Roger D. Quinn Department of Mechanical Engineering Case Western Reserve University May, 2008 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Section Page Chapter 1 Introduction..................................................................................................1 1.1 Motivation.............................................................................................................2 1.1.1 Chemical or Biological Weapon Source Localization....................................2 1.1.2 Ad hoc Sensor Network Deployment .............................................................2 1.1.3 Search and Rescue..........................................................................................3 1.1.4 Hazardous Environment Exploration..............................................................3 1.1.5 Hostage Situations..........................................................................................4 1.1.6 Medium field military situational awareness..................................................4 1.2 Biological Inspiration............................................................................................5 1.3 Organization of this document..............................................................................6 Chapter 2 Background..................................................................................................7 2.1 Micro Terrestrial Vehicles ....................................................................................7 2.2 Miniature Air Vehicles .......................................................................................11 2.2.1 Flapping Wings.............................................................................................12 2.2.2 Rigid Wings ..................................................................................................13 2.2.3 Flexible Fixed Wings....................................................................................14 2.3 Hybrid Amphibious Vehicles .............................................................................15 2.4 Hybrid Aerial/Terrestrial Vehicles .....................................................................16 Chapter 3 The First Prototype ....................................................................................18 3.1 Locomotion Subsystem Selection.......................................................................18 3.2 Multi-Modal Mobility Tradeoffs ........................................................................20 3.2.1 Single Source Propulsion..............................................................................22 3.2.2 Wheel-legs ....................................................................................................23 3.2.3 Steering .........................................................................................................24 3.2.4 Wings ............................................................................................................25 3.3 Design Process....................................................................................................26 3.3.1 Terrestrial Drive System...............................................................................26 3.3.2 Sensor system................................................................................................27 3.3.3 Fuselage ........................................................................................................27 3.3.4 Wing..............................................................................................................28 3.4 Fabrication Process.............................................................................................29 3.4.1 Wing and Tail ...............................................................................................29 3.4.2 Fuselage ........................................................................................................31 3.4.3 Wheel-legs ....................................................................................................33 3.5 Results.................................................................................................................34 3.6 Critical Analysis of Prototype Hybrid Vehicle...................................................40 3.6.1 Primary Goals...............................................................................................41 3.6.1.1 Autonomous Operation..........................................................................41 3.6.1.2 Improved Durability..............................................................................42 3.6.1.3 Repeatable Fabrication and Assembly Procedures................................43 3.6.2 Secondary Goals...........................................................................................43 3.6.2.1 Improved Deployment ...........................................................................43 3.6.2.2 Enhanced Flight Performance................................................................44 i Table of Contents Section Page 3.6.2.3 Improved Wing Folding.........................................................................44 3.6.2.4 Ground Take-off....................................................................................44 3.6.2.5 Tail Hook...............................................................................................45 Chapter 4 Airframe Mechanical Design.....................................................................46 4.1 Fuselage Mold Fabrication .................................................................................47 4.2 Component Mounting.........................................................................................50 4.2.1 Motor Nacelle...............................................................................................51 4.2.2 Tail Boom.....................................................................................................53 4.3 Tail ......................................................................................................................55 4.3.1 Assembly.......................................................................................................55 4.3.2 Alignment .....................................................................................................56 4.3.3 New Tail Design ...........................................................................................57 4.4 Component Placement ........................................................................................58 4.5 Results.................................................................................................................59 Chapter 5 Terrestrial Running Gear Design...............................................................61 5.1 Larger direct drive system ..................................................................................62 5.2 Indirect Drive System .........................................................................................63 5.3 Slip-clutch Hub...................................................................................................65 5.4 Angled Slip-clutch Hub ......................................................................................66 5.5 Parallel Shaft O-ring Slip-clutch.........................................................................67 5.5.1 Test Apparatus for Torque Transmission Measurement...............................67 5.5.2 Test Procedure for Torque Limiter Evaluation.............................................68 5.6 Concentric Shaft O-ring Slip-Clutch ..................................................................71 5.7 Wheel-legs ..........................................................................................................74 5.8 Results.................................................................................................................75 Chapter 6 Airframe Aerodynamic Design..................................................................76 6.1 Wing and Aerodynamic Property Tests..............................................................76 6.1.1 Purpose..........................................................................................................76 6.1.2 Test Apparatus and Set-up............................................................................77 6.1.3 Data Collection and Analysis........................................................................80 6.1.4 Wing Testing Procedure ...............................................................................81 6.1.4.1 Independent Wing Test Results .............................................................82 6.1.4.2 Wind Tunnel Testing of Aerial Platform...............................................83
Recommended publications
  • Caterpillar (CAT) Excavators, Dozers, & Motor Graders Machine.Market
    D6R ® Series II Track-Type Tractor Cat® Engine C9 Operating Weights Standard Standard 18 300 kg Gross Power 141 kW/189 hp XL 18 700 kg Flywheel Power 123 kW/165 hp XW 19 900 kg XL/XW/LGP LGP 20 500 kg Gross Power 157 kW/210 hp Blade Capacity Range 3.18 m3 - 5.62 m3 Flywheel Power 138 kW/185 hp Courtesy of Machine.Market D6R Series II Track-Type Tractor The D6R Series II power, response and control deliver more production at lower cost-per-yard. Engine Advanced Modular Cooling System Drive Train ✔ The rugged, easy-to-service C9 engine (AMOCS) ✔ Matched with the electronic engine features an electronically controlled, AMOCS utilizes an exclusive two pass control, the Caterpillar® electronic direct injection fuel system for cooling system and increased cooling transmission control allows the power improved fuel efficiency and reduced surface area to provide significantly train to work more efficiently. pg. 6 emissions. The C9 meets EPA, EU more cooling efficiency than and JMOC emissions regulations. pg. 4 conventional cooling systems. ✔ Air-to-air aftercooler improves engine performance and reduces emissions. pg. 5 Structure Undercarriage Mainframe is heavy, strong and durable. With the elevated sprocket design, the Strong case, steel castings and final drives are located above the work reinforced frame rails provide durable area, isolating them from ground support to the undercarriage, elevated induced impacts. The different final drives and other integral frame undercarriage configurations allow you components. pg. 7 to match the machine to the application. pg. 12 Engineered for demanding work, the D6R Series II is designed to be productive in a variety of applications.
    [Show full text]
  • Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
    AMPHIBIOUS FISHES: TERRESTRIAL LOCOMOTION, PERFORMANCE, ORIENTATION, AND BEHAVIORS FROM AN APPLIED PERSPECTIVE BY NOAH R. BRESSMAN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVESITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2020 Winston-Salem, North Carolina Approved By: Miriam A. Ashley-Ross, Ph.D., Advisor Alice C. Gibb, Ph.D., Chair T. Michael Anderson, Ph.D. Bill Conner, Ph.D. Glen Mars, Ph.D. ACKNOWLEDGEMENTS I would like to thank my adviser Dr. Miriam Ashley-Ross for mentoring me and providing all of her support throughout my doctoral program. I would also like to thank the rest of my committee – Drs. T. Michael Anderson, Glen Marrs, Alice Gibb, and Bill Conner – for teaching me new skills and supporting me along the way. My dissertation research would not have been possible without the help of my collaborators, Drs. Jeff Hill, Joe Love, and Ben Perlman. Additionally, I am very appreciative of the many undergraduate and high school students who helped me collect and analyze data – Mark Simms, Tyler King, Caroline Horne, John Crumpler, John S. Gallen, Emily Lovern, Samir Lalani, Rob Sheppard, Cal Morrison, Imoh Udoh, Harrison McCamy, Laura Miron, and Amaya Pitts. I would like to thank my fellow graduate student labmates – Francesca Giammona, Dan O’Donnell, MC Regan, and Christine Vega – for their support and helping me flesh out ideas. I am appreciative of Dr. Ryan Earley, Dr. Bruce Turner, Allison Durland Donahou, Mary Groves, Tim Groves, Maryland Department of Natural Resources, UF Tropical Aquaculture Lab for providing fish, animal care, and lab space throughout my doctoral research.
    [Show full text]
  • Gait Analysis in Uner Tan Syndrome Cases with Key Symptoms of Quadrupedal Locomotion, Mental Impairment, and Dysarthric Or No Speech
    Article ID: WMC005017 ISSN 2046-1690 Gait Analysis in Uner Tan Syndrome Cases with Key Symptoms of Quadrupedal Locomotion, Mental Impairment, and Dysarthric or No Speech Peer review status: No Corresponding Author: Submitting Author: Prof. Uner Tan, Senior Researcher, Cukurova University Medical School , Cukurova University, Medical School, Adana, 01330 - Turkey Article ID: WMC005017 Article Type: Research articles Submitted on: 09-Nov-2015, 01:39:27 PM GMT Published on: 10-Nov-2015, 08:43:08 AM GMT Article URL: http://www.webmedcentral.com/article_view/5017 Subject Categories: NEUROSCIENCES Keywords: Uner Tan syndrome, quadrupedal locomotion, ataxia, gait, lateral sequence, diagonal sequence, evolution, primates How to cite the article: Tan U. Gait Analysis in Uner Tan Syndrome Cases with Key Symptoms of Quadrupedal Locomotion, Mental Impairment, and Dysarthric or No Speech. WebmedCentral NEUROSCIENCES 2015;6(11):WMC005017 Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source(s) of Funding: None Competing Interests: None Additional Files: Illustration 1 ILLUSTRATION 2 ILLUSTRATION 3 ILLUSTRATION 4 ILLUSTRATION 5 ILLUSTRATION 6 WebmedCentral > Research articles Page 1 of 14 WMC005017 Downloaded from http://www.webmedcentral.com on 10-Nov-2015, 08:43:10 AM Gait Analysis in Uner Tan Syndrome Cases with Key Symptoms of Quadrupedal Locomotion, Mental Impairment, and Dysarthric or No Speech Author(s): Tan U Abstract sequence, on the lateral and on the diagonals.” This child typically exhibited straight legs during quadrupedal standing. Introduction: Uner Tan syndrome (UTS) consists of A man with healthy legs walking on all fours was quadrupedal locomotion (QL), impaired intelligence discovered by Childs [3] in Turkey, 1917.
    [Show full text]
  • Specifications
    Specifications Model Unit T80 (Narrow) T80 (Standard) T80COMFORT CAB EDITION Engine Net Hp @2600 RPM* HP (kw) 78 (58) Horsepower PTO HP @2600 RPM* HP (kw) 66 (50) Type 4 - Cylinder Turbocharged Diesel Engine Engine Model 4TNV98T Displacement cu.in. (L) 203 (3.3) Fuel Capacity US gal. (L) 38 (146) Type Collar Shift with Hydraulic Shuttle Transmission Speed 12F /12R Max. Travel Speed mph (km/h) 10 (16) Brakes Wet Multi-Disk Steering System FDS (Forced Differential Steering) Type Fully Independent Power Takeoff Speed RPM 540 Type Open-Center Hydraulic System Hydraulic Implement Pump GPM (Lpm) 12.6 (48) Category 2/1 Rear 3-Point Hitch Lift Capacity @ OECD Frame lb. (kg) 4400 (2000) Type Rubber (with embedded metal core and wires) Tracks Track Width 11 (280) 18 (450) Overall Length in. (mm) 146 (3715) Overall Width in. (mm) 52 (1310) 65 (1650) Dimensions Overall Height in. (mm) 97 (2460) 96.5 (2445) Tractor Weight lb. (kg) 7055 (3200) 7407 (3360) Ground Pressure* psi (MPa) 4.9 (0.034) 3.2 (0.022) * Manufacturer’s Estimate Attachments in. 97 Weight Set - 66lbs x 8pcs 145 in. 65 in. 52 in. YANMAR AGRICULTURAL EQUIPMENT CO., LTD. HEAD OFFICE 1-32, Chayamachi, Kita-ku, Osaka 530-8321 JAPAN YANMAR AMERICA CORPORATION 101 INTERNATIONAL PKWY, ADAIRSVILLE, GA 30103 TEL: 770.877.9894 WWW.YANMARTRACTOR.COM The information in this brochure is accurate as of the date of printing and subject to change. All rights reserved by and belong to YANMAR®. Copyright 2014. Get on Track All Weather, Day or Night Driver’s Cab Inside the T80-CCE’s heated and air-conditioned Through its low compaction, outstanding mobility, easy operation, simple maintenance and lots of field-oriented driver’s station a floating deck system of anti-vibration rubber body mounts has been features, Yanmar’s T80 Comfort Cab Edition (CCE) rubber-track crawler brings new and innovative benefits incorporated to reduce both vibration and noise factors for the operator.
    [Show full text]
  • Human Hands-And-Knees Crawling Movement Analysis Based on Time-Varying Synergy and Synchronous Synergy Theories
    Mathematical Biosciences and Engineering, 16(4): 2492–2513. DOI: 10.3934/mbe.2019125 Received: 24 December 2018 Accepted: 06 March 2019 Published: 22 March 2019 http://www.aimspress.com/journal/MBE Research article Human hands-and-knees crawling movement analysis based on time-varying synergy and synchronous synergy theories Teng Li , Xiang Chen *, Shuai Cao , Xu Zhang and Xun Chen Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China * Correspondence: Email: [email protected]. Abstract: This paper aims to investigate human hands-and-knees crawling movement from the aspect of synchronous (SYN) and time-varying (TV) muscle synergy analysis. Nine healthy children and 11 children with cerebral palsy were recruited. During hands-and-knees crawling, surface electromyography (sEMG) signals from 12 main muscles of upper limbs and trunk were recorded, and muscle synergies were extracted based on TV synergy and SYN synergy theories. From the perspectives of repeatability, symmetry and similarity, the abilities of these two types of synergies to characterize crawling movement and to distinguish normal and abnormal crawling were explored. We found that: First, SYN synergy is better than TV synergy in depicting the body symmetry during crawling movement. However, TV synergy is more suitable than SYN synergy for distinguishing normal and abnormal crawling from the perspective of symmetry. Second, the abilities of SYN synergy and TV synergy in depicting the crawling repeatability are not comparable, and both have the potential to depict the crawling abnormality from the perspective of repeatability. Third, from the angle of inter-subject similarity, SYN synergy has the potential to describe the abnormal crawling pattern.
    [Show full text]
  • The Project Design of the Tracked Vehicle Hydraulic Mechanical Differential Steering Zhaozhong Yang
    2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016) The Project Design of the Tracked Vehicle Hydraulic Mechanical Differential Steering Zhaozhong Yang1, a, Liwei Wang2, b, Caoyang Shi3, c 1,2troops 63981, Wuhan, 430311, China 3A Agent's Room, Zhangjiakou, 075041, China aemail: [email protected],bemail: [email protected], cemail:[email protected] Keywords: Tracked vehicle; The hydraulic mechanical differential steering; Design Abstract. Based on the principle of hydraulic mechanical stepless transmission is tracked vehicle hydraulic mechanical differential steering system can effectively improve the vehicle's steering can win, is has good prospects for development of a tracked vehicle steering model. Papers on tracked vehicle and its present situation and trend of development of the steering system, analysis of the hydraulic mechanical differential steering system structure, working principle, the vehicle steering lung can and on the basis of the research and application status at home and abroad, puts forward the main content of the steering system research and to solve the problem. In the output shunt transmission and input shunt two basic hydraulic mechanical transmission based on the analysis of the features, according to the requirements of the tracked vehicle steering, identified a new type of hydraulic mechanical differential steering system transmission scheme, this scheme has the advantages of simple structure and increasing the torsional speed down, caterpillar vehicle is suitable for agricultural use. Introduction Tracked vehicles, as a kind of "spread" the road vehicles, its unique travel system to make it a wheeled vehicle has many outstanding advantages: big traction, suitable for heavy duty operation, such as, rake and earthmoving operations; Grounding than the small, the farmland on the compaction, the extent of damage light; Across the ditch the bunds ability, etc.
    [Show full text]
  • Kinematic and Gait Similarities Between Crawling Human Infants and Other Quadruped Mammals
    ORIGINAL RESEARCH ARTICLE published: 09 February 2015 doi: 10.3389/fneur.2015.00017 Kinematic and gait similarities between crawling human infants and other quadruped mammals Ludovic Righetti 1*, Anna Nylén2, Kerstin Rosander 2 and Auke Jan Ijspeert 3 1 Autonomous Motion Department, Max-Planck Institute for Intelligent Systems, Tübingen, Germany 2 Uppsala Child and Baby Lab, Department of Psychology, Uppsala University, Uppsala, Sweden 3 Biorobotics Laboratory, Interfaculty Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Edited by: Crawling on hands and knees is an early pattern of human infant locomotion, which offers Uner Tan, Cukurova University, Turkey an interesting way of studying quadrupedalism in one of its simplest form. We investigate Reviewed by: how crawling human infants compare to other quadruped mammals, especially primates. Héctor Alberto González-Usigli, Instituto Mexicano del Seguro Social, We present quantitative data on both the gait and kinematics of seven 10-month-old crawl- Mexico ing infants. Body movements were measured with an optoelectronic system giving precise Katya Kotschet, St Vincent’s Hospital, data on 3-dimensional limb movements. Crawling on hands and knees is very similar to the Australia locomotion of non-human primates in terms of the quite protracted arm at touch-down, the *Correspondence: coordination between the spine movements in the lateral plane and the limbs, the relatively Ludovic Righetti, Autonomous Motion extended limbs during locomotion and the strong correlation between stance duration and Department, Max-Planck Institute for Intelligent Systems, Paul-Erlich Str. speed of locomotion. However, there are important differences compared to primates, 15, Tübingen 72076, Germany such as the choice of a lateral-sequence walking gait, which is similar to most non-primate e-mail: ludovic.righetti@tuebingen.
    [Show full text]
  • California Native Birds
    California Native Birds De Anza College Biology 6C: Ecology and Evoluon Bruce Heyer Red Tailed Hawk (Buteo Jamaicensis) Accipitridae (hawks) • Broad, rounded wings and a short, wide tail. • The tail is usually pale below and cinnamon‐red above • Flies in wide circles high above ground. • Brown above, and pale underbelly • Habitat: In open country, perch on fences, poles, trees, etc. 1 Turkey Vulture Cathartes aura Cathardae (vultures) • Large dark birds, have a featherless red head and pale bill. Dark feathers (brown, look black from father). Have pale underside of feathers (“two‐ tone” appearance) • Commonly found in open areas. • Very few wing beats, characterisc soaring. California Quail Callipepla californica Phasianidae (partridges) • Plump, short‐necked game birds with a small head and bill. They fly on short, very broad wings. Both sexes have a comma‐ shaped topknot of feathers projecng forward from the forehead. • Adult males are rich gray and brown, with a black face outlined with bold white stripes. Females are a plainer brown and lack the facial markings. Both sexes have a paern of white, creamy, and chestnut scales on the belly. • Live in scrublands and desert areas. • Diet consists of seeds, some vegetaon, and insects 2 Mourning Dove Zenaida macroura Columbidae (doves) • Plump bodies, small bill and short legs. Pointed tail. Usually greyish‐tan with black spots on wings. White ps to tail feathers. • Beat wings rapidly, and powerfully. • Found everywhere. • Usually feeds on seeds. Rock Dove (Pigeon) Columba livia Columbidae (doves) • Larger than mourning doves, large bodies, small heads and feet. Wide, rounded tails and pointed wings. • Generally blue‐gray, with iridescent throat feathers, bright feet.
    [Show full text]
  • Pseudemys Concinna
    2QWRJHQ\RIP\RVLQLVRIRUPH[SUHVVLRQDQGSUHKHQVLOHIXQFWLRQLQWKHWDLORIWKHJUH\ VKRUWWDLOHGRSRVVXP Monodelphis domestica E\ '\ODQ57KRPDV 6XEPLWWHGLQ3DUWLDO)XOILOOPHQWRIWKH5HTXLUHPHQWV IRUWKH'HJUHHRI 0DVWHURI6FLHQFH LQWKH %LRORJLFDO6FLHQFHV 3URJUDP <281*672:167$7(81,9(56,7< 'HFHPEHU 2QWRJHQ\RIP\RVLQLVRIRUPH[SUHVVLRQDQGSUHKHQVLOHIXQFWLRQLQWKHWDLORIWKHJUH\ VKRUWWDLOHGRSRVVXP Monodelphis domestica '\ODQ57KRPDV ,KHUHE\UHOHDVHWKLVWKHVLVWRWKHSXEOLF,XQGHUVWDQGWKDWWKLVWKHVLVZLOOEHPDGH DYDLODEOHIURPWKH2KLR/,1.(7'&HQWHUDQGWKH0DDJ/LEUDU\&LUFXODWLRQ'HVNIRU SXEOLFDFFHVV,DOVRDXWKRUL]HWKH8QLYHUVLW\RURWKHULQGLYLGXDOVWRPDNHFRSLHVRIWKLV WKHVLVDVQHHGHGIRUVFKRODUO\UHVHDUFK 6LJQDWXUH Dylan R. Thomas6WXGHQW 'DWH $SSURYDOV Dr. Michael T. Butcher7KHVLV$GYLVRU 'DWH Dr. Mark D. Womble&RPPLWWHH0HPEHU 'DWH Dr. Gary R. Walker&RPPLWWHH0HPEHU 'DWH Dr. Sal Sanders$VVRFLDWH'HDQ6FKRRORI*UDGXDWH6WXGLHV 'DWH '\ODQ57KRPDV ABSTRACT 7HUUHVWULDO RSRVVXPV XVH WKHLU VHPLSUHKHQVLOH WDLO IRU JUDVSLQJ QHVWLQJ PDWHULDOV DV RSSRVHG WR ORFRPRWRU PDQHXYHULQJ 7KH REMHFWLYH RI WKLV VWXG\ LV WR UHODWH WKH GHYHORSPHQWRIWKLVDGDSWLYHEHKDYLRUZLWKRQWRJHQHWLFFKDQJHVLQP\RVLQKHDY\FKDLQ 0+& JHQH UHJXODWLRQ DQG LVRIRUP H[SUHVVLRQLQ WKH WDLO IURP ZHHNV WR DGXOWKRRG Monodelphis domestica LVH[SHFWHGWRGHPRQVWUDWHDSURJUHVVLYHDELOLW\WRIOH[WKHWDLOXS WR DJH PRQWKV ZKHQ LW ZLOO KDYH IXOO XVH RI LWV WDLO DQG VKRXOG H[KLELW URXWLQH QHVW FRQVWUXFWLRQ:HK\SRWKHVL]HWKDWMXYHQLOHVWDJHV ±PRQWKV ZLOOEHFKDUDFWHUL]HGE\ UHWHQWLRQ RI WKH IDVW QHRQDWDO
    [Show full text]
  • Locomotion of Reptiles" Will Be of Interest to a Wide Range of Readers
    REVIEW A RTICLES Editorial note. We are trying to introduce a "new look" to the BHS Bulletin, and one of our plans is to commission articles by well-known zoologists summarising recent advances in their area of expertise, as they relate to herpetology. We are particularly pleased that Professor McNeill Alexander of Leeds University agreed to write the first of these. We hope that this masterly summary of "Locomotion of Reptiles" will be of interest to a wide range of readers. Roger Meek and Roger Avery, Co-Editors. Locomotion of Reptiles R. McNEILL ALEXANDER Institute for Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK. [email protected] ABSTRACT – Reptiles run, crawl, climb, jump, glide and swim. Exceptional species run on the surface of water or “swim” through dry sand. This paper is a short summary of current knowledge of all these modes of reptilian locomotion. Most of the examples refer to lizards or snakes, but chelonians and crocodilians are discussed briefly. Extinct reptiles are omitted. References are given to scientific papers that provide more detailed information. INTRODUCTION the body and the leg joints much straighter, as in his review is an attempt to explain briefly elephants. The bigger an animal is, the harder it Tthe many different modes of locomotion that is for them to support the weight of the body in a reptiles use. Some of the information it gives lizard-like stance. Imagine two reptiles of exactly has been known for many years, but many of the the same shape, one twice as long as the other.
    [Show full text]
  • Public Auction
    1 OF 5 New as 1 OF 7 New as 2010 2012 TION (5) CATERPILLAR, KOMATSU & KUBOTA Excavators, New as 2010 (7) KUBOTA, TEREX, INTERNATIONAL, CATERPILLAR & Other Track & Wheel Loaders Family Retiring After 75 Successful Years 1 OF 5 MIKE DELUCIO & SON, INC. 3436 Chester Blvd. in Richmond, Indiana 47374 FRIDAY, DECEMBER 11TH STARTING AT 10AM Inspection: Day prior to auction from 9AM - 4PM PUBLIC AUC Low Hours, Low Miles, Always Under Roof (5) CASE, FORD & NEW HOLLAND Backhoes 3 OF 13 1 OF 2 (13) CATERPILLAR, CASE, INTERNATIONAL & JOHN DEERE Dozers (2) MACK CH613 & R688ST Truck Tractors 2004 1 OF 5 1 OF 9 2004 MACK Granite T/A Roll Off Truck (5) BOMAG, CATERPILLAR, RAYCO & Other Compactors 1 OF 10 1 OF 9 New as 2010 (10) LOAD KING, FELLING, TALBERT & Other Trailers (9) GMC, CHEVROLET & FORD Service (9) MACK, PETERBILT, CHEVROLET & Other Dump Trucks & Pickup Trucks, New as 2010 MIKE DELUCIO & SON, INC. / 3436 CHESTER BLVD. IN RICHMOND, INDIANA 47374 2008 3,337 2007 1,065 HOURS HOURS 2008 CATERPILLAR 320D LRR Acert C6.4 Excavator 2007 KOMATSU PC138USLC-E0 Excavator CATERPILLAR M312 Wheel Excavator 2005 CATERPILLAR D8N Dozer 2005 CATERPILLAR D7R Series II Dozer 2003 CATERPILLAR D6N LGP DOZER 2004 2,580 3,361 HOURS HOURS 2004 CATERPILLAR D6RXL Series II Dozer 2002 CATERPILLAR D6MXL Dozer CATERPILLAR D6MXL Dozer 2011 832 2012 997 HOURS HOURS 2011 KUBOTA SVL75 Compact Track Loader 2012 TEREX PT-80 Compact Track Loader INTERNATIONAL DRESSER 540 Wheel Loader Low as 3,225 EXCAVATORS 4,175 HOURS 2008 CAT 320D LRR Acert C6.4, 9’-6” Stick, Hyd.
    [Show full text]
  • Alexander 2013 Principles-Of-Animal-Locomotion.Pdf
    .................................................... Principles of Animal Locomotion Principles of Animal Locomotion ..................................................... R. McNeill Alexander PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Second printing, and first paperback printing, 2006 Paperback ISBN-13: 978-0-691-12634-0 Paperback ISBN-10: 0-691-12634-8 The Library of Congress has cataloged the cloth edition of this book as follows Alexander, R. McNeill. Principles of animal locomotion / R. McNeill Alexander. p. cm. Includes bibliographical references (p. ). ISBN 0-691-08678-8 (alk. paper) 1. Animal locomotion. I. Title. QP301.A2963 2002 591.47′9—dc21 2002016904 British Library Cataloging-in-Publication Data is available This book has been composed in Galliard and Bulmer Printed on acid-free paper. ∞ pup.princeton.edu Printed in the United States of America 1098765432 Contents ............................................................... PREFACE ix Chapter 1. The Best Way to Travel 1 1.1. Fitness 1 1.2. Speed 2 1.3. Acceleration and Maneuverability 2 1.4. Endurance 4 1.5. Economy of Energy 7 1.6. Stability 8 1.7. Compromises 9 1.8. Constraints 9 1.9. Optimization Theory 10 1.10. Gaits 12 Chapter 2. Muscle, the Motor 15 2.1. How Muscles Exert Force 15 2.2. Shortening and Lengthening Muscle 22 2.3. Power Output of Muscles 26 2.4. Pennation Patterns and Moment Arms 28 2.5. Power Consumption 31 2.6. Some Other Types of Muscle 34 Chapter 3.
    [Show full text]