An Introduction to Generalized Type Systems

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Generalized Type Systems See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/216300104 An Introduction to Generalized Type Systems Article in Journal of Functional Programming · April 1991 DOI: 10.1017/S0956796800020025 CITATIONS READS 189 637 1 author: Henk (Hendrik) Pieter Barendregt Radboud University 184 PUBLICATIONS 6,444 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Logic and Computability View project Research on Generalized Typed Lambda Calculi 1982--1987 View project All content following this page was uploaded by Henk (Hendrik) Pieter Barendregt on 10 December 2016. The user has requested enhancement of the downloaded file. PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/17240 Please be advised that this information was generated on 2016-12-10 and may be subject to change. Journal o f Functional Programming 1 (2): 125-154, April 1991 Introduction to generalized type systems HENK BARENDREGT Catholic University Nijmegen, The Netherlands Abstract Programming languages often come with type systems. Some of these are simple, others are sophisticated. As a stylistic representation of types in programming languages several versions of typed lambda calculus are studied. During the last 20 years many of these systems have appeared, so there is some need of classification. Working towards a taxonomy, Barendregt (1991) gives a fine-structure of the theory of constructions (Coquand and Huet 1988) in the form of a canonical cube of eight type systems ordered by inclusion. Berardi (1988) and Terlouw (1988) have independently generalized the method of constructing systems in the A.-cube. Moreover, Berardi (1988, 1990) showed that the generalized type systems are flexible enough to describe many logical systems. In that way the well-known propositions-as-types interpretation obtains a nice canonical form. Capsule review This paper presents a possible classification for the simplest class of typed systems: only ß-reduction is considered, and the only type constructors are n and First, various Automath-like typed systems are analysed, with a brief presentation of their main properties (subject reduction, unicity of types and strong normalization). This analysis suggests rather naturally the notion of generalized type systems which provide a neat notation for describing the ‘propositions-as-types’ idea. The relevance of this notation is shown by the fact that it allows us to sharply express new problems, as the relative completeness of various interpretations, or to state concisely and precisely type-theoretic results (for instance, the exact formalism in which Girard’s paradox is derived). 1 Introduction In several programming languages types are assigned to expressions (occurring in a program) in a way that may be compared to dimensions assigned to entities in physics. These dimensions provide a partial correctness check 2 V o lt+ 3 Ampère is definitely wrong; the equation _ E = me is consistent at least from the point of view of dimensions, since both sides are expressed in kg.m 2.sec-2. The analogy between types and dimensions is not perfect. A physical entity always has a unique dimension. Expressions in programming may have more than one type. 5 F P R 1 126 Henk Barendregt This is the case when implicit (or Curry style) typing is allowed : the expression Âx.x denoting the identity function obtains all types A for A an arbitrary type. We write ,, . ,. .. (ax.x):(A^ A) which should be pronounced as ‘lambda x dot x in A arrow A ’, and has as its intended meaning that ‘for each (element) a in A the application (Xx.x)a is also in A ’ (which is intuitively true, since (Àx.x) a = a). Examples of programming languages with this style of typing are M L (M ilner 1984) and M iranda (Turner 1985). There is also another paradigm, the explicit or Church style of typing, in which each correct expression has exactly one type. Now there are several versions of the identity function IA = Ax: A .x and this one has as its unique type A -*■ A. Examples of languages with explicit typing are LCF (Gordon et al. 1979) and TALE (Barendregt and van Leeuwen 1985). During the last 20 years many systems have appeared for typing lambda calculi, both in the style of Curry and that of Church (see Barendregt (1991) for a survey). In this paper we give some flavour of a class of systems à la Church using the following methodology : Only the simplest versions of a system are considered ; that is, only with ß-reduction, but not with, for example r\-reduction \ only with types built up using -> and n, not using, for example, x or I. As will be seen, the systems become complicated anyhow. (For a discussion on types in programming languages see Cardelli and Wegner (1985); Reynolds (1985) and Barendregt and Hemerik (1990).) 2 A finestructure of the theory of constructions Recently a quite powerful typed lambda calculus has been introduced by Coquand and Huet (1988). The system is called ‘the theory of constructions’, and is denoted here by À.C. By analysing the way in which terms and types are built up, a fine­ structure of this system is given, consisting of eight systems of typed lambda calculi forming under inclusion a natural cube with oriented edges (see fig. 1). Each edge -> represents the inclusion relation £ . This cube is referred to as the X-cube. Most of the systems in the >.-cube are known, albeit in a somewhat different form. The system X ^ is the simply typed lambda calculus (Church, 1940). The system X2 is the polymorphic or second order typed lambda calculus, and is a subsystem of the system F introduced by Girard (1972). It has been introduced independently by Introduction to generalized type systems 127 Reynolds (1974). The system Xw is essentially the system Fco of Girard (1972). System XP corresponds reasonably to one of the systems in the family of a u t o m a t h languages (see de Bruijn, 1980): System A.P also appears under the name LF in Harper et al. (1987), System XP2 is studied by Longo and Moggi (1988) under the same name. System A.C is one of the versions of the theory of constructions introduced by Coquand and Huet (1988), and system A.co is related to the p o l y r e c system studied by Renardel de Lavalette (1985). System APco seems not to have been studied before. (For À.® and ÄPm read ‘weak tao’ and ‘weak XPco’, respectively.) Before defining the X-cube, it is useful to describe informally some ideas which play a role in the various systems. The first informal idea is the construction of function space types. If A and B are types, then A -> B is the type of functions from A to B. So, if F : (A -> B) and x : A, then (Fx):B. The second idea is that of dependency. Types and terms are mutually dependent; there are • terms depending on term ; • terms depending on types ; • types depending on terms; • types depending on types. Some explanation is necessary here. Terms depending on terms are extremely common : , FM is a term that depends on the term M. A term depending on a type is the identity on ^ IA = Xx : A . x. A type depending on a term is, for example, An- B (with n a natural number) defined by A ° ^ B = B; An+1 -> B = A ^(A n^B ). And a type depending on a type is, for example, A-*A for A a given type. Once there are types depending on terms one may introduce cartesian products. Suppose that for each a ; A a type B., is given, and that there is an element ba : Ba, Then we may want to form the function Xa : A . ba that should have as type the cartesian product rTa: A . Ba of the Bas. Once these product types are allowed, the function space type of A and B can be written as (A ^B ) = ITa:A.B(= BA, informally), 5-2 128 Henk Barendregt where a is a variable not occurring in B. This is similar to the fact that a product of equal factors is a power n n b i becomes bn i-1 provided that bj = b for 1 ^ i ^ n. So by using products, the type constructor -> can be eliminated. The next idea has to do with the formation of types. For some simple systems the types are - so to say - given in the metalanguage. For example, if one has informally constructed a type A, then one can formally derive I— (A.a : A . a) : (A ->• A). Since in the /.-cube terms and types are mutually dependent, one moves the formation of types from the metalevel to the formal system itself - the idea comes from the a u t o m a t h languages of de Bruijn (1970). To do this a constant * is introduced that is the sort of all types; then ‘A: *’ is a statement expressing ‘A is a type’. A sentence in the meta language like ‘if A is a type, then so is A -> A ’ now becomes a formal type derivation A : * (— (A -> A) : *. Here A stands for a variable, and since it is in *, one can say that A is a type variable. For each of the four dependencies one may want to introduce function abstraction (X,m : A . Fm) : (A ^ B) ; (Xa : *. I„) : (ITa : *. (a -> a)) ; (A.n:W.An^B ):f\J^*; (tax: *.
Recommended publications
  • Lecture Notes on the Lambda Calculus 2.4 Introduction to Β-Reduction
    2.2 Free and bound variables, α-equivalence. 8 2.3 Substitution ............................. 10 Lecture Notes on the Lambda Calculus 2.4 Introduction to β-reduction..................... 12 2.5 Formal definitions of β-reduction and β-equivalence . 13 Peter Selinger 3 Programming in the untyped lambda calculus 14 3.1 Booleans .............................. 14 Department of Mathematics and Statistics 3.2 Naturalnumbers........................... 15 Dalhousie University, Halifax, Canada 3.3 Fixedpointsandrecursivefunctions . 17 3.4 Other data types: pairs, tuples, lists, trees, etc. ....... 20 Abstract This is a set of lecture notes that developed out of courses on the lambda 4 The Church-Rosser Theorem 22 calculus that I taught at the University of Ottawa in 2001 and at Dalhousie 4.1 Extensionality, η-equivalence, and η-reduction. 22 University in 2007 and 2013. Topics covered in these notes include the un- typed lambda calculus, the Church-Rosser theorem, combinatory algebras, 4.2 Statement of the Church-Rosser Theorem, and some consequences 23 the simply-typed lambda calculus, the Curry-Howard isomorphism, weak 4.3 Preliminary remarks on the proof of the Church-Rosser Theorem . 25 and strong normalization, polymorphism, type inference, denotational se- mantics, complete partial orders, and the language PCF. 4.4 ProofoftheChurch-RosserTheorem. 27 4.5 Exercises .............................. 32 Contents 5 Combinatory algebras 34 5.1 Applicativestructures. 34 1 Introduction 1 5.2 Combinatorycompleteness . 35 1.1 Extensionalvs. intensionalviewoffunctions . ... 1 5.3 Combinatoryalgebras. 37 1.2 Thelambdacalculus ........................ 2 5.4 The failure of soundnessforcombinatoryalgebras . .... 38 1.3 Untypedvs.typedlambda-calculi . 3 5.5 Lambdaalgebras .......................... 40 1.4 Lambdacalculusandcomputability . 4 5.6 Extensionalcombinatoryalgebras . 44 1.5 Connectionstocomputerscience .
    [Show full text]
  • Lecture Notes on Types for Part II of the Computer Science Tripos
    Q Lecture Notes on Types for Part II of the Computer Science Tripos Prof. Andrew M. Pitts University of Cambridge Computer Laboratory c 2016 A. M. Pitts Contents Learning Guide i 1 Introduction 1 2 ML Polymorphism 6 2.1 Mini-ML type system . 6 2.2 Examples of type inference, by hand . 14 2.3 Principal type schemes . 16 2.4 A type inference algorithm . 18 3 Polymorphic Reference Types 25 3.1 The problem . 25 3.2 Restoring type soundness . 30 4 Polymorphic Lambda Calculus 33 4.1 From type schemes to polymorphic types . 33 4.2 The Polymorphic Lambda Calculus (PLC) type system . 37 4.3 PLC type inference . 42 4.4 Datatypes in PLC . 43 4.5 Existential types . 50 5 Dependent Types 53 5.1 Dependent functions . 53 5.2 Pure Type Systems . 57 5.3 System Fw .............................................. 63 6 Propositions as Types 67 6.1 Intuitionistic logics . 67 6.2 Curry-Howard correspondence . 69 6.3 Calculus of Constructions, lC ................................... 73 6.4 Inductive types . 76 7 Further Topics 81 References 84 Learning Guide These notes and slides are designed to accompany 12 lectures on type systems for Part II of the Cambridge University Computer Science Tripos. The course builds on the techniques intro- duced in the Part IB course on Semantics of Programming Languages for specifying type systems for programming languages and reasoning about their properties. The emphasis here is on type systems for functional languages and their connection to constructive logic. We pay par- ticular attention to the notion of parametric polymorphism (also known as generics), both because it has proven useful in practice and because its theory is quite subtle.
    [Show full text]
  • Category Theory and Lambda Calculus
    Category Theory and Lambda Calculus Mario Román García Trabajo Fin de Grado Doble Grado en Ingeniería Informática y Matemáticas Tutores Pedro A. García-Sánchez Manuel Bullejos Lorenzo Facultad de Ciencias E.T.S. Ingenierías Informática y de Telecomunicación Granada, a 18 de junio de 2018 Contents 1 Lambda calculus 13 1.1 Untyped λ-calculus . 13 1.1.1 Untyped λ-calculus . 14 1.1.2 Free and bound variables, substitution . 14 1.1.3 Alpha equivalence . 16 1.1.4 Beta reduction . 16 1.1.5 Eta reduction . 17 1.1.6 Confluence . 17 1.1.7 The Church-Rosser theorem . 18 1.1.8 Normalization . 20 1.1.9 Standardization and evaluation strategies . 21 1.1.10 SKI combinators . 22 1.1.11 Turing completeness . 24 1.2 Simply typed λ-calculus . 24 1.2.1 Simple types . 25 1.2.2 Typing rules for simply typed λ-calculus . 25 1.2.3 Curry-style types . 26 1.2.4 Unification and type inference . 27 1.2.5 Subject reduction and normalization . 29 1.3 The Curry-Howard correspondence . 31 1.3.1 Extending the simply typed λ-calculus . 31 1.3.2 Natural deduction . 32 1.3.3 Propositions as types . 34 1.4 Other type systems . 35 1.4.1 λ-cube..................................... 35 2 Mikrokosmos 38 2.1 Implementation of λ-expressions . 38 2.1.1 The Haskell programming language . 38 2.1.2 De Bruijn indexes . 40 2.1.3 Substitution . 41 2.1.4 De Bruijn-terms and λ-terms . 42 2.1.5 Evaluation .
    [Show full text]
  • 1 Simply-Typed Lambda Calculus
    CS 4110 – Programming Languages and Logics Lecture #18: Simply Typed λ-calculus A type is a collection of computational entities that share some common property. For example, the type int represents all expressions that evaluate to an integer, and the type int ! int represents all functions from integers to integers. The Pascal subrange type [1..100] represents all integers between 1 and 100. You can see types as a static approximation of the dynamic behaviors of terms and programs. Type systems are a lightweight formal method for reasoning about behavior of a program. Uses of type systems include: naming and organizing useful concepts; providing information (to the compiler or programmer) about data manipulated by a program; and ensuring that the run-time behavior of programs meet certain criteria. In this lecture, we’ll consider a type system for the lambda calculus that ensures that values are used correctly; for example, that a program never tries to add an integer to a function. The resulting language (lambda calculus plus the type system) is called the simply-typed lambda calculus (STLC). 1 Simply-typed lambda calculus The syntax of the simply-typed lambda calculus is similar to that of untyped lambda calculus, with the exception of abstractions. Since abstractions define functions tht take an argument, in the simply-typed lambda calculus, we explicitly state what the type of the argument is. That is, in an abstraction λx : τ: e, the τ is the expected type of the argument. The syntax of the simply-typed lambda calculus is as follows. It includes integer literals n, addition e1 + e2, and the unit value ¹º.
    [Show full text]
  • Lambda-Calculus Types and Models
    Jean-Louis Krivine LAMBDA-CALCULUS TYPES AND MODELS Translated from french by René Cori To my daughter Contents Introduction5 1 Substitution and beta-conversion7 Simple substitution ..............................8 Alpha-equivalence and substitution ..................... 12 Beta-conversion ................................ 18 Eta-conversion ................................. 24 2 Representation of recursive functions 29 Head normal forms .............................. 29 Representable functions ............................ 31 Fixed point combinators ........................... 34 The second fixed point theorem ....................... 37 3 Intersection type systems 41 System D­ ................................... 41 System D .................................... 50 Typings for normal terms ........................... 54 4 Normalization and standardization 61 Typings for normalizable terms ........................ 61 Strong normalization ............................. 68 ¯I-reduction ................................. 70 The ¸I-calculus ................................ 72 ¯´-reduction ................................. 74 The finite developments theorem ....................... 77 The standardization theorem ......................... 81 5 The Böhm theorem 87 3 4 CONTENTS 6 Combinatory logic 95 Combinatory algebras ............................. 95 Extensionality axioms ............................. 98 Curry’s equations ............................... 101 Translation of ¸-calculus ........................... 105 7 Models of lambda-calculus 111 Functional
    [Show full text]
  • The Lambda Calculus Bharat Jayaraman Department of Computer Science and Engineering University at Buffalo (SUNY) January 2010
    The Lambda Calculus Bharat Jayaraman Department of Computer Science and Engineering University at Buffalo (SUNY) January 2010 The lambda-calculus is of fundamental importance in the study of programming languages. It was founded by Alonzo Church in the 1930s well before programming languages or even electronic computers were invented. Church's thesis is that the computable functions are precisely those that are definable in the lambda-calculus. This is quite amazing, since the entire syntax of the lambda-calculus can be defined in just one line: T ::= V j λV:T j (TT ) The syntactic category T defines the set of well-formed expressions of the lambda-calculus, also referred to as lambda-terms. The syntactic category V stands for a variable; λV:T is called an abstraction, and (TT ) is called an application. We will examine these terms in more detail a little later, but, at the outset, it is remarkable that the lambda-calculus is capable of defining recursive functions even though there is no provision for writing recursive definitions. Indeed, there is no provision for writing named procedures or functions as we know them in conventional languages. Also absent are other familiar programming constructs such as control and data structures. We will therefore examine how the lambda-calculus can encode such constructs, and thereby gain some insight into the power of this little language. In the field of programming languages, John McCarthy was probably the first to rec- ognize the importance of the lambda-calculus, which inspired him in the 1950s to develop the Lisp programming language.
    [Show full text]
  • Brief Notes on the Category Theoretic Semantics of Simply Typed Lambda Calculus
    University of Cambridge 2017 MPhil ACS / CST Part III Category Theory and Logic (L108) Brief Notes on the Category Theoretic Semantics of Simply Typed Lambda Calculus Andrew Pitts Notation: comma-separated snoc lists When presenting logical systems and type theories, it is common to write finite lists of things using a comma to indicate the cons-operation and with the head of the list at the right. With this convention there is no common notation for the empty list; we will use the symbol “”. Thus ML-style list notation nil a :: nil b :: a :: nil etc becomes , a , a, b etc For non-empty lists, it is very common to leave the initial part “,” of the above notation implicit, for example just writing a, b instead of , a, b. Write X∗ for the set of such finite lists with elements from the set X. 1 Syntax of the simply typed l-calculus Fix a countably infinite set V whose elements are called variables and are typically written x, y, z,... The simple types (with product types) A over a set Gnd of ground types are given by the following grammar, where G ranges over Gnd: A ::= G j unit j A x A j A -> A Write ST(Gnd) for the set of simple types over Gnd. The syntax trees t of the simply typed l-calculus (STLC) over Gnd with constants drawn from a set Con are given by the following grammar, where c ranges over Con, x over V and A over ST(Gnd): t ::= c j x j () j (t , t) j fst t j snd t j lx : A.
    [Show full text]
  • Simply-Typed Lambda Calculus Static Semantics of F1 •Syntax: Notice :Τ • the Typing Judgment Λ Τ Terms E ::= X | X
    Homework Five Is Alive Simply-Typed • Ocaml now installed on dept Lambda Calculus linux/solaris machines in /usr/cs (e.g., /usr/cs/bin/ocamlc) • There will be no Number Six #1 #2 Back to School Lecture Schedule •Thu Oct 13 –Today • What is operational semantics? When would • Tue Oct 14 – Monomorphic Type Systems you use contextual (small-step) semantics? • Thu Oct 12 – Exceptions, Continuations, Rec Types • What is denotational semantics? • Tue Oct 17 – Subtyping – Homework 5 Due • What is axiomatic semantics? What is a •Thu Oct 19 –No Class verification condition? •Tue Oct 24 –2nd Order Types | Dependent Types – Double Lecture – Food? – Project Status Update Due •Thu Oct 26 –No Class • Tue Oct 31 – Theorem Proving, Proof Checking #3 #4 Today’s (Short?) Cunning Plan Why Typed Languages? • Type System Overview • Development • First-Order Type Systems – Type checking catches early many mistakes •Typing Rules – Reduced debugging time •Typing Derivations – Typed signatures are a powerful basis for design – Typed signatures enable separate compilation • Type Safety • Maintenance – Types act as checked specifications – Types can enforce abstraction •Execution – Static checking reduces the need for dynamic checking – Safe languages are easier to analyze statically • the compiler can generate better code #5 #6 1 Why Not Typed Languages? Safe Languages • There are typed languages that are not safe • Static type checking imposes constraints on the (“weakly typed languages”) programmer – Some valid programs might be rejected • All safe languages use types (static or dynamic) – But often they can be made well-typed easily Typed Untyped – Hard to step outside the language (e.g. OO programming Static Dynamic in a non-OO language, but cf.
    [Show full text]
  • Typed Lambda Calculus
    Typed Lambda Calculus Chapter 9 Benjamin Pierce Types and Programming Languages Call-by-value Operational Semantics t ::= terms v ::= values x variable x. t abstraction values x. t abstraction t t application ( x. t12) v2 [x v2] t12 (E-AppAbs) t1 t’1 (E-APPL1) t1 t2 t’1 t2 t2 t’2 (E-APPL2) v1 t2 v1 t’2 Consistency of Function Application • Prevent runtime errors during evaluation • Reject inconsistent terms • What does ‘x x’ mean? • Cannot be always enforced – if <tricky computation> then true else (x. x) A Naïve Attempt • Add function type • Type rule x. t : – x. x : – If true then (x. x) else (x. y y) : • Too Coarse Simple Types T ::= types Bool type of Booleans T T type of functions T1 T2 T3 = T1 ( T2 T3) Explicit vs. Implicit Types • How to define the type of abstractions? – Explicit: defined by the programmer t ::= Type terms x variable x: T. t abstraction t t application – Implicit: Inferred by analyzing the body • The type checking problem: Determine if typed term is well typed • The type inference problem: Determine if there exists a type for (an untyped) term which makes it well typed Simple Typed Lambda Calculus t ::= terms x variable x: T. t abstraction t t application T::= types T T types of functions Typing Function Declarations x : T t : T 1 2 2 (T-ABS) (x : T1. t2 ): T1 T2 A typing context maps free variables into types , x : T t : T 1 2 2 (T-ABS) ( x : T1 . t2 ): T1 T2 Typing Free Variables x : T (T-VAR) x : T Typing Function Applications t1 : T11 T12 t2 : T11 (T-APP) t1 t2 : T12 Typing Conditionals t1 : Bool t2 : T t3 : T (T-IF) if t1 then t2 else t3 : T If true then (x: Bool.
    [Show full text]
  • Introduction to Type Theory
    Introduction to Type Theory Erik Barendsen version November 2005 selected from: Basic Course Type Theory Dutch Graduate School in Logic, June 1996 lecturers: Erik Barendsen (KUN/UU), Herman Geuvers (TUE) 1. Introduction In typing systems, types are assigned to objects (in some context). This leads to typing statements of the form a : τ, where a is an object and τ a type. Traditionally, there are two views on typing: the computational and the logical one. They differ in the interpretation of typing statements. In the computational setting, a is regarded as a program or algorithm, and τ as a specification of a (in some formalism). This gives a notion of partial correctness, namely well-typedness of programs. From the logical point of view, τ is a formula, and a is considered to be a proof of τ. Various logical systems have a type theoretic interpretation. This branch of type theory is related to proof theory because the constructive or algorithmic content of proofs plays an important role. The result is a realiz- ability interpretation: provability in the logical systems implies the existence of an ‘inhabitant’ in the corresponding type system. Church versus Curry Typing One can distinguish two different styles in typing, usually called after their inventors A. Church and H.B. Curry. The approach `ala Church assembles typed objects from typed components; i.e., the objects are constructed together with their types. We use type anno- tations to indicate the types of basic objects: if 0 denotes the type of natural numbers, then λx:0.x denotes the identity function on N, having type 0→0.
    [Show full text]
  • Simply Typed Lambda Calculus Most Programming Languages Used for Serious Software Development Are Typed Languages
    06-02552 Princ. of Progr. Languages (and “Extended”) The University of Birmingham Spring Semester 2019-20 School of Computer Science c Uday Reddy2019-20 Handout 4: Simply Typed Lambda Calculus Most programming languages used for serious software development are typed languages. The reason for their popularity is that types allow us to check mechanically whether we are plugging together compatible pieces of programs. When we plug together incompatible pieces either due to lack of understanding, confusion, or misunderstandings, we end up constructing programs that do not function correctly. Type checking allows us to catch such problems early and leads to more reliable software. In Mathematics, typed languages have been developed because their untyped variants have led to paradoxes. The most famous of them is the Russell’s paradox. If we don’t distinguish between the type of elements and the type of sets of such elements, then the language allows us to express “the set of all sets” which cannot be shown to exist or not exist. However, the typed languages are constraining. So, there is ever a temptation to devise untyped languages. Alonzo Church first developed a typed version of the lambda calculus which he called the “simple theory of types”. He later generalised it to the untyped lambda calculus in order to create a more expressive language. However, the untyped lambda calculus, if used as the foundation for logic, leads one back to paradoxes. Despite paradoxes, the untyped calculus was useful for some foundational purposes. In his Master’s thesis, Turing proved that the untyped lambda calculus and (what we now call) “Turing machines” were equally expressive.
    [Show full text]
  • Simply Easy! (An Implementation of a Dependently Typed Lambda
    Simply Easy! An Implementation of a Dependently Typed Lambda Calculus Andres Loh¨ Conor McBride Wouter Swierstra University of Bonn University of Nottingham [email protected] [email protected] [email protected] Abstract less than 150 lines of Haskell code, and can be generated directly We present an implementation in Haskell of a dependently-typed from this paper’s sources. lambda calculus that can be used as the core of a programming The full power of dependent types can only show if we add language. We show that a dependently-typed lambda calculus is no actual data types to the base calculus. Hence, we demonstrate in more difficult to implement than other typed lambda calculi. In fact, Section 4 how to extend our language with natural numbers and our implementation is almost as easy as an implementation of the vectors. More data types can be added using the principles ex- simply typed lambda calculus, which we emphasize by discussing plained in this section. Using the added data types, we write a few the modifications necessary to go from one to the other. We explain example programs that make use of dependent types, such as a vec- how to add data types and write simple programs in the core tor append operation that keeps track of the length of the vectors. language, and discuss the steps necessary to build a full-fledged Programming in λ5 directly is tedious due to the spartan nature programming language on top of our simple core. of the core calculus. In Section 5, we therefore sketch how to proceed if we want to construct a real programming language on top of our dependently-typed core.
    [Show full text]