ISSN 1364-0380 (on line) 1465-3060 (printed) 933 Geometry & Topology Volume 7 (2003) 933–963 Published: 11 December 2003 Combination of convergence groups Franc¸ois Dahmani Forschungsinstitut f¨ur Mathematik ETH Zentrum, R¨amistrasse, 101 8092 Z¨urich, Switzerland. Email:
[email protected] Abstract We state and prove a combination theorem for relatively hyperbolic groups seen as geometrically finite convergence groups. For that, we explain how to con- truct a boundary for a group that is an acylindrical amalgamation of relatively hyperbolic groups over a fully quasi-convex subgroup. We apply our result to Sela’s theory on limit groups and prove their relative hyperbolicity. We also get a proof of the Howson property for limit groups. AMS Classification numbers Primary: 20F67 Secondary: 20E06 Keywords: Relatively hyperbolic groups, geometrically finite convergence groups, combination theorem, limit groups Proposed: Benson Farb Received: 5 June 2002 Seconded: Jean-Pierre Otal, Walter Neumann Revised: 4 November 2003 c Geometry & Topology Publications 934 Fran¸cois Dahmani The aim of this paper is to explain how to amalgamate geometrically finite convergence groups, or in another formulation, relatively hyperbolic groups, and to deduce the relative hyperbolicity of Sela’s limit groups. A group acts as a convergence group on a compact space M if it acts properly discontinuously on the space of distinct triples of M (see the works of F Gehring, G Martin, A Beardon, B Maskit, B Bowditch, and P Tukia [12], [1], [6], [30]). The convergence action is uniform if M consists only of conical limit points; the action is geometrically finite (see [1], [5]) if M consists only of conical limit points and of bounded parabolic points.