Genetic Deficiency for Proprotein Convertase Subtilisin&Sol

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Deficiency for Proprotein Convertase Subtilisin&Sol International Journal of Obesity (2010) 34, 1599–1607 & 2010 Macmillan Publishers Limited All rights reserved 0307-0565/10 www.nature.com/ijo ORIGINAL ARTICLE Genetic deficiency for proprotein convertase subtilisin/kexin type 2 in mice is associated with decreased adiposity and protection from dietary fat-induced body weight gain YAnini1,2,JMayne3,JGagnon1,2,JSherbafi3,AChen3,NKaefer3,MChre´tien3,4,5 and M Mbikay3,4,5 1Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; 2Department of Obstetrics and Gynecology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; 3Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; 4Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada and 5Division of Endocrinology and Metabolism, Ottawa Hospital, Ottawa, Ontario, Canada Background: Proprotein convertase subtilisin/xexin type 2 (PCSK2) is an endoproteinase responsible for proteolytic activation of a number of precursors to active neuropeptides and peptide hormones, known to influence glucose homeostasis, food intake and ultimately body mass. In this study, we examined the consequences of PCSK2 deficiency on these phenotypic traits. Study Design: Weight gain with age under diets of different fat contents was monitored. White adipose tissue (WAT) and muscle masses were evaluated. Plasma levels of triglycerides, leptin, ghrelin, insulin and proglucagon-derived peptides were measured as well as leptin and acetyl coenzyme-a carboxylase (ACCa) mRNA levels in adipose tissue. Results: Compared with their Pcsk2 þ / þ littermates, Pcsk2À/À mice weighed significantly less as weanlings and as adults. As adults, they carried noticeably less fat mass, with similar lean muscle mass: their plasma leptin level and adipose tissue leptin mRNA level were accordingly lower. PCSK2 deficiency did not affect food intake or the level of the orexigenic hormone ghrelin. However, PCSK2 deficiency resulted in decreased plasma triglycerides and reduced ACCa mRNA levels in WAT. Interestingly, unlike their Pcsk2 þ / þ littermates, Pcsk2À/À were resistant to enhanced body weight gain when fed a high-fat diet. Consistent with a role of PCSK2 in body mass gain, diet-induced or genetically obese mice were found to contain significantly higher levels of PCSK2 mRNA in their brain and stomach than their lean counterparts. Conclusion: Collectively, these results suggest that PCSK2 contributes to increase in body mass through the various regulatory peptides generated through its action. It represents a potential target in the prevention and treatment of obesity. International Journal of Obesity (2010) 34, 1599–1607; doi:10.1038/ijo.2010.90; published online 25 May 2010 Keywords: proprotein convertase 2; adiposity; body mass; dietary fat; diet-induced obesity; proglucagon Introduction PCSK1 and carboxypeptidase E, it mediates the proteolytic activation of precursors to a variety of neuropeptides and Proprotein convertase subtilisin/kexin type 2 (PCSK2), also hormones.1,2 known as proprotein convertase 2, is a member of the Kexin- Generation of a PCSK2-null (Pcsk2À/À) mouse by Furuta like subfamily of eukaryotic endoproteinases implicated in et al.3 has offered the opportunity to delineate the enzymatic the activation of secretory precursor proteins by cleavage link between this convertase and many neuroendocrine after selected basic residues. PCSK2 is primarily expressed precursors, and to explore the physiological importance of in neuronal and endocrine cells in which, together with its processing of these precursors. The original Pcsk2À/À mouse,3 which was a 129Sv:C57BL/6 (B6) mixed genetic Correspondence: Dr Y Anini, Departments of Physiology and Biophysics and background, seemed normal at birth, but grew at a slightly Obstetrics and Gynecology, Dalhousie University, 5850 College Street, Room reduced rate. They showed chronic fasting hypoglycemia 4C1, Halifax, Nova Scotia B3H 1X5, Canada. and enhanced glucose tolerance in an intraperitoneal E-mail: [email protected] Received 18 June 2009; revised 16 March 2010; accepted 17 March 2010; glucose tolerance test. They were normoinsulinemic published online 25 May 2010 but severely hypoglucagonemic. Proteolytic activation of Reduced body mass and adiposity in PCSK2-null mice Y Anini et al 1600 pancreatic islet prohormones was variably impaired: the genders were weighed and killed by decapitation; their impairment was more severe for a-cell proglucagon and gonadal fat and gastroc muscle were immediately collected d-cell prosomatostatin than for b-cell proinsulin.3,4 At 3 and weighed. months of age, the islets of mutant mice showed marked To assess food consumption, 4-month-old male mice were hyperplasia of a-cells and d-cells and a relative diminution of fasted for 16 h and then given free access to pre-weighed b-cells.3 Other physiological studies showed that these mice standard chow; the drop in chow weight was measured after are prone to salt-induced hypertension5 and stress-induced 1, 2, 4, 6 and 24 h. analgesia.6 Other substrates whose processing is impaired in the Pcsk2À/À mouse include precursors for pancreatic islet Dietary regimens amyloid peptide,7,8 ileum neuropeptide Y,9 pituitary and To study the effect of dietary fat on weight gain, 3-week-old brain adrenocorticotropin, a-melanocyte-stimulating hor- mice were divided into groups (n ¼ 4–6/gender/genotype) mone10 and b-endorphin,11 brain cholecystokinin (CCK),12 and fed for 7 weeks a Research Diets (North Brunswick, NJ, dynorphin,13 neurotensin,14 Met-enkephalin15 and orpha- USA) low-fat diet (LFD, catalog no. D12450) or a high-fat diet nin FQ/nociceptin.16 Several of these peptides are known to (HFD, catalog no. D12451), containing 10 or 45% kcal as fat, regulate feeding: neuropeptide Y and b-endorphin are respectively. Body weight was recorded weekly. orexigenic, and CCK, neurotensin and a-melanocyte-stimu- To evaluate the effect of diet-induced obesity on the lating hormone are anorexigenic.17 expression of PCSK2, 4-week-old B6 mice were fed either a Using subcongenic mapping of a SPRET/Ei donor DNA on HFD or a LFD for 8 weeks. RNA was then extracted from Chr 2 in a B6 genetic background, Chiu et al.18 have stomach and brain tissues. identified Pcsk2 as a positional candidate gene influencing body weight and adiposity. Mice homozygous for SPRET/Ei donor allele were leaner than their B6 counterparts and Plasma hormone assays expressed less PCSK2 in their brain.18 However, in another Mice were fasted for 16 h, anesthetized under isoflurane mouse study, a negative correlation was observed between (Abbott Laboratories, Montreal, QC, Canada) and bled by body weight and the expression level of PCSK2 and 7B2, its cardiac puncture. Plasma was separated from blood cells by specific chaperone and transient inhibitor.19 In this study, centrifugation. Plasma levels of leptin, insulin, glucagon, we examine how food intake and body mass are affected by glucagon-like peptide 1 (GLP-1) and amylin were measured PCSK2 global deficiency in mice. using the LINCOplex Mouse Endocrine Immunoassay Panel (Linco Research, Inc., St Charles, MI, USA). Total plasma ghrelin was measured using total ghrelin RIA kit (Linco Materials and methods Research, Inc.). Animals The Pcsk2À/À mice and wild-type (WT) control mice were Triglyceride assays littermates obtained from the mating of Pcsk2À/ þ hetero- Plasma was collected from 16-h-fasted mice and assayed for zygotes generated as described in Furuta et al.3 Our mouse triglyceride content using the Triglyceride Quantification Kit colony was initiated from a N4 backcross into the CD-1 from Biovision (Mountain View, CA, USA). genetic background. It was perpetuated by brother–sister heterozygous mating for 45 years. Four-week-old male C57BL/6 (B6) and B6.V-Lep(ob)/j ob/ob Quantitative reverse transcriptase PCR mice were purchased from The Jackson Laboratory (Bar Total RNA was extracted from brain, stomach and adipose Harbor, ME, USA). All mice were housed in temperature- tissue using TRIzol Reagent (Invitrogen, Burlington, ON, controlled rooms with 12-h dark–light cycles and, unless Canada). It was reverse-transcribed into complementary otherwise stated, were provided with food and drink ad DNA using oligo dT-18 primer (100 ng mg–1 of RNA). libitum. They were handled according to the guidelines of the Quantitative PCR reactions were performed in 25 ml using Canadian Council on Animal Care under a protocol approved 2 Â Brilliant SYBR green master mix (Roche, Mississauga, by the institutional animal care committee. Unless otherwise ON, Canada) under the following conditions: initial dena- stated, experimental mice were male and 8–12 weeks of age. turation at 95 1C for 10 min, then 40 cycles of 95 1C for 30 s, 60 1C for 1 min and 72 1C for 30 s, using the following primers for proprotein convertase 2 (forward 50-AACATCT Weight gain, food consumption and adiposity GACTGTGCTCACCTCCA-30 and reverse 50-TTTCACCATGG To measure weight gain with age, 3-week-old male mice were CACCTGCATCAAG -30), leptin (forward 50-TGCTGAAGTTT kept on standard mouse chow and weighed weekly for CAAAGGCCACCAG-30 and reverse 50-ATGCCTTTGGATG 11 weeks and at 17 weeks. To evaluate white adipose tissue GGTGGTCTACA-30) and acetyl coenzyme-a carboxylase (WAT) and muscle mass, 7- and 17-week-old mice of both (ACCa; forward 50-TAACAGAATCGACACTGGCTGGCT-30 International Journal of Obesity Reduced body mass
Recommended publications
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Intracellular Peptides: from Discovery to Function
    e u p a o p e n p r o t e o m i c s 3 ( 2 0 1 4 ) 143–151 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.elsevier.com/locate/euprot Intracellular peptides: From discovery to function a,∗ b a,c d,∗∗ Emer S. Ferro , Vanessa Rioli , Leandro M. Castro , Lloyd D. Fricker a Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil b Special Laboratory of Applied Toxicology-CeTICS, Butantan Institute, São Paulo, SP, Brazil c Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil d Department of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA a r t i c l e i n f o a b s t r a c t Article history: Peptidomics techniques have identified hundreds of peptides that are derived from proteins Received 8 October 2013 present mainly in the cytosol, mitochondria, and/or nucleus; these are termed intracellular Received in revised form peptides to distinguish them from secretory pathway peptides that function primarily out- 29 November 2013 side of the cell. The proteasome and thimet oligopeptidase participate in the production and Accepted 14 February 2014 metabolism of intracellular peptides. Many of the intracellular peptides are common among mouse tissues and human cell lines analyzed and likely to perform a variety of functions Keywords: within cells. Demonstrated functions include the modulation of signal transduction, mito- Peptides chondrial stress, and development; additional functions will likely be found for intracellular Cell signaling peptides.
    [Show full text]
  • 1 No. Affymetrix ID Gene Symbol Genedescription Gotermsbp Q Value 1. 209351 at KRT14 Keratin 14 Structural Constituent of Cyto
    1 Affymetrix Gene Q No. GeneDescription GOTermsBP ID Symbol value structural constituent of cytoskeleton, intermediate 1. 209351_at KRT14 keratin 14 filament, epidermis development <0.01 biological process unknown, S100 calcium binding calcium ion binding, cellular 2. 204268_at S100A2 protein A2 component unknown <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 3. 33323_r_at SFN stratifin/14-3-3σ binding <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 4. 33322_i_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 5. 201820_at KRT5 keratin 5 filament, epidermis development <0.01 structural constituent of cytoskeleton, intermediate 6. 209125_at KRT6A keratin 6A filament, ectoderm development <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 7. 209260_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 8. 213680_at KRT6B keratin 6B filament, ectoderm development <0.01 receptor activity, cytosol, integral to plasma membrane, cell surface receptor linked signal transduction, sensory perception, tumor-associated calcium visual perception, cell 9. 202286_s_at TACSTD2 signal transducer 2 proliferation, membrane <0.01 structural constituent of cytoskeleton, cytoskeleton, intermediate filament, cell-cell adherens junction, epidermis 10. 200606_at DSP desmoplakin development <0.01 lectin, galactoside- sugar binding, extracellular binding, soluble, 7 space, nucleus, apoptosis, 11. 206400_at LGALS7 (galectin 7) heterophilic cell adhesion <0.01 2 S100 calcium binding calcium ion binding, epidermis 12. 205916_at S100A7 protein A7 (psoriasin 1) development <0.01 S100 calcium binding protein A8 (calgranulin calcium ion binding, extracellular 13.
    [Show full text]
  • Papel De Los Receptores De Estrógenos Alfa En El Crecimiento De Carcinomas Mamarios Murinos Con Respuesta Diferencial a Progestágenos
    Tesis Doctoral Papel de los receptores de estrógenos alfa en el crecimiento de carcinomas mamarios murinos con respuesta diferencial a progestágenos Giulianelli, Sebastián Jesús 2009 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Giulianelli, Sebastián Jesús. (2009). Papel de los receptores de estrógenos alfa en el crecimiento de carcinomas mamarios murinos con respuesta diferencial a progestágenos. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Giulianelli, Sebastián Jesús. "Papel de los receptores de estrógenos alfa en el crecimiento de carcinomas mamarios murinos con respuesta diferencial a progestágenos". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2009. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES FACULTAD DE CIENCIAS EXACTAS Y NATURALES Departamento de Fisiología, Biología Molecular y Celular PAPEL DE LOS RECEPTORES DE ESTRÓGENOS ALFA EN EL CRECIMIENTO DE CARCINOMAS MAMARIOS MURINOS CON RESPUESTA DIFERENCIAL A PROGESTÁGENOS Tesis presentada para optar por el título de Doctor de la Universidad de Buenos Aires en el área Ciencias Biológicas Sebastián Jesús Giulianelli Director de Tesis: Claudia L.
    [Show full text]
  • Investigations Into the Role of Orexin (Hypocretin) and Dynorphin in Drug Seeking, Reinforcement, and Withdrawal ______
    INVESTIGATIONS INTO THE ROLE OF OREXIN (HYPOCRETIN) AND DYNORPHIN IN DRUG SEEKING, REINFORCEMENT, AND WITHDRAWAL ________________________________________________________________________ A Dissertation Submitted to Temple University Graduate Board In partial fulfillment of the Requirement of the Degree DOCTOR OF PHILOSPHY By Taylor A. Gentile May 2018 Examining Committee Members: John W Muschamp, PhD, Center for Substance Abuse Research, Advisory Chair, Department of Pharmacology Sara Jane Ward, PhD, Center for Substance Abuse Research, Dept. of Pharmacology Ronald Tuma, PhD, Center for Substance Abuse Research, G.H. Stewart Professor, Physiology Scott M. Rawls, PhD, Center for Substance Abuse Research, Dept. of Pharmacology Shin Kang, PhD, Shriners Hospital Pediatric Research Center, Dept. of Anatomy & Cell Biology Lee Yuan Liu-Chen, PhD, Center for Substance Abuse Research, Dept. of Pharmacology Rodrigo España, PhD, Drexel University College of Medicine, Dept. of Neurobiology & Anatomy i © Copyright 2017 by Taylor A. Gentile All Rights Reserved ii ABSTRACT Psychostimulant dependence remains a major health and economic problem, leading to premature death and costing $181 billion annually in health care, crime, and lost productivity costs. Currently, no pharmacotherapies are available to effectively treat psychostimulant dependence. Psychostimulants cause changes in neural circuits involved in reward and affect, but addiction neurocircuitry is incompletely understood and new targets for therapeutic intervention are needed. Lateral hypothalamic
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan Et Al
    US 2004.008 1648A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan et al. (43) Pub. Date: Apr. 29, 2004 (54) ADZYMES AND USES THEREOF Publication Classification (76) Inventors: Noubar B. Afeyan, Lexington, MA (51) Int. Cl." ............................. A61K 38/48; C12N 9/64 (US); Frank D. Lee, Chestnut Hill, MA (52) U.S. Cl. ......................................... 424/94.63; 435/226 (US); Gordon G. Wong, Brookline, MA (US); Ruchira Das Gupta, Auburndale, MA (US); Brian Baynes, (57) ABSTRACT Somerville, MA (US) Disclosed is a family of novel protein constructs, useful as Correspondence Address: drugs and for other purposes, termed “adzymes, comprising ROPES & GRAY LLP an address moiety and a catalytic domain. In Some types of disclosed adzymes, the address binds with a binding site on ONE INTERNATIONAL PLACE or in functional proximity to a targeted biomolecule, e.g., an BOSTON, MA 02110-2624 (US) extracellular targeted biomolecule, and is disposed adjacent (21) Appl. No.: 10/650,592 the catalytic domain So that its affinity Serves to confer a new Specificity to the catalytic domain by increasing the effective (22) Filed: Aug. 27, 2003 local concentration of the target in the vicinity of the catalytic domain. The present invention also provides phar Related U.S. Application Data maceutical compositions comprising these adzymes, meth ods of making adzymes, DNA's encoding adzymes or parts (60) Provisional application No. 60/406,517, filed on Aug. thereof, and methods of using adzymes, Such as for treating 27, 2002. Provisional application No. 60/423,754, human Subjects Suffering from a disease, Such as a disease filed on Nov.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]
  • Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos
    Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos Julian E. Fuchs, Susanne von Grafenstein, Roland G. Huber, Christian Kramer, Klaus R. Liedl* Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria Abstract Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides.
    [Show full text]
  • Molecular and Cellular Studies of Drosophila Neuroserpin Spn4a And
    Molecular and Cellular Studies of Drosophila Neuroserpin Spn4A and its Polymer-Forming Mutants by Christine Chieh-Lin Lai B.Sc. University of British Columbia, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Microbiology & Immunology) The University of British Columbia (Vancouver) August 2010 © Christine Chieh-Lin Lai, 2010 1 Abstract Serpins (Serine Protease Inhibitors) are expressed by most organisms and perform a variety of functions. Most serpins inhibit proteases by undergoing a unique conformational change. They are clinically relevant in two ways. First, introduction of single amino acid point mutations transforms the serpins’ labile conformations into pathogenic, inactive polymers causing “serpinopathies”. In particular, human neuroserpin is a brain-specific serpin that, when mutated, causes a debilitating early onset dementia through unknown cellular pathways. Second, serpins are currently under investigation as therapeutic inhibitors of proprotein convertases (PCs). PCs are associated with some bacterial and viral infections as well as cancer. However, no comprehensive investigation into the cellular effects of PC inhibitor expression in mammalian cells has been performed. This thesis details the use of the Drosophila serpin, Spn4A, to address the cellular pathways mediated by serpin polymers or PC inhibition. Spn4A is a neuron-specific, secretory pathway serpin that inhibits Drosophila or human PCs. We hypothesized that Spn4A mutants, encoding homologous disease-causing mutations in human neuroserpin, would form pathogenic polymers and represent an ideal candidate for generating a cell-based and transgenic Drosophila serpinopathy model. Further, we hypothesized that we could evaluate the cellular response to PC inhibition and polymer accumulation by transcriptome profiling of H4 human neuroglioma cells expressing Spn4A wild-type and mutants.
    [Show full text]
  • 4960 Knock-Out Mouse Models of Proprotein Convertases
    [Frontiers in Bioscience 4960-4971, May 1, 2008] Knock-out mouse models of proprotein convertases: unique functions or redundancy? John W.M. Creemers1 , Abdel-Majid Khatib2, 3 1Laboratory of Biochemical Neuroendocrinology, Center for Human Genetics K.U. Leuven, Belgium, 2INSERM, U716, Equipe Avenir, Institut de Genetique Moleculaire, 27 rue Juliette Dodu, 75010 Paris, 3Universite Paris 7, Paris, 75251, France TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Phenotypes of PC deficient mouse models 3.1. Furin 3.2. PACE4 3.3. PC1/3 3.4. PC2 and 7B2 3.5. PC4 3.6. PC5/6 3.7. PC7 3.8. S1P/SKI-1 3.9. NARC-1/PCSK9 4. Perspectives 5. Acknowledgements 6. References 1. ABSTRACT 2. INTRODUCTION The members of the proprotein convertase family The generation of a biologically active protein is play a central role in the processing and/or activation of often a multi-step process. Secreted proteins are in most various protein precursors involved in many physiological cases co-translationaly translocated into the lumen of the processes and various pathologies. The proteolysis of these endoplasmic reticulum with concomitant cleavage of the precursors that occur at basic residues within the general signal peptide, followed by folding and a number of motif (K/R)-(X)-(K/R) is mediated by the proprotein posttranslational modifications like glycosylation, convertases PC1/3, PC2, Furin, PACE4, PC4, PC5 and disulfide-bridge formation and sulfation, before it reaches PC7, whereas the proteolysis of precursors within the plasma membrane. For many proteins, an essential step hydophobic residues performed by the convertase S1P/SKI- for activation is limited endoproteolysis; cleavage at one or 1 and the convertase NARC-1/PCSK9 seems to prefer more specific sites in the protein (1,2) (Figure 1).
    [Show full text]
  • Peptide Sequence
    Peptide Sequence Annotation AADHDG CAS-L1 AAEAISDA M10.005-stromelysin 1 (MMP-3) AAEHDG CAS-L2 AAEYGAEA A01.009-cathepsin D AAGAMFLE M10.007-stromelysin 3 (MMP-11) AAQNASMW A06.001-nodavirus endopeptidase AASGFASP M04.003-vibriolysin ADAHDG CAS-L3 ADAPKGGG M02.006-angiotensin-converting enzyme 2 ADATDG CAS-L5 ADAVMDNP A01.009-cathepsin D ADDPDG CAS-21 ADEPDG CAS-L11 ADETDG CAS-22 ADEVDG CAS-23 ADGKKPSS S01.233-plasmin AEALERMF A01.009-cathepsin D AEEQGVTD C03.007-rhinovirus picornain 3C AETFYVDG A02.001-HIV-1 retropepsin AETWYIDG A02.007-feline immunodeficiency virus retropepsin AFAHDG CAS-L24 AFATDG CAS-25 AFDHDG CAS-L26 AFDTDG CAS-27 AFEHDG CAS-28 AFETDG CAS-29 AFGHDG CAS-30 AFGTDG CAS-31 AFQHDG CAS-32 AFQTDG CAS-33 AFSHDG CAS-L34 AFSTDG CAS-35 AFTHDG CAS-L36 AGERGFFY Insulin B-chain AGLQRGGG M14.004-carboxypeptidase N AGSHLVEA Insulin B-chain AIDIDG CAS-L37 AIDPDG CAS-38 AIDTDG CAS-39 AIDVDG CAS-L40 AIEHDG CAS-L41 AIEIDG CAS-L42 AIENDG CAS-43 AIEPDG CAS-44 AIEQDG CAS-45 AIESDG CAS-46 AIETDG CAS-47 AIEVDG CAS-48 AIFQGPID C03.007-rhinovirus picornain 3C AIGHDG CAS-49 AIGNDG CAS-L50 AIGPDG CAS-L51 AIGQDG CAS-52 AIGSDG CAS-53 AIGTDG CAS-54 AIPMSIPP M10.051-serralysin AISHDG CAS-L55 AISNDG CAS-L56 AISPDG CAS-57 AISQDG CAS-58 AISSDG CAS-59 AISTDG CAS-L60 AKQRAKRD S08.071-furin AKRQGLPV C03.007-rhinovirus picornain 3C AKRRAKRD S08.071-furin AKRRTKRD S08.071-furin ALAALAKK M11.001-gametolysin ALDIDG CAS-L61 ALDPDG CAS-62 ALDTDG CAS-63 ALDVDG CAS-L64 ALEIDG CAS-L65 ALEPDG CAS-L66 ALETDG CAS-67 ALEVDG CAS-68 ALFQGPLQ C03.001-poliovirus-type picornain
    [Show full text]
  • Clinical Significances of Lipoprotein Metabolism
    Clinical Significances of Lipoprotein Metabolism Fortunately, few individuals carry the inherited defects in lipoprotein metabolism that lead to hyper- or hypolipoproteinemias (see Tables below for brief descriptions). Persons suffering from diabetes mellitus, hypothyroidism and kidney disease often exhibit abnormal lipoprotein metabolism as a result of secondary effects of their disorders. For example, because lipoprotein lipase (LPL) synthesis is regulated by insulin, LPL deficiencies leading to Type I hyperlipoproteinemia may occur as a secondary outcome of diabetes mellitus. Additionally, insulin and thyroid hormones positively affect hepatic LDL-receptor interactions; therefore, the hypercholesterolemia and increased risk of atherosclerosis associated with uncontrolled diabetes or hypothyroidism is likely due to decreased hepatic LDL uptake and metabolism. Of the many disorders of lipoprotein metabolism, familial hypercholesterolemia (FH) may be the most prevalent in the general population. Heterozygosity at the FH locus occurs in 1:500 individuals, whereas, homozygosity is observed in 1:1,000,000 individuals. FH is an inherited disorder comprising four different classes of mutation in the LDL receptor gene. The class 1 defect (the most common) results in a complete loss of receptor synthesis. The class 2 defect results in the synthesis of a receptor protein that is not properly processed in the Golgi apparatus and therefore is not transported to the plasma membrane. The class 3 defect results in an LDL receptor that is incapable of binding LDLs. The class 4 defect results in receptors that bind LDLs but do not cluster in coated pits and are, therefore, not internalized. FH sufferers may be either heterozygous or homologous for a particular mutation in the receptor gene.
    [Show full text]