Simply Easy! An Implementation of a Dependently Typed Lambda Calculus Andres Loh¨ Conor McBride Wouter Swierstra University of Bonn University of Nottingham
[email protected] [email protected] [email protected] Abstract less than 150 lines of Haskell code, and can be generated directly We present an implementation in Haskell of a dependently-typed from this paper’s sources. lambda calculus that can be used as the core of a programming The full power of dependent types can only show if we add language. We show that a dependently-typed lambda calculus is no actual data types to the base calculus. Hence, we demonstrate in more difficult to implement than other typed lambda calculi. In fact, Section 4 how to extend our language with natural numbers and our implementation is almost as easy as an implementation of the vectors. More data types can be added using the principles ex- simply typed lambda calculus, which we emphasize by discussing plained in this section. Using the added data types, we write a few the modifications necessary to go from one to the other. We explain example programs that make use of dependent types, such as a vec- how to add data types and write simple programs in the core tor append operation that keeps track of the length of the vectors. language, and discuss the steps necessary to build a full-fledged Programming in λ5 directly is tedious due to the spartan nature programming language on top of our simple core. of the core calculus. In Section 5, we therefore sketch how to proceed if we want to construct a real programming language on top of our dependently-typed core.