Pieter Willem Leenhouts (1926–2004)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
'Ala'alahua, Mahoe
Plants ʹAlaʹalahua, mahoe Alectryon macrococcus var. auwahiensis SPECIES STATUS: Federally Listed as Endangered Genetic Safety Net Species IUCN Red List Ranking ‐ CR B2ab(i,ii,iii,iv,v) Hawai‘i Natural Heritage Ranking ‐ Critically Imperiled (G1T1) Endemism ‐ Maui Kim and Forest Starr, USGS Critical Habitat ‐ Designated SPECIES INFORMATION: Alectryon macrococcus of the soapberry family (Sapindaceae) is a tree up to 36 ft (11 m) tall with reddish brown branches. The leaves are usually 8 to 22 in (20 to 55 cm) long, typically with two to five pairs of egg‐shaped, slightly asymmetrical leaflets. Glossy and smooth above, the leaves have a conspicuous netted pattern of veins. A dense covering of rust‐colored hairs persists on the lower surfaces of mature leaves of A. macrococcus var. auwahiensis, whereas the mature leaves of A. macrococcus var. macrococcus lack hairs or are only slightly hairy. In both varieties, the flowers, which may be either bisexual or male, are borne in branched clusters up to l2 in (30 cm) long and lack petals. The fruit of this tree provided food for the early Hawaiians, as both the seed and the scarlet‐colored, fleshy aril around it have mild but slightly sweet flavors. The two varieties recognized for this species are Federally Listed as Endangered. The first, variety macrococcus, is found on four Hawaiian islands. The second, discussed here, is variety auwahiensis, found only on the island of Maui, and is much rarer. DISTRIBUTION: A. macrococcus var. auwahiensis is found only on the island of Maui, on the south slope of the volcano Haleakalā, at elevations of 1,017 and 3,562 m (1,168 and 3,337 ft). -
A New Species from Southern Namibia ⁎ W
Available online at www.sciencedirect.com South African Journal of Botany 77 (2011) 608–612 www.elsevier.com/locate/sajb Commiphora buruxa (Burseraceae), a new species from southern Namibia ⁎ W. Swanepoel H.G.W.J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria 0002, South Africa Received 16 August 2010; received in revised form 23 November 2010; accepted 7 December 2010 Abstract Commiphora buruxa Swanepoel, described here as a new species, is known only from the Gariep Centre of Endemism, southwestern Namibia. It appears to be most closely related to C. cervifolia Van der Walt. Diagnostic morphological characters of C. buruxa include a viscous, cream-coloured exudate, variably simple to trifoliolate leaves, and a putamen covered by a small cupular pseudo-aril. Illustrations of the plant and a distribution map are provided. The species is known from less than 20 plants. © 2011 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Burseraceae; Commiphora; Gariep Centre; New species; Southern Africa; Taxonomy 1. Introduction molecular evidence subsequently confirmed that they represent an undescribed species of Commiphora. In November 2006, At present thirty-eight described species of Commiphora during a botanical expedition to the Huns Mountains about Jacq. are known from the Flora of southern Africa region, no 100 km further to the north–northwest, another population of less than thirty of which occur in Namibia (Craven, 1999; the same species was found on the lower slopes of these Germishuizen and Meyer, 2003; Swanepoel, 2005, 2006, 2007, mountains, growing in a valley leading to the Konkiep River. 2008). Five of these species are endemic or near-endemic to the Apparently no other collections of the new species exist, as no Gariep Centre of Endemism, a biogeographical region along the herbarium specimens could be found in either PRE or WIND. -
Identification of Regulatory Genes Implicated in Continuous Flowering of Longan (Dimocarpus Longan L.)
RESEARCH ARTICLE Identification of Regulatory Genes Implicated in Continuous Flowering of Longan (Dimocarpus longan L.) Tianqi Jia1, Danfeng Wei1, Shan Meng1, Andrew C. Allan2, Lihui Zeng1* 1. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China, 2. The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Mt Albert, Auckland, New Zealand *[email protected] OPEN ACCESS Citation: Jia T, Wei D, Meng S, Allan AC, Zeng L (2014) Identification of Regulatory Genes Abstract Implicated in Continuous Flowering of Longan (Dimocarpus longan L.). PLoS ONE 9(12): e114568. doi:10.1371/journal.pone.0114568 Longan (Dimocarpus longan L.) is a tropical/subtropical fruit tree of significant Editor: Manoj Prasad, National Institute of Plant economic importance in Southeast Asia. However, a lack of transcriptomic and Genome Research, India genomic information hinders research on longan traits, such as the control of Received: July 2, 2014 flowering. In this study, high-throughput RNA sequencing (RNA-Seq) was used to Accepted: November 12, 2014 investigate differentially expressed genes between a unique longan cultivar Published: December 5, 2014 ‘Sijimi’(S) which flowers throughout the year and a more typical cultivar Copyright: ß 2014 Jia et al. This is an open- ‘Lidongben’(L) which flowers only once in the season, with the aim of identifying access article distributed under the terms of the candidate genes associated with continuous flowering. 36,527 and 40,982 Creative Commons Attribution License, which permits unrestricted use, distribution, and repro- unigenes were obtained by de novo assembly of the clean reads from cDNA duction in any medium, provided the original author and source are credited. -
Bursera Simaruba Seeds Subjected to Various Scarification Treatments Michael Morgan and Thomas W
Germination Rates of Bursera simaruba Seeds Subjected to Various Scarification Treatments Michael Morgan and Thomas W. Zimmerman Agroforestry Research Specialist II, University of the Virgin Islands Agricultural Experiment Station, Kingshill, St. Croix, U.S. Virgin Islands; Research Associate Professor, Biotechnology and Agroforestry, University of the Virgin Islands Agricultural Experiment Station, Kingshill, St. Croix, U.S. Virgin Islands Abstract Tainos, also called Arawaks, were the people Columbus encountered on the Caribbean islands when he claimed the Bursera simaruba (L.) Sarg. seed were subjected to five scari- Americas for Spain in 1492. fication treatments to determine their efficacy on subsequent germination. Seeds that were scarified with sandpaper had the Distribution and Characteristics highest mean germination, although it was not statistically different than the untreated control. Those treated with hot Bursera simaruba is native to northern South America and water had significantly lower germination than the control, the Caribbean Basin (Gibney 2004, Jones 1995, Kirk 2009, suggesting that temperatures may have been too hot. These Little and Wadsworth 1964). The species is abundant in results indicate that mechanical scarification may improve the U.S. Virgin Islands and Puerto Rico. It has also become germination of this species but that further research is needed naturalized in south Florida, but some discussion remains to refine treatments. regarding whether B. simaruba is an introduced species to Florida (Navarrete-Tindall and Orellana-Nuñez 2002, Introduction Nelson 1994). B. simaruba is very tolerant of salt, wind, and drought, making it well adapted to the semiarid Virgin Islands Bursera simaruba (L.) Sarg., known as turpentine tree or environment. It is found close to the sea and on hilltops, and gumbo-limbo, is easily recognized by its reddish, papery it is native to limestone-derived soils (Kirk 2009). -
Flowering Induction of Longan Trees ( Dimocarpus Longan Lour.) Grown in Sarawak
Flowering Induction of Longan Trees ( Dimocarpus longan Lour.) Grown In Sarawak by Lau Cheng Yuon Agriculture research Centre, Semongok. Tel: 062-611171 fax: 082-611178 E-mail: [email protected] Abstract. Under the tropical climate of Sarawak, Edaw longan trees can be induced to flower while flowering intensity of free-flowering Diamond longan can be improved by application of chemical agents such as potassium chlorate, sodium chlorate and 'Vita-min'. The use of sodium chlorate is recommended as it is easily available and the cheapest one to use. It can be applied as a soil drench at a rate of 15g per m2 canopy. The best time of application is when trees have shoots of mature leaves with sign of new flushes. With this technology, cultivation of longan especially the high quality Edaw cultivar in the State can be promoted and encouraged to cater for domestic demand. 1.Introduction. The longan ( Dimocarpus longan Lour.) is a sub-tropical fruit in the family Sapindaceae and is native to Southeast Asia. It is now primarily cultivated in China, Taiwan, Thailand, Vietnam as well as Queensland (Australia) and Florida and Hawaii (U.S.A). This fruit is considered one of the important economic fruit crops in South East Asia (Crane, 2000). Longan planting materials from Florida such as Kohala and Thailand such as Baidum, Biew kiew, Chompoo, Fortune eye. Diamond, Ping pong, Edaw and Ezami were acquired by ARC, Semongok in the mid-eighties and since the nineties respectively for planting and evaluation purposes. Local nurserymen started to import and promote planting of free flowering cultivars such as Diamond and Ping pong in the late nineties. -
Studies on New Guinea Moths. 1. Introduction (Lepidoptera)
PROC. ENTOMOL. SOC. WASH. 105(4), 2003, pp. 1034-1042 STUDIES ON NEW GUINEA MOTHS. 1. INTRODUCTION (LEPIDOPTERA) SCOTT E. MILLER, VOJTECH NOVOTNY, AND YVES BASSET (SEM) Department of Systematic Biology, National Museum of Natural History, Smith- sonian Institution, Washington, DC 20560-0105, U.S.A. (e-mail: [email protected]. edu); (VN) Institute of Entomology, Czech Academy of Sciences and Biological Faculty, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; (YB) Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Ancon, Panama Abstract.•This is the first in a series of papers providing taxonomic data in support of ecological and biogeographic studies of moths in New Guinea. The primary study is an extensive inventory of the caterpillar fauna of a lowland rainforest site near Madang, Papua New Guinea, from 1994•2001. The inventory focused on the Lepidoptera com- munity on 71 woody plant species representing 45 genera and 23 families. During the study, 46,457 caterpillars representing 585 species were sampled, with 19,660 caterpillars representing 441 species reared to adults. This introductory contribution is intended to provide background on the project, including descriptions of the study site, sampling methods, and taxonomic methods. Key Words: Malesia, Papua New Guinea, Lepidoptera, biodiversity, rearing, community ecology A very large portion of tropical biodi- 1992 and 1993 (Basset 1996, Basset et al. versity consists of herbivorous insects, and 1996). This paper represents the first in a among them, Lepidoptera are among the series of papers providing taxonomic doc- most amenable to study. To better under- umentation in support of the broader stud- stand the structure and maintenance of trop- ies, and is intended to provide general back- ical biodiversity, we undertook a series of ground, including descriptions of the study related inventories of Lepidoptera in New site, sampling methods, and taxonomic Guinea. -
DNA Barcoding Confirms Polyphagy in a Generalist Moth, Homona Mermerodes (Lepidoptera: Tortricidae)
Molecular Ecology Notes (2007) 7, 549–557 doi: 10.1111/j.1471-8286.2007.01786.x BARCODINGBlackwell Publishing Ltd DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera: Tortricidae) JIRI HULCR,* SCOTT E. MILLER,† GREGORY P. SETLIFF,‡ KAROLYN DARROW,† NATHANIEL D. MUELLER,§ PAUL D. N. HEBERT¶ and GEORGE D. WEIBLEN** *Department of Entomology, Michigan State University, 243 Natural Sciences Building, East Lansing, Michigan 48824, USA, †National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA, ‡Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, Minnesota 55108–1095 USA, §Saint Olaf College, 1500 Saint Olaf Avenue, Northfield, MN 55057, USA,¶Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1, **Bell Museum of Natural History and Department of Plant Biology, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Avenue, Saint Paul, Minnesota 55108–1095, USA Abstract Recent DNA barcoding of generalist insect herbivores has revealed complexes of cryptic species within named species. We evaluated the species concept for a common generalist moth occurring in New Guinea and Australia, Homona mermerodes, in light of host plant records and mitochondrial cytochrome c oxidase I haplotype diversity. Genetic divergence among H. mermerodes moths feeding on different host tree species was much lower than among several Homona species. Genetic divergence between haplotypes from New Guinea and Australia was also less than interspecific divergence. Whereas molecular species identification methods may reveal cryptic species in some generalist herbivores, these same methods may confirm polyphagy when identical haplotypes are reared from multiple host plant families. A lectotype for the species is designated, and a summarized bibliography and illustrations including male genitalia are provided for the first time. -
Covered with Appressed
BLUMEA 24 (1978) 395^103 Systematic notes on the Sapindaceae-Nephelieae P.W. Leenhouts Rijksherbarium, Leiden, The Netherlands Summary the the tribe 1. The interrelations between genera together constituting the Dimocarpus group in In Nephelieae are represented in a scheme. this scheme are added the main characters that are thought to be of phylogenetic importance. A 2. neotype.is proposed for Cubilia cubili (Blanco) Adelb., the single species of its genus. To its distribution can be added the eastern half of Borneo, incl. also the Island of P. Laut. Mention is made of a geographic clinal variation in a few macromorphological characters. 3. Lilchi is considered to comprise only one species, L. chinensis Sonn., which is subdivided into three subspecies: subsp. chinensis, the commonly grown form, cultivated for thousands of years already, apparently adapted (by nature or partly by selection by man?) to a monsoon climate, if actually wild probably originating from northern Indo China; subsp. philippinensis (Radlk.) Leenh., a wild form closely related to subsp. chinensis, known from the Philippines and New Guinea; and subsp. javensis Leenh., strikingly different from both other forms, known only as a cultivated fruit tree from southern Indo China and Java, apparently adapted to an everwet tropical climate. For subsp. philippinensisa lectotype is proposed. 4. Pometia, though macromorphologically distinctly derived and, moreover, palynologically ap- exclusive in the alliance under connected with parently very discussion, seems clearly Dimocarpus, the central genus in the group. I. Introduction brief In an earlier publication (J. Muller & P. W. Leenhouts, 1976: 427) a sketch was given of the phylogenetic relationships within the Sapindaceae-Ne- characters. -
Bursera Simaruba (L.) Sarg. Almac?Igo Gumbo Limbo : Burseraceae, Bursera Family
3ra simaruba (L.) Sarg. Almacigo, gumbo limbo SO-ITF-SM-35 October 1990 Burseraceae Bursera family John K. Francis monthly w&m mmn 'TPM * .J30. Bursera simaruba (L.) Sarg., known as almacigo (Spanish) can tolerate salt spray and some soil salinity (24). It is often and gumbo-limbo (English), also has more than 50 other found on elevated areas above beaches and on slight rises common names (11) and is a medium-sized tree of dry and just inland from coastal mangroves. The aspect and slope of moist forests in the Caribbean region. Its moderate size, sites do not appear to be very important factors affecting dis¬ compact crown, shiny green foliage, and brown, birchlike tribution (author, personal observation). Most almacigo trees bark have led to its use as an ornamental in many dry areas are found at low elevations in coastal areas (17); however, the (fig. 1). The wood is of low density but has a number of uses. tree also grows well inland in some areas and can be found at elevations of up to 1,800 m in Guatemala (24). HABITAT Associated Forest Cover Native Range Across its wide range, almacigo forms many associations. A few are listed below, beginning at the northern extent of The natural range of almacigo extends from southern the range and proceeding south. The upper Florida Keys Florida and the Bahamas through the Greater and Lesser commonly support Mastichodendron foetidissimum (Jacq.) Antilles and into northern South America (17,18), (fig. 2). It H.J. Lam., Metopium toxiferum (L.) Krug. & Urban, Lysiloma also grows on both coasts of central Mexico, through Central latisiliquum (L.) Benth., Chrysophyllum oliviforme L., Gym- America, and along the Pacific Coast of South America nanthes lucida Sw., and Guaiacum sanctum L. -
John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit
John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon GEOLOGY AND PALEOENVIRONMENTS OF THE CLARNO UNIT John Day Fossil Beds National Monument, Oregon By Erick A. Bestland, PhD Erick Bestland and Associates, 1010 Monroe St., Eugene, OR 97402 Gregory J. Retallack, PhD Department of Geological Sciences University of Oregon Eugene, OR 7403-1272 June 28, 1994 Final Report NPS Contract CX-9000-1-10009 TABLE OF CONTENTS joda/bestland-retallack1/index.htm Last Updated: 21-Aug-2007 http://www.nps.gov/history/history/online_books/joda/bestland-retallack1/index.htm[4/18/2014 12:20:25 PM] John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit (Table of Contents) JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon TABLE OF CONTENTS COVER ABSTRACT ACKNOWLEDGEMENTS CHAPTER I: INTRODUCTION AND REGIONAL GEOLOGY INTRODUCTION PREVIOUS WORK AND REGIONAL GEOLOGY Basement rocks Clarno Formation John Day Formation CHAPTER II: GEOLOGIC FRAMEWORK INTRODUCTION Stratigraphic nomenclature Radiometric age determinations CLARNO FORMATION LITHOSTRATIGRAPHIC UNITS Lower Clarno Formation units Main section JOHN DAY FORMATION LITHOSTRATIGRAPHIC UNITS Lower Big Basin Member Middle and upper Big Basin Member Turtle Cove Member GEOCHEMISTRY OF LAVA FLOW AND TUFF UNITS Basaltic lava flows Geochemistry of andesitic units Geochemistry of tuffs STRUCTURE OF CLARNO -
Tropical Fruits and Spices
INTERNATIONAL, INC NICARAGUA ARAP Agriculture Reconstruction Assistance Program TROPICAL FRUIT AND SPICES PROJECT Prepared by: Christopher Menzel Submitted by: Chemonics International Inc. To: United States Agency for International Development Managua, Nicaragua Under RAISE IQC Contract No. PCE-I-00-99-00003-00 Task Order No. 802 August 2001 TROPICAL FRUIT AND SPICES PROJECT CHEMONICS INTERNATIONAL, INC TROPICAL FRUIT AND SPICES PROJECT 2 CHEMONICS INTERNATIONAL, INC EMONICS INTERNATIONAL, INC TABLE OF CONTENTS Executive summary Page ii Recommendations and key findings Page v Acknowledgements Page vi Introduction and background Page 1 Geography and weather of Nicaragua Page 2 Agriculture in Nicaragua Page 3 Ecology of lychee production Page 4 Potential lychee cultivars for Nicaragua Page 5 Ecology of longan production Page 7 Potential longan cultivars for Nicaragua Page 9 Areas suitable for commercial lychee and longan production Page 11 General comments and suggestions for follow up Page 20 Contacts for importing lychee and longan cultivars Page 22 Bibliography Page 24 Terms of reference Page 26 Itinerary Page 27 Appendix 1. General information on lychee production Page 28 Appendix 2. General information on longan production Page 35 Appendix 3. Lychee and longan production and marketing in Australia Page 42 Appendix 4. Care of young trees Page 50 TROPICAL FRUIT AND SPICES PROJECT TROPICAL FRUIT AND SPICES PROJECT CHEMONICS INTERNATIONAL, INC EXECUTIVE SUMMARY Efforts are being made to increase agricultural production in northern Nicaragua, especially in areas affected by Hurricane Mitch. A project supported by Chemonics Inc., USAID, World Relief and Pueblos en Acción Comunitaria (PAC) is importing a range of tropical fruit trees and spices for evaluation as potential crops for domestic and export markets. -
Republic of Fiji: the State of the World's Forest Genetic Resources
REPUBLIC OF FIJI This country report is prepared as a contribution to the FAO publication, The Report on the State of the World’s Forest Genetic Resources. The content and the structure are in accordance with the recommendations and guidelines given by FAO in the document Guidelines for Preparation of Country Reports for the State of the World’s Forest Genetic Resources (2010). These guidelines set out recommendations for the objective, scope and structure of the country reports. Countries were requested to consider the current state of knowledge of forest genetic diversity, including: Between and within species diversity List of priority species; their roles and values and importance List of threatened/endangered species Threats, opportunities and challenges for the conservation, use and development of forest genetic resources These reports were submitted to FAO as official government documents. The report is presented on www. fao.org/documents as supportive and contextual information to be used in conjunction with other documentation on world forest genetic resources. The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO may not be held responsible for the use which may be made of the information contained in this report. STATE OF THE FOREST GENETIC RESOURCES IN FIJI Department of Forests Ministry of Fisheries and Forests for The Republic of Fiji Islands and the Secreatriat of Pacific Communities (SPC) State of the Forest Genetic Resources in Fiji _____________________________________________________________________________________________________________________ Table of Contents Executve Summary ………………………………………………………………………………………………………………………..…….. 5 Introduction ………………………………………………………………………………………………………………………………..…….. 6 Chapter 1: The Current State of the Forest Genetic Resources in Fiji ………………………………………………………………….…….