Relatively Hyperbolic Groups

Total Page:16

File Type:pdf, Size:1020Kb

Relatively Hyperbolic Groups RELATIVELY HYPERBOLIC GROUPS B. H. BOWDITCH Abstract. In this paper we develop some of the foundations of the theory of relatively hyperbolic groups as originally formulated by Gromov. We prove the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly dis- continuous geometrically finite action on a proper hyperbolic space, that is, such that every limit point is either a conical limit point or a bounded parabolic point. The other is that of a group which admits a cofinite action on a connected fine hyperbolic graph. We define a graph to be “fine” if there are only finitely many circuits a given length containing any given edge, and we develop some of the properties of this notion. We show how a relatively hyperbolic group can be assumed to act on a proper hyperbolic space of a particular geometric form. We define the boundary of a relatively hyperbolic group, and show that the limit set of any geometri- cally finite action of the group is equivariantly homeomorphic to this boundary. This generalises a result of Tukia for geometri- cally finite kleinian groups. We also describe when the boundary is connected. 1. Introduction The aim of this paper is to give an account of the notion of a “rel- atively hyperbolic group”, or more precisely, a group which is “hy- perbolic relative to” a preferred class of “peripheral subgroups”. This notion was introduced by Gromov in his original paper on hyperbolic groups, [Grom]. Since then, it has been a major feature of geomet- ric group theory, with many naturally occurring groups falling into this class. It simultaneously generalises the idea of a hyperbolic group (the case where there are no peripheral subgroups) and that of a ge- ometrically finite kleinian group (where the peripheral subgroups are the maximal parabolic subgroups). Elaborations on the notion of rel- ative hyperbolicity were given by Farb [Fa] and Szczepa´nski [Sz]. In this paper, we describe some alternative viewpoints. Since the first draft of this paper was written there have been numerous papers mak- ing use of relative hyperbolicity, and one could compile an extensive Date: September 2011. 1 2 B. H. BOWDITCH bibliography. Here, however, we will confine ourselves to discussing equivalent formulations of the notion. In that regard, we mention [Y, Da, Bu, DrS, O, GrovM, Gera]. We will say more about these later in the introduction. Of course, these papers include many other references to the subject. We shall give two equivalent definitions of hyperbolicity for a group, Γ, relative to a set, G, of infinite subgroups. Definition 1. We say that Γ is hyperbolic relative to G, if Γ admits a properly discontinous isometric action on a path-metric space, X, with the following properties. (1) X is proper (i.e. complete and locally compact) and hyperbolic, (2) every point of the boundary of X is either a conical limit point or a bounded parabolic point, (3) the elements of G are precisely the maximal parabolic subgroups of Γ, and (4) every element of G is finitely generated. Definition 2. We say that Γ is hyperbolic relative to G, if Γ admits an action on a connected graph, K, with the following properties: (1) K is hyperbolic, and each edge of K is contained in only finitely many circuits of length n for any given integer, n, (2) there are finitely many Γ-orbits of edges, and each edge stabiliser is finite, (3) the elements of G are precisely the infinite vertex stabilisers of K, and (4) every element of G is finitely generated. The equivalence of these definitions will be proven in this paper (see Theorem 7.10). We refer to the elements of G as “peripheral subgroups”. The insistence that they be finitely generated is rather artificial, though it seems to be needed for certain results. The first definition could be viewed as a dynamical characterisation, except that we need to assume that we are dealing with the bound- ary of a proper hyperbolic space, and that the action arises from an isometric action on that space. In fact, it has been shown in [Y] that these last assumptions can be dispensed with. One therefore obtains a purely dynamical characterisation of a relatively hyperbolic group as a convergence group acting on a compact metrisable space, for which every point is either a conical limit point or a bounded parabolic point. This generalises the result of [Bo6], where it was assumed that there are no parabolics. (The argument of [Y] makes use of the fact, proven in [T3], that there are only finitely many conjugacy classes of maximal parabolic subgroups.) RELATIVELY HYPERBOLIC GROUPS 3 The second definition (which we shall study first in this paper) will be phrased formally in terms of group actions on sets, which are “cofi- nite” (i.e. finitely many orbits). We keep much of the discussion fairly general. In principle, one could take a similar approach to studying other “geometric” properties of groups relative to a given set of sub- groups. The standard (non-relative) case corresponds to those actions where all point stabilisers are finite. In this case, the interesting geo- metric properties seem to be quasiisometry invariant, though, in the more general setting, there are natural geometric properties which are not quasiisometry invariant, such as the property we call “fineness” in Section 4. This approach is extended to group splittings in [Bo9]. Each of the various formulations of relative hyperbolicity have tech- nical advantages in specific contexts, and each make apparent certain features not apparent from the others. We aim to explore such matters in this paper. There is also a weaker notion, which we shall refer to here as “weak relative hyperbolicity”. This is a weakening of Definition 2 above. Let G be a conjugacy invariant collection of infinite subgroups of a group Γ. Definition. We say that Γ is weakly hyperbolic relative to G if it admits an action on a connected graph, K, with the following properties: (1) K is hyperbolic, (2) there are finitely many Γ-orbits of edges, and (3) each element of G fixes a vertex of K, and each vertex stabiliser of K contains an element of G as a subgroup of finite index. This gives rise to many more examples (see [Fa, Gers, Mas]). How- ever, there seems to be a greater degree of arbitrariness about this definition. In this paper, we shall focus on the stronger definition. We briefly elaborate on these definitions, beginning with the dynamical formulation. Suppose that a group, Γ, acts by homeomorphism on a perfect metrisable compactum, M. We say that Γ is a “convergence group” (in the sense of [GehM]) if the induced action on the space of distinct triples is properly discontinuous. (For further discussion, see [GehM, T2, Fr1, Bo7].) We say that a convergence group is “(minimal) geometrically finite” if every point of M is either a conical limit point or a bounded parabolic point. (For definitions, see Section 6.) This is a natural generalisation of the Beardon-Maskit definition [BeM]. It has also been considered in this generality in [T3] and [Fr2]. It generalises the classical formulation of geometrical finiteness described by Ahlfors and Greenberg [A, Gre], see [Bo2, Bo4]. 4 B. H. BOWDITCH In this paper, we shall mostly confine ourselves to the case where M is the boundary, ∂X, of a complete, locally compact, Gromov hyperbolic space, X. If Γ acts properly discontinuously and isometrically on X, then the induced action of ∂X is a convergence action. We can thus define an action on X to be “geometrically finite” if the induced action on ∂X is geometrically finite in the dynamical sense. If Π ⊆ ∂X is the set of parabolic points, then one can show that Π/Γ is finite. In fact, one can construct a strictly invariant system of horoballs, (B(p))p∈Π, about Π, such that (X \ Sp∈Π int B(p))/Γ is compact. In this way, we recover a generalisation of Marden’s definition of geometrical finiteness [Mar]. This gives us the first definition of relative hyperbolicity, namely that a group Γ is hyperbolic relative to a set of infinite finitely generated subgroups (the “peripheral subgroups”) if it admits a geometrically finite action on a proper hyperbolic space, where these subgroups are precisely the maximal parabolic subgroups. We note immediately that the intersection of any two peripheral subgroups is finite, and that there are finitely many conjugacy classes of peripheral subgroups. Moreover, each peripheral subgroup is equal to its normaliser. Note that, in the case of a hyperbolic group (where G = ∅) the quasiisometry class of the space X depends only on the group, Γ. This allows us to define the boundary, denoted ∂Γ, of Γ as ∂X. In the gen- eral situation, however, this is not the case. Indeed, there seems to be no particularly natural choice of quasiisometry class of space X. How- ever, as we shall discuss in a moment, we can associate to a relatively hyperbolic group, (Γ, G), a space X(Γ), together with a geometrically finite action of Γ, which is canonical up to Γ-equivariant quasiisometry, even though the construction is somewhat artificial. This allows us to give a formal definition of the boundary, ∂(Γ, G) as ∂X(Γ). One can go on to show that if X is any complete locally compact hyperbolic space admitting a geometrically finite action of Γ, then the limit set of ∂X is, in fact, Γ-equivariantly homeomorphic to ∂(Γ, G). We thus see that ∂(Γ, G) is a quite natural object to associate to (Γ, G), even if X(Γ) is not.
Recommended publications
  • Commensurators of Finitely Generated Non-Free Kleinian Groups. 1
    Commensurators of finitely generated non-free Kleinian groups. C. LEININGER D. D. LONG A.W. REID We show that for any finitely generated torsion-free non-free Kleinian group of the first kind which is not a lattice and contains no parabolic elements, then its commensurator is discrete. 57M07 1 Introduction Let G be a group and Γ1; Γ2 < G. Γ1 and Γ2 are called commensurable if Γ1 \Γ2 has finite index in both Γ1 and Γ2 . The Commensurator of a subgroup Γ < G is defined to be: −1 CG(Γ) = fg 2 G : gΓg is commensurable with Γg: When G is a semi-simple Lie group, and Γ a lattice, a fundamental dichotomy es- tablished by Margulis [26], determines that CG(Γ) is dense in G if and only if Γ is arithmetic, and moreover, when Γ is non-arithmetic, CG(Γ) is again a lattice. Historically, the prominence of the commensurator was due in large part to its density in the arithmetic setting being closely related to the abundance of Hecke operators attached to arithmetic lattices. These operators are fundamental objects in the theory of automorphic forms associated to arithmetic lattices (see [38] for example). More recently, the commensurator of various classes of groups has come to the fore due to its growing role in geometry, topology and geometric group theory; for example in classifying lattices up to quasi-isometry, classifying graph manifolds up to quasi- isometry, and understanding Riemannian metrics admitting many “hidden symmetries” (for more on these and other topics see [2], [4], [17], [18], [25], [34] and [37]).
    [Show full text]
  • Lattices in Lie Groups
    Lattices in Lie groups Dave Witte Morris Lattices in Lie groups 1: Introduction University of Lethbridge, Alberta, Canada http://people.uleth.ca/ dave.morris What is a lattice subgroup? ∼ [email protected] Arithmetic construction of lattices. Abstract Compactness criteria. During this mini-course, the students will learn the Classical simple Lie groups. basic theory of lattices in semisimple Lie groups. Examples will be provided by simple arithmetic constructions. Aspects of the geometric and algebraic structure of lattices will be discussed, and the Superrigidity and Arithmeticity Theorems of Margulis will be described. Dave Witte Morris (U of Lethbridge) Lattices 1: Introduction CIRM, Jan 2019 1 / 18 Dave Witte Morris (U of Lethbridge) Lattices 1: Introduction CIRM, Jan 2019 2 / 18 A simple example. Z2 is a cocompact lattice in R2. 2 2 R is a connected Lie group Replace R with interesting group G. group: (x1,x2) (y1,y2) (x1 y1,x2 y2) + = + + Riemannian manifold (metric space, connected) is a cocompact lattice in G: (discrete subgroup) distance is right-invariant: d(x a, y a) d(x, y) + + = Every pt in G is within bounded distance of . group ops (x y and x) continuous (differentiable) Γ + − g cγ where c is bounded — in cpct set 2 = Z is a discrete subgroup (no accumulation points) compact C G, G C . Γ Every point in R2 is within ∃ ⊆ = G/ is cpct. (gn g ! γn , gnγn g) 2 bdd distance C √2 of Z → Γ ∃{ } → = 2 Z is a cocompact lattice is a latticeΓ in G: Γ Γ ⇒ 2 in R . only require C (or G/ ) to have finite volume.
    [Show full text]
  • R. Ji, C. Ogle, and B. Ramsey. Relatively Hyperbolic
    J. Noncommut. Geom. 4 (2010), 83–124 Journal of Noncommutative Geometry DOI 10.4171/JNCG/50 © European Mathematical Society Relatively hyperbolic groups, rapid decay algebras and a generalization of the Bass conjecture Ronghui Ji, Crichton Ogle, and Bobby Ramsey With an Appendix by Crichton Ogle Abstract. By deploying dense subalgebras of `1.G/ we generalize the Bass conjecture in terms of Connes’ cyclic homology theory. In particular, we propose a stronger version of the `1-Bass Conjecture. We prove that hyperbolic groups relative to finitely many subgroups, each of which posses the polynomial conjugacy bound property and nilpotent periodicity property, satisfy the `1-Stronger-Bass Conjecture. Moreover, we determine the conjugacy bound for relatively hyperbolic groups and compute the cyclic cohomology of the `1-algebra of any discrete group. Mathematics Subject Classification (2010). 46L80, 20F65, 16S34. Keywords. B-bounded cohomology, rapid decay algebras, Bass conjecture. Introduction Let R be a discrete ring with unit. A classical construction of Hattori–Stallings ([Ha], [St]) yields a homomorphism of abelian groups HS a Tr K0 .R/ ! HH0.R/; a where K0 .R/ denotes the zeroth algebraic K-group of R and HH0.R/ D R=ŒR; R its zeroth Hochschild homology group. Precisely, given a projective module P over R, one chooses a free R-module Rn containing P as a direct summand, resulting in a map n Trace EndR.P / ,! EndR.R / D Mn;n.R/ ! HH0.R/: HS One then verifies the equivalence class of Tr .ŒP / ´ Trace..IdP // in HH0.R/ depends only on the isomorphism class of P , is invariant under stabilization, and sends direct sums to sums.
    [Show full text]
  • Arxiv:1711.08410V2
    LATTICE ENVELOPES URI BADER, ALEX FURMAN, AND ROMAN SAUER Abstract. We introduce a class of countable groups by some abstract group- theoretic conditions. It includes linear groups with finite amenable radical and finitely generated residually finite groups with some non-vanishing ℓ2- Betti numbers that are not virtually a product of two infinite groups. Further, it includes acylindrically hyperbolic groups. For any group Γ in this class we determine the general structure of the possible lattice embeddings of Γ, i.e. of all compactly generated, locally compact groups that contain Γ as a lattice. This leads to a precise description of possible non-uniform lattice embeddings of groups in this class. Further applications include the determination of possi- ble lattice embeddings of fundamental groups of closed manifolds with pinched negative curvature. 1. Introduction 1.1. Motivation and background. Let G be a locally compact second countable group, hereafter denoted lcsc1. Such a group carries a left-invariant Radon measure unique up to scalar multiple, known as the Haar measure. A subgroup Γ < G is a lattice if it is discrete, and G/Γ carries a finite G-invariant measure; equivalently, if the Γ-action on G admits a Borel fundamental domain of finite Haar measure. If G/Γ is compact, one says that Γ is a uniform lattice, otherwise Γ is a non- uniform lattice. The inclusion Γ ֒→ G is called a lattice embedding. We shall also say that G is a lattice envelope of Γ. The classical examples of lattices come from geometry and arithmetic. Starting from a locally symmetric manifold M of finite volume, we obtain a lattice embedding π1(M) ֒→ Isom(M˜ ) of its fundamental group into the isometry group of its universal covering via the action by deck transformations.
    [Show full text]
  • Critical Exponents of Invariant Random Subgroups in Negative Curvature
    CRITICAL EXPONENTS OF INVARIANT RANDOM SUBGROUPS IN NEGATIVE CURVATURE ILYA GEKHTMAN AND ARIE LEVIT Abstract. Let X be a proper geodesic Gromov hyperbolic metric space and let G be a cocompact group of isometries of X admitting a uniform lattice. Let d be the Hausdorff dimension of the Gromov boundary ∂X. We define the critical exponent δ(µ) of any discrete invariant random subgroup µ of the d locally compact group G and show that δ(µ) > 2 in general and that δ(µ) = d if µ is of divergence type. Whenever G is a rank-one simple Lie group with Kazhdan’s property (T ) it follows that an ergodic invariant random subgroup of divergence type is a lattice. One of our main tools is a maximal ergodic theorem for actions of hyperbolic groups due to Bowen and Nevo. 1. Introduction Let X be a proper geodesic Gromov hyperbolic metric space and let Isom(X) denote its group of isometries. Fix a basepoint o ∈ X. The critical exponent δ(Γ) of a discrete subgroup Γ of Isom(X) is given by δ(Γ) = inf{s : e−sdX (o,γo) < ∞}. γX∈Γ The subgroup Γ is of divergence type if the above series diverges at the critical exponent. A discrete subgroup of Isom(X) is a uniform lattice if it acts cocompactly on X. A uniform lattice is always of divergence type and its critical exponent is equal to the Hausdorff dimension dimH(∂X) of the Gromov boundary of X. For example, if X is the n-dimensional hyperbolic space Hn and Γ is a uniform n n lattice in Isom(H ) then δ(Γ) = dimH(∂H )= n − 1.
    [Show full text]
  • A HYPERBOLIC-BY-HYPERBOLIC HYPERBOLIC GROUP Given A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 12, December 1997, Pages 3447{3455 S 0002-9939(97)04249-4 A HYPERBOLIC-BY-HYPERBOLIC HYPERBOLIC GROUP LEE MOSHER (Communicated by Ronald M. Solomon) Abstract. Given a short exact sequence of finitely generated groups 1 K G H 1 ! ! ! ! it is known that if K and G are word hyperbolic, and if K is nonelementary, then H is word hyperbolic. In the original examples due to Thurston, as well as later examples due to Bestvina and Feighn, the group H is elementary. We give a method for constructing examples where all three groups are nonelementary. Given a short exact sequence of finitely generated groups 1 K G H 1 → → → → it is shown in [Mos96] that if K and G are word hyperbolic and K is nonelementary (that is, not virtually cyclic), then H is word hyperbolic. Since the appearance of that result, several people have asked whether there is an example where all three groups are nonelementary. In all previously known examples the group H is elementary. For instance, let K = π1(S)whereSis a closed hyperbolic surface, let f : S S be a pseudo-Anosov homeomorphism, → and let Mf be the mapping torus of f, obtained from S [0, 1] by identifying × (x, 1) (f(x), 0) for all x S. Thurston proved [Ota96] that Mf is a hyperbolic ∼ ∈ 3-manifold and so the group G = π1(Mf ) is word hyperbolic. We therefore obtain a short exact sequence 1 π1(S) π1(M) Z 1. This was generalized by Bestvina and Feighn [BF92]→ who showed→ that→ if K →is any word hyperbolic group, and if G is the extension of K by a hyperbolic automorphism of K,thenGis word hyperbolic; we again obtain an example with H = Z.
    [Show full text]
  • Arxiv:1703.00107V1 [Math.AT] 1 Mar 2017
    Vanishing of L2 •Betti numbers and failure of acylindrical hyperbolicity of matrix groups over rings FENG JI SHENGKUI YE Let R be an infinite commutative ring with identity and n ≥ 2 be an integer. We 2 (2) prove that for each integer i = 0, 1, ··· , n − 2, the L •Betti number bi (G) = 0, when G = GLn(R) the general linear group, SLn(R) the special linear group, En(R) the group generated by elementary matrices. When R is an infinite princi• pal ideal domain, similar results are obtained for Sp2n(R) the symplectic group, ESp2n(R) the elementary symplectic group, O(n, n)(R) the split orthogonal group or EO(n, n)(R) the elementary orthogonal group. Furthermore, we prove that G is not acylindrically hyperbolic if n ≥ 4. We also prove similar results for a class of noncommutative rings. The proofs are based on a notion of n•rigid rings. 20J06; 20F65 1 Introduction In this article, we study the s•normality of subgroups of matrix groups over rings together with two applications. Firstly, the low•dimensional L2 •Betti numbers of matrix groups are proved to be zero. Secondly, the matrix groups are proved to be not acylindrically hyperbolic in the sense of Dahmani–Guirardel–Osin [6] and Osin [17]. arXiv:1703.00107v1 [math.AT] 1 Mar 2017 Let us briefly review the relevant background. Let G be a discrete group. Denote by l2(G) = {f : G → C | kf (g)k2 < +∞} Xg∈G = 2 the Hilbert space with inner product hf1, f2i x∈G f1(x)f2(x).
    [Show full text]
  • Subgroups of Lacunary Hyperbolic Groups and Free Products Arxiv
    Subgroups of Lacunary Hyperbolic Groups and Free Products Krishnendu Khan Abstract A finitely generated group is lacunary hyperbolic if one of its asymptotic cones is an R-tree. In this article we give a necessary and sufficient condition on lacunary hyperbolic groups in order to be stable under free product by giving a dynamical characterization of lacunary hyperbolic groups. Also we studied limits of elementary subgroups as subgroups of lacunary hperbolic groups and characterized them. Given any countable collection of increasing union of elementary groups we show that there exists a lacunary hyperbolic group whose set of all maximal subgroups is the given collection. As a consequence we construct a finitely generated divisible group. First such example was constructed by V. Guba in [Gu86]. In section5 we show that given any finitely generated group Q and a non elementary hyperbolic group H, there exists a short exact sequence 1 → N → G → Q → 1, where G is a lacunary hyperbolic group and N is a non elementary quotient of H. Our method allows to recover [AS14, Theorem 3]. R ( ) In section6, we extend the class of groups ipT Q considered in [CDK19] and hence give more new examples of property (T ) von Neumann algebras which have maximal von Neumann subalgebras without property (T ). Contents 1 Introduction 2 arXiv:2002.08540v1 [math.GR] 20 Feb 2020 2 Hyperbolic spaces 5 2.1 Hyperbolic metric spaces . .5 2.2 Ultrafilter and asymptotic cone . .6 2.3 Hyperbolic group and hyperbolicity function . .8 3 Lacunary hyperbolic groups 10 4 Algebraic properties of lacunary hyperbolic groups 14 4.1 Small cancellation theory .
    [Show full text]
  • Convergence Groups and Configuration Spaces. B. H
    Convergence groups and configuration spaces. B. H. Bowditch Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, Great Britain. [email protected] [First draft: April 1996. Revised: December 1996] 0. Introduction. In this paper, we give an account of convergence groups in a fairly general context, focusing on aspects for which there seems to be no detailed account in the literature. We thus develop the theory from a slightly different perspective to usual; in particular from the point of view of actions on spaces of triples. The main applications we have in mind are to (word) hyperbolic groups, and more generally to Gromov hyperbolic spaces. In later sections, we give special attention to group actions on continua. The notion of a convergence group was introduced by Gehring and Martin [GeM1]. The idea is to axiomatise the essential dynamical properties of a Kleinian group acting on the ideal sphere of (real) hyperbolic space. The original paper thus refers directly only to actions on topological spheres, though most of the theory would seem to generalise to compact hausdorff spaces (or at least to compact metrisable spaces). The motivation for this generalisation stems from the fact that a (word) hyperbolic group (in the sense of Gromov [Gr]) acting on its boundary satisfies the convergence axioms. Indeed any group acting properly discontinuously on a complete locally compact (Gromov) hyperbolic space induces a convergence action on the ideal boundary of the space. More general accounts of convergence groups in this context can be found in [T2], [F1] and [F2]. There are essentially two equivalent definitions of “convergence group”.
    [Show full text]
  • Ending Laminations for Hyperbolic Group Extensions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Ending Laminations for Hyperbolic Group Extensions Mahan Mitra University of California at Berkeley, CA 94720 email: [email protected] 1 Introduction Let H be a hyperbolic normal subgroup of infinite index in a hyperbolic group G. It follows from work of Rips and Sela [16] (see below), that H has to be a free product of free groups and surface groups if it is torsion-free. From [14], the quotient group Q is hyperbolic and contains a free cyclic subgroup. This gives rise to a hyperbolic automorphism [2] of H. By iterating this automorphism, and scaling the Cayley graph of H, we get a sequence of actions of H on δi-hyperbolic metric spaces, where δi → 0 as i → ∞. From this, one can extract a subsequence converging to a small isometric action on a 0-hyperbolic metric space, i.e. an R-tree. By the JSJ splitting of Rips and Sela [16], [17], the outer automorphism group of H is generated by internal automorphisms. One notes further, that a hyperbolic automorphism cannot preserve any splitting over cyclic subgroups and that the limiting action is in fact free. Hence, by a theorem of Rips [16], H has to be a free product of free groups and surface groups if it is torsion-free. Thus the collection of normal subgroups possible is limited. However, the class of groups G can still be fairly large. Examples can be found in [3], [5] and [13].
    [Show full text]
  • Combination of Convergence Groups
    ISSN 1364-0380 (on line) 1465-3060 (printed) 933 Geometry & Topology Volume 7 (2003) 933–963 Published: 11 December 2003 Combination of convergence groups Franc¸ois Dahmani Forschungsinstitut f¨ur Mathematik ETH Zentrum, R¨amistrasse, 101 8092 Z¨urich, Switzerland. Email: [email protected] Abstract We state and prove a combination theorem for relatively hyperbolic groups seen as geometrically finite convergence groups. For that, we explain how to con- truct a boundary for a group that is an acylindrical amalgamation of relatively hyperbolic groups over a fully quasi-convex subgroup. We apply our result to Sela’s theory on limit groups and prove their relative hyperbolicity. We also get a proof of the Howson property for limit groups. AMS Classification numbers Primary: 20F67 Secondary: 20E06 Keywords: Relatively hyperbolic groups, geometrically finite convergence groups, combination theorem, limit groups Proposed: Benson Farb Received: 5 June 2002 Seconded: Jean-Pierre Otal, Walter Neumann Revised: 4 November 2003 c Geometry & Topology Publications 934 Fran¸cois Dahmani The aim of this paper is to explain how to amalgamate geometrically finite convergence groups, or in another formulation, relatively hyperbolic groups, and to deduce the relative hyperbolicity of Sela’s limit groups. A group acts as a convergence group on a compact space M if it acts properly discontinuously on the space of distinct triples of M (see the works of F Gehring, G Martin, A Beardon, B Maskit, B Bowditch, and P Tukia [12], [1], [6], [30]). The convergence action is uniform if M consists only of conical limit points; the action is geometrically finite (see [1], [5]) if M consists only of conical limit points and of bounded parabolic points.
    [Show full text]
  • Conical Limit Points and the Cannon-Thurston Map
    CONFORMAL GEOMETRY AND DYNAMICS An Electronic Journal of the American Mathematical Society Volume 20, Pages 58–80 (March 18, 2016) http://dx.doi.org/10.1090/ecgd/294 CONICAL LIMIT POINTS AND THE CANNON-THURSTON MAP WOOJIN JEON, ILYA KAPOVICH, CHRISTOPHER LEININGER, AND KEN’ICHI OHSHIKA Abstract. Let G be a non-elementary word-hyperbolic group acting as a convergence group on a compact metrizable space Z so that there exists a continuous G-equivariant map i : ∂G → Z,whichwecallaCannon-Thurston map. We obtain two characterizations (a dynamical one and a geometric one) of conical limit points in Z in terms of their pre-images under the Cannon- Thurston map i. As an application we prove, under the extra assumption that the action of G on Z has no accidental parabolics, that if the map i is not injective, then there exists a non-conical limit point z ∈ Z with |i−1(z)| =1. This result applies to most natural contexts where the Cannon-Thurston map is known to exist, including subgroups of word-hyperbolic groups and Kleinian representations of surface groups. As another application, we prove that if G is a non-elementary torsion-free word-hyperbolic group, then there exists x ∈ ∂G such that x is not a “controlled concentration point” for the action of G on ∂G. 1. Introduction Let G be a Kleinian group, that is, a discrete subgroup of the isometry group of hyperbolic space G ≤ Isom+(Hn). In [6], Beardon and Maskit defined the notion of a conical limit point (also called a point of approximation or radial limit point), and used this to provide an alternative characterization of geometric finiteness.
    [Show full text]