Fases Portadoras Do Arsénio Em Solos Da Área Mineira De São Domingos E Em Solos Não Contaminados Do Pomarão E Serra Do Caldeirão

Total Page:16

File Type:pdf, Size:1020Kb

Fases Portadoras Do Arsénio Em Solos Da Área Mineira De São Domingos E Em Solos Não Contaminados Do Pomarão E Serra Do Caldeirão Fases portadoras do arsénio em solos da área mineira de São Domingos e em solos não contaminados do Pomarão e Serra do Caldeirão Arsenic containing phases in soils from São Domingos mining area and in non-contaminated soils from Pomarão and Serra do Caldeirão M.M. Abreu1, E.S. Santos2, M.C.F. Magalhães3 & C. Nabais4 RESUMO trumental por activação de neutrões após digestão ácida e, o teor de As associado às A mina de São Domingos situa-se a SE várias fases suporte (complexo de troca, de Portugal na Faixa Piritosa Ibérica. No matéria orgânica, óxidos de Fe totais e não tempo dos romanos foi feita a exploração cristalinos e óxidos de Mn) através de intensiva de ouro, cobre e prata a partir do espectrometria de absorção atómica com gossan e, nos tempos modernos fez-se tam- geração de hidretos após extracção química bém a exploração dos sulfuretos maciços de selectiva, com reagentes específicos, em cobre com teores elevados de arsénio, zinco modo paralelo. e chumbo. Os solos da mina de São Domingos con- Para avaliar a perigosidade que representa têm teores totais elevados de As (1940-3030 o arsénio para o meio determinou-se a sua mg kg-1) porém, a fracção disponível é mui- distribuição pelas várias fases suporte nos to baixa (< 0,02% do total) sendo inferior à solos desenvolvidos sobre as escombreiras mesma fracção nos solos do Pomarão e da de gossan, tendo como referência solos não Serra do Caldeirão, onde corresponde em contaminados do Pomarão (SE Portugal) e média, respectivamente, a 0,13 e 1% do da Serra do Caldeirão (S Portugal). Os solos total. À fracção residual corresponde, nos (fracção <2 mm) foram caracterizados atra- solos da área mineira, a maior concentração vés de metodologia clássica relativamente em As (91-94% do total) porém, nos solos ao pH (H2O), granulometria, capacidade de do Pomarão e da Serra do Caldeirão a frac- troca catiónica, óxidos de Fe e Mn e minera- ção ligada aos óxidos de Fe cristalinos foi a logia. Nos solos determinou-se o teor total mais significativa (respectivamente, 24 e de As, Cu, Fe, Mn, Pb e Zn por análise ins- 37% do total). Nos solos de São Domingos 1 Dept. Ciências do Ambiente, Instituto Superior de Agronomia, Universidade Técnica de Lisboa (TULisbon), Tapada da Ajuda, 1349-017 Lisboa, e-mail: [email protected]; 2Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, e- mail: [email protected]; 3Dep.de Química e CICECO, Universidade de Aveiro, 3810-193 Aveiro, e-mail: [email protected]; 4Dep. de Botânica,Universidade de Coimbra, Calçada Martim de Freitas, Arcos do Jardim, 3000 Coimbra, e-mail: [email protected] 156 REVISTA DE CIÊNCIAS AGRÁRIAS foram identificadas várias fases sólidas con- total As (1940-3030 mg kg-1) but the avail- tendo arsenatos como: able fraction is very low (<0,02% from to- carminite (Fe2Pb(AsO4)2(OH)2), tal) being lower than Pomarão and Serra do mimetite (Pb5(AsO4)3Cl), Caldeirão available fractions (respectively, segnitite (Fe3Pb(AsO4) (HAsO4)(OH)6) 0,13 and 1% from total). Arsenic is mainly e mais raramente kankite (FeAsO4•3.5H2O) in the residual fraction of the soils of São que sendo muito insolúveis podem explicar Domingos mining area (91-94% of total) a baixa disponibilidade do arsénio nestes while in the Pomarão and Serra do Cal- meios. Apesar de o arsénio total nos solos deirão reference soils arsenic is mainly as- da área mineira ser muito elevado este ocor- sociated with crystalline Fe oxides (respec- re em formas que, nas condições físico- tively, 24 and 37% of total). químicas actuais, não representam perigosi- The arsenates: dade ambiental. carminite (Fe2Pb(AsO4)2(OH)2), mimetite (Pb5(AsO4)3Cl), segnitite (Fe3Pb(AsO4)(HAsO4)(OH)6), and ABSTRACT seldom kankite (FeAsO4•3.5H2O) were identified in São Domingos soils. The low São Domingos mining area is located in solubility of these solid phases can explain the Iberian Pyrite Belt, in south-east Portu- the low availability of arsenic present in gal. Intensive gossan gold, copper and silver these soils in spite of the high concentra- mining was done in roman times. More re- tions of total arsenic. The results show that, cently, mining activities were concentrated under the present physical-chemical condi- in the copper, zinc, arsenic and lead rich sul- tions, arsenic in the soils of the São Domin- fide orebodies. gos mine presents no environmental hazard. To evaluate arsenic hazard, soils devel- oped on the gossan mine waste piles were analysed, using as reference non- INTRODUÇÃO contaminated soils from Pomarão (south- east Portugal) and Serra do Caldeirão (south Nas antigas áreas mineiras, actualmente of Portugal). Soils were characterized by the abandonadas, ocorrem escombreiras resul- classical methodologies for pH (H2O), parti- tantes dos processos extractivos e inerentes cle size distribution, cation exchange capac- ao minério e seu encaixante, que são porta- ity, Fe and Mn oxides, and mineralogy. The doras de elementos químicos, em concen- soils (fraction <2 mm) were analysed, for tração elevada, podendo por isso ser fonte total concentrations of As, Cu, Fe, Mn, Pb da sua dispersão e consequentemente de and Zn by instrumental neutron activation contaminação ambiental, em particular, de analysis after acid digestion and, for the elementos vestigiais, tais como metais pesa- concentration of As associated with the dif- dos e metalóides. ferent soil phases (exchangeable complex, A transferência dos elementos químicos organic matter, total and non-crystalline Fe entre as várias fases constituintes do solo oxides and Mn oxides), by hydride genera- pode ser considerada como o principal pro- tion atomic absorption spectrometric after cesso no controlo da solubilidade, mobili- selective chemical extractions with appro- dade e disponibilidade dos mesmos para os priate reagents using the parallel method. organismos vivos (Kabata-Pendias, 2004). São Domingos soils contain high levels of Os elementos químicos estão associados às FASES PORTADORAS DO ARSÉNIO EM SOLOS DE UMA ÁREA MINEIRA 157 diferentes fases através de vários mecanis- determinar a especiação dos elementos ves- mos, tais como adsorção, troca iónica, co- tigiais, a extracção química sequencial é das precipitação e complexação (Navas e Lin- mais usadas, no entanto, esta tem sido sujei- dhorfer, 2003). Deste modo, podem estar ta a críticas várias que se prendem, com a presentes sob formas solúveis na água e em não selectividade dos diferentes reagentes posição de troca, em colóides inorgânicos e químicos, redistribuição dos elementos entre orgânicos, estando assim disponíveis para diversas fases, relação massa da amos- os organismos (Alloway, 1993; Tavares et tra/volume da solução extractante e ainda, a al., 2003) ou associados a componentes que ordem dos reagentes (Bermond, 1999). As muitas vezes os tornam imóveis, formando extracções químicas parciais em modo para- complexos de superfície com os óxidos de lelo têm sido defendidas por alguns autores ferro e manganês ou sob forma de quelatos, (Calvet et al., 1990; Gupta et al., 1990; associados à matéria orgânica, ou ainda Gommy, 1997) em alternativa à extracção fazendo parte da estrutura de fases sólidas química sequencial embora, tal como a primárias ou secundárias, tais como silicatos metodologia sequencial, possam também sulfossais, arsenatos, etc.. não traduzir a realidade de sistemas tão No contexto do sistema solo, a especiação complexos como o solo. Este tipo de meto- dos elementos vestigiais refere-se, não só dologias, que consistem em aplicar separa- aos processos, mas também à quantificação damente os reagentes utilizados, para a dis- das diferentes espécies assumidas pelo ele- solução das várias fases suporte do elemento mento no solo, bem como às formas e fases em análise, em diferentes sub-amostras da às quais estão associados. Assim, a especia- amostra inicial, têm sido também designa- ção dos elementos vestigiais está relaciona- das por extracções simultâneas (Gupta et al., da com a sua reactividade biogeoquímica e 1990) ou extracções simples (e.g. McGrath, com as várias condições físico-químicas do 1996; Gupta & Vollmer, 1996). solo (Kabata-Pendias, 2004). O arsénio é um elemento tóxico para os A realização de extracções químicas animais e para a maioria das plantas embora selectivas pode pois ser considerada como pareça ser também essencial quando em essencial para a compreensão da associação concentrações vestigiais (Uthus, 1992; dos elementos químicos às várias fracções Mayer et al., 1993). Ocorre primariamente do solo, os seus tipos de ligação, potencial em mineralizações que contenham minerais mobilidade dos mesmos e, consequente- de enxofre, tais como o realgar (AsS), ouro- mente, a sua disponibilidade em relação ao pigmento (As2S3) ou arsenopirite (FeAsS) conteúdo total (Armienta et al., 1996). De (Magalhães, 2002). Quando estes minerais facto, a identificação das fases às quais os sofrem meteorização em condições normais elementos químicos no solo estão associa- de oxidação na crusta terrestre forma-se, em dos permite, mais do que a simples avalia- geral, o ião arsenato. Nos solos, o compor- ção do seu teor total (Tessier et al., 1979; tamento químico e a toxicidade do arsénio é Gommy, 1997), um melhor conhecimento controlada pelo potencial redox, uma vez dos processos geoquímicos para a avaliação que, na gama de Eh e pH considerada nor- do seu potencial de mobilização e indução mal para os solos, as espécies mais comuns de riscos no ambiente e na saúde pública são os arsenatos e os arsenitos (O’Neill, (Kaasalainen & Yli-Halla, 2003; Navas & 1993; Kabata-Pendias & Pendias, 2001). O Lindhorfer, 2003; Kabata-Pendias, 2004). arsenato é a forma termodinamicamente De entre as metodologias usadas para mais estável sob condições aeróbias, contu- 158 REVISTA DE CIÊNCIAS AGRÁRIAS do a sua mobilidade nos solos é, em regra, grande variedade tanto de soluções sólidas relativamente baixa devido à sua capacidade como de minerais (Williams, 1990).
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Crimsonite, Pbfe23+(PO4)
    Mineralogical Magazine, October 2016, Vol. 80(6), pp. 925–935 3+ Crimsonite, PbFe2 (PO4)2(OH)2, the phosphate analogue of carminite from the Silver Coin mine, Valmy, Nevada, USA 1,* 2 3 4 A. R. KAMPF ,P.M.ADAMS ,S.J.MILLS AND B. P. NASH 1 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA 2 126 South Helberta Avenue #2, Redondo Beach, California 90277, USA 3 Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA [Received 28 May 2015; Accepted 10 September 2015; Associate Editor: Ian Graham] ABSTRACT 3þ Crimsonite (IMA2014-095), PbFe2 (PO4)2(OH)2, the phosphate analogue of carminite, is a new mineral from the Silver Coin mine, Valmy, Iron Point district, Humboldt County, Nevada, USA, where it occurs as a low-temperature secondary mineral in association with fluorwavellite, goethite, hematite, hentschelite, plumbogummite and variscite on quartz. Crimsonite occurs in subparallel aggregates of deep red blades or plates flattened on {100} and up to 0.1 mm in maximum dimension. The streak is light purplish orange. Crystals are transparent and have adamantine lustre. The Mohs hardness is ∼3½, the tenacity is brittle, the fracture is irregular to splintery and an imperfect cleavage is likely on {101}. The calculated density is 5.180 g/cm3. Crimsonite is optically biaxial (+), with 2V = 85.5(5)° and γ – α = 0.011. Using the Gladstone- Dale relationship, the calculated indices of refraction are α = 2.021, β = 2.026 and γ = 2.032.
    [Show full text]
  • Topographical Index
    997 TOPOGRAPHICAL INDEX EUROPE Penberthy Croft, St. Hilary: carminite, beudantite, 431 Iceland (fsland) Pengenna (Trewethen) mine, St. Kew: Bondolfur, East Iceland: pitchsbone, beudantite, carminite, mimetite, sco- oligoclase, 587 rodite, 432 Sellatur, East Iceland: pitchs~one, anor- Redruth: danalite, 921 thoclase, 587 Roscommon Cliff, St. Just-in-Peuwith: Skruthur, East Iceland: pitchstonc, stokesite, 433 anorthoclase, 587 St. Day: cornubite, 1 Thingmuli, East Iceland: andesine, 587 Treburland mine, Altarnun: genthelvite, molybdenite, 921 Faroes (F~eroerne) Treore mine, St. Teath: beudantite, carminite, jamesonite, mimetite, sco- Erionite, chabazite, 343 rodite, stibnite, 431 Tretoil mine, Lanivet: danalite, garnet, Norway (Norge) ilvaite, 921 Gryting, Risor: fergusonite (var. risSrite), Wheal Betsy, Tremore, Lanivet: he]vine, 392 scheelite, 921 Helle, Arendal: fergusonite, 392 Wheal Carpenter, Gwinear: beudantite, Nedends: fergusonite, 392 bayldonite, carminite, 431 ; cornubite, Rullandsdalen, Risor: fergusonite, 392 cornwallite, 1 Wheal Clinton, Mylor, Falmouth: danal- British Isles ire, 921 Wheal Cock, St. Just-in- Penwith : apatite, E~GLA~D i~D WALES bertrandite, herderite, helvine, phena- Adamite, hiibnerite, xliv kite, scheelite, 921 Billingham anhydrite mine, Durham: Wheal Ding (part of Bodmin Wheal aph~hitalite(?), arsenopyrite(?), ep- Mary): blende, he]vine, scheelite, 921 somite, ferric sulphate(?), gypsum, Wheal Gorland, Gwennap: cornubite, l; halite, ilsemannite(?), lepidocrocite, beudantite, carminite, zeunerite, 430 molybdenite(?),
    [Show full text]
  • Raman Spectroscopic Study of the Mixed Anion Sulphate-Arsenate Mineral Parnauite Cu9[(OH)10|SO4|(Aso4)2].7H2O
    QUT Digital Repository: http://eprints.qut.edu.au/ This is the post-print, accepted version of this paper. Published as: Frost, Ray L. and Cejka, Jiri and Keeffe, Eloise C. and Sejkora, Jiri (2009) Raman spectroscopic study of the mixed anion sulphate-arsenate mineral parnauite Cu9[(OH)10|SO4|(AsO4)2].7H2O. Journal of Raman Spectroscopy, 40(11). pp. 1546-1550. © Copyright 2009 John Wiley & Sons, Ltd. Raman spectroscopic study of the mixed anion sulphate-arsenate mineral parnauite . Cu9[(OH)10|SO4|(AsO4)2] 7H2O Ray L. Frost 1 • Jiří Sejkora, 2 Jiří Čejka 1, 2 and Eloise C. Keeffe 1 1 Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. 2 National Museum, Václavské náměstí 68, CZ-115 79 Praha 1, Czech Republic. The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2] 7H2O has been studied by Raman spectroscopy. Characteristic bands associated with arsenate, sulphate, hydroxyl units are identified. Broad bands are observed and are resolved into component bands. Two intense bands at 859 -1 3- and 830 cm are assigned to the ν1 (AsO4) symmetric stretching and ν3 3- (AsO4) antisymmetric stretching modes. The comparatively sharp band at -1 2- 976 cm is assigned to the ν1 (SO4) symmetric stretching mode and a broad -1 2- spectral profile centered upon 1097 cm is attributed to the ν3 (SO4) antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite. KEYWORDS: parnauite, strashimirite, arsenate minerals, Raman spectroscopy, sulphate, hydroxyl, molecular water • Author to whom correspondence should be addressed ([email protected]) 1 INTRODUCTION Parnauite Cu9(AsO4)2(SO4)(OH)10·7H2O is an uncommon mixed anion mineral containing both sulphate and arsenate 1-3 .The mineral is probably orthorhombic with point group 2/m 2/m 2/m 4.
    [Show full text]
  • Cu-Rich Members of the Beudantite–Segnitite Series from the Krupka Ore District, the Krušné Hory Mountains, Czech Republic
    Journal of Geosciences, 54 (2009), 355–371 DOI: 10.3190/jgeosci.055 Original paper Cu-rich members of the beudantite–segnitite series from the Krupka ore district, the Krušné hory Mountains, Czech Republic Jiří SeJkOra1*, Jiří ŠkOvíra2, Jiří ČeJka1, Jakub PláŠIl1 1 Department of Mineralogy and Petrology, National museum, Václavské nám. 68, 115 79 Prague 1, Czech Republic; [email protected] 2 Martinka, 417 41 Krupka III, Czech Republic * Corresponding author Copper-rich members of the beudantite–segnitite series (belonging to the alunite supergroup) were found at the Krupka deposit, Krušné hory Mountains, Czech Republic. They form yellow-green irregular to botryoidal aggregates up to 5 mm in size. Well-formed trigonal crystals up to 15 μm in length are rare. Chemical analyses revealed elevated Cu contents up 2+ to 0.90 apfu. Comparably high Cu contents were known until now only in the plumbojarosite–beaverite series. The Cu 3+ 3+ 2+ ion enters the B position in the structure of the alunite supergroup minerals via the heterovalent substitution Fe Cu –1→ 3– 2– 3 (AsO4) (SO4) –1 . The unit-cell parameters (space group R-3m) a = 7.3265(7), c = 17.097(2) Å, V = 794.8(1) Å were determined for compositionally relatively homogeneous beudantite (0.35 – 0.60 apfu Cu) with the following average empirical formula: Pb1.00(Fe2.46Cu0.42Al0.13Zn0.01)Σ3.02 [(SO4)0.89(AsO3OH)0.72(AsO4)0.34(PO4)0.05]Σ2.00 [(OH)6.19F0.04]Σ6.23. Interpretation of thermogravimetric and infrared vibrational data is also presented. The Cu-rich members of the beudan- tite–segnitite series are accompanied by mimetite, scorodite, pharmacosiderite, cesàrolite and carminite.
    [Show full text]
  • Tasmanian Museum and Art Gallery
    Mineral Resources Tasmania TASMANIA DEVELOPMENT REPORT 1993/21 AND RESOURCES Mineralogical examination of some mineral samples from Tasmania, for the Tasmanian Museum and Art Gallery by R. S. Bottrill and R. N. Woolley The following samples. from the Petterd collection held by phosgenite in appearance, but was not tested due to its high the Tasmanian Museum and Art Gallery, Hobart, were quality. The cerussite was confirmed by XRD. examined to confirm the presence of several rare minerals reported in Tasmania (Department of Mines. 1970). The X1115: "Phosgenite, Dundas, Tasmania" samples were examined stereomicroscopically and by This sample varies from white to a moderate purplish X-ray diffraction (XRD, with a Philips PW 17 IOIPW 1050 brown in colour. It is largely a coarse-grained crystalline automated X-ray powder diffractometer). The results of aggregate, with crystals in vughs varying from bladed to these examinations are given below. fibrous aggregates. Much of the sample is smooth and etched or waterworn, and there is a partial red-brown X160: "Native lead, Mt Dundas, Tasmania" limonitic coating on some crystals. XRD indicates the This sample is grey and irregular to dendritic, and partly sample to be cerussite. decomposed. XRD indicated only litharge and minor hydrocerussite, but the sample is slightly malleable and X1116: "Phosgenite, Magnet, Tasmania" there is probably lead metal present in its core. There is no The sample actually consists of two quite different matrix, and it is not possible to confirm the natural specimens. One (Specimen A) contains a large grey, occurrence of the sample. glassy, blocky, partly broken crystal in a cavity in fine-grained, massive galena, with some massive to X624: "Matlockite on galena, Magnet, Tasmania" crystallised cerussite.
    [Show full text]
  • Raman Spectroscopy of Selected Tsumcorite Pb (Zn, Fe3+) 2 (Aso4) 2
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray& Xi, Yunfei (2012) Raman spectroscopy of selected tsumcorite Pb(Zn,Fe3+)2(AsO4)2(OH,H2O) minerals-Implications for arsenate accumulation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, pp. 224-230. This file was downloaded from: https://eprints.qut.edu.au/47766/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.saa.2011.10.028 3+ 1 Raman spectroscopy of selected tsumcorite Pb(Zn,Fe )2(AsO4)2(OH,H2O) 2 minerals –implications for arsenate accumulation 3 4 Ray L.
    [Show full text]
  • Tsumcorite Pb(Zn,Fe3+)
    3+ Tsumcorite Pb(Zn, Fe )2(AsO4)2(OH, H2O)2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals are prismatic, elongated along [010], wedge-shaped, showing {201}, {401}, {001}, {111}, to 5 mm, in radiating sheaves and spherulites, may be feathery, aggregated into crusts, earthy, powdery. Twinning: Common, on a unknown law. Physical Properties: Cleavage: On {001}, good. Hardness = 4.5 D(meas.) = 5.2 D(calc.) = 5.39 Optical Properties: Semitransparent. Color: Bright yellow, orange, yellowish brown, red, red-brown. Streak: Yellow. Luster: Vitreous. Optical Class: Biaxial. Pleochroism: Weak; X = Z = pale yellow; Y = yellow. Orientation: Y = b; X ∧ c =8◦–15◦. Dispersion: r> v,weak. α = 1.87–1.91 β = 1.89–1.93 γ = 1.92–1.96 2V(meas.) = 67◦–83.5◦ Cell Data: Space Group: C2/m. a = 9.117–9.163 b = 6.321–6.347 c = 7.577–7.611 β = 115.07◦−115.45◦ Z=2 X-ray Powder Pattern: Tsumeb, Namibia. 3.244 (100), 4.663 (90), 2.863 (90), 2.742 (70), 3.021 (60), 2.573 (50), 2.540 (40) Chemistry: (1) (2) (1) (2) (1) (2) As2O5 34.80 36.20 CuO 1.50 0.15 CaO 0.98 < 0.1 Fe2O3 10.62 ZnO 14.69 14.97 H2O 4.40 [4.44] FeO 10.99 PbO 31.66 33.39 Total 99.13 [99.77] Ge 0.09 MgO 0.02 (1) Tsumeb, Namibia; H2O confirmed by IR. (2) Do.; by electron microprobe, average of 19 analyses, total Fe as Fe2O3, confirmed by IR and M¨ossbauerspectroscopy, H2O from theory; corresponds to Pb0.95(Zn1.17Fe0.85)Σ=2.02(AsO4)2.01[(OH)0.70(H2O)1.17]Σ=1.87.
    [Show full text]
  • The Philipsbornite–Segnitite Solid-Solution Series from Rêdziny, Eastern Metamorphic Cover of the Karkonosze Granite (Sw Poland)
    Annales Societatis Geologorum Poloniae (2016), vol. 86: 73–83. doi: http://dx.doi.org/10.14241/asgp.2015.036 THE PHILIPSBORNITE–SEGNITITE SOLID-SOLUTION SERIES FROM RÊDZINY, EASTERN METAMORPHIC COVER OF THE KARKONOSZE GRANITE (SW POLAND) Bo¿ena GO£ÊBIOWSKA1, Adam W£ODEK1, Adam PIECZKA1, Olaf BORKIEWICZ2 & Marta POLAK1 1 AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, Mickiewicza 30, 30-059 Kraków, Poland; e-mail: [email protected] 2 X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL60563, USA Go³êbiowska, B., W³odek, A., Pieczka, A., Borkiewicz, O. & Polak, M., 2016. The philipsbornite–segnitite solid-solution series from Rêdziny, eastern metamorphic cover of the Karkonosze granite (SW Poland). Annales Societatis Geologorum Poloniae, 86: 73–83. 3+ Abstract: Supergene minerals of the philipsbornite–segnitite series, PbAl3(AsO4)(AsO3OH)(OH)6–PbFe 3(AsO4) 3+ (AsO3OH)(OH)6, accompanied by carminite, PbFe 2(AsO4)2(OH)2, were found in relics of hydrothermal quartz– chlorite–arsenopyrite veins, associated with subordinate polymetallic ores disseminated in contact zones of a dolomitic marble deposit at Rêdziny, Western Sudetes, Poland, and recognized by means of electron microprobe and X-ray and electron-back-scattered diffraction (XRD and EBSD). Philipsbornite and segnitite, as the two minerals of the series, exhibit highly variable compositions, especially in terms of the range of Fe3+ « Al3+ substitution at the G site, with a distinct gap between the values of 0.52 and 0.89 for the Fe/(Al+Fe) ratio; substitutions at the D and T sites are less important. In this respect, the minerals are almost identical with philips- bornite and segnitite, known from other localities.
    [Show full text]
  • Download the Scanned
    THn AlrERrcAN MruERALocrsr JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol.48 JANUARY-FEBRUARY, 1963 Nos. 1 and 2 THE CRYSTAL STRUCTURE OF CARMINITE J. J. FrNwov,LDepartment of Geology,(Iniaersity of Wisconsin, Madison, Wisconsin. ABSTRACT Carminite, 8[PbFer(AsOa)r(OH)r], is orthorhombic Cccm or Ccc2,a:16.595, b:7.580, c:12.295, all + .005 A. The structure was determined by means of Patterson, Fourier and difierence maps and refined by least squares. The final R-factor is 10.8/6. Both centric and noncentric cycles were attempted, but the noncentric cycles converged essentially to the centric structure. The structure consists of octahedra of oxygen and hydroxyl about iron connected to each other by an edge at the mirror plane and by a corner at a two fold axis. The octahedra extend unbroken parallel to the Z-direction in projection on (010) and are connected together in the X-direction by arsenate tetrahedra. Coordination about the lead atoms is eight fold. The structure of carminite is very similar to that of brackebuschite. INrnooucrroN Since the original determination of the space group and unit cell of carminite, PbFez(AsOa)r(OH)r,by Rosenzweigand Finney (1959),simi- larities betweencarminite and other minerals have been observed.Re- cently Strunz (1960) has shown that carminite and palermoite, SrAl2 (POD2(OH)2,are isotypic and further that thesetwo mineralsbear some relation to the minerals of the descloiziteseries such as conichalcite, CaCu(AsOa)(OH),and duftite, PbCu(AsO) (OH). Donaldsonand Barnes (1954)have determinedthe structure of pyrobelonite,PbMn(VOt(OH), another member of this family having the same generalformula.
    [Show full text]
  • THE MINERALOGY of the Mapiml' MINING DISTRICT, DURANGO
    The mineralogy of the Mapimí mining district, Durango, Mexico Item Type text; Dissertation-Reproduction (electronic) Authors Hoffmann, Victor Joseph 1935- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/10/2021 08:35:35 Link to Item http://hdl.handle.net/10150/565169 THE MINERALOGY OF THE MAPIMl' MINING DISTRICT, DURANGO, MEXICO by Victor Joseph Hoffmann A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 19 6 8 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by _________ Victor Joseph Hoffmann____________________ entitled The Mineralogy of the Mapimi Mining District,______ Durango, Mexico______________________________ be accepted as fulfilling the dissertation requirement of the degree of Doctor of Philosophy_______________________________ ____________ ‘7/2 __________________ Dissertation Director^/ Date z / ~ After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* f , A> Q ~/ w n n rT 2.7, 7 / f / 7 u Z Z /9<$7 •fs---------- - ' -------7 This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination. The inclusion of this sheet bound into the library copy of the dissertation is evidence of satisfactory performance at the final examination.
    [Show full text]
  • MINERALOGICAL MAGAZINE JOURNAL of TI~IE ]Vflnei%ALOGICA]~ SOCIETY
    MINERALOGICAL MAGAZINE JOURNAL OF TI~IE ]VflNEI%ALOGICA]~ SOCIETY Vol. 32 June 1960 No. 249 Carminite and beudantite .from, the northern part of the Lake District and from Cornwall. By A1~T~v~ W. G. KINGSBURY, F.G.S. Dept. of Mineralogy, University Museum, Oxford, and J. HAI~TLEY, B.Se., F.G.S. Dept. of Geology, University of Leeds. [Read 28 January 1960.] Summary. The parageneses are given of ten new occurrences of carminite [PbF%(AsO.I)2(OH)2] and eleven of beudantitc [PbFeaAsOaSO4(OH)r] in Cornwall and Cumberland, with an account of the Mteration of earminite to beudantite and of beudantite to plumbojarosite or to bcaverite. A RM I NITE and beudantite are both rare minerals for which very C few localities have hitherto been recorded. Hingston Downs Consols mine, 1 Calstoek, Cornwall, was for many years the only known British locality for carminite; more recently two further Cornish occur- rences, at Wheal Gorland, Gwennap, and at Penberthy Croft mine, St. Hilary, have been recorded, 2 and it is probable that carminite is or has been present at other localities in the West of England. The first recorded British occurrence of beudantite was at Penberthy Croft mine, 3 since when one of us (A. W. G. K.) has found beudantite at some addi- tional Cornish localities: Wheal Gorland; Wheal Carpenter, Gwinear; and Hingston Downs Consols mine. In his account of carminite from this latter mine, Russell mentioned that pharmacosiderite was an associated mineral but t,h~t beudantite was not present on his specimens ; examina- tion of some seorodite collected near Hitehen's shaft, on the South Lode, by one of us (A.
    [Show full text]