Speed and Segmentation Control Mechanisms Characterized in Rhythmically- Active Circuits Created from Spinal Neurons Produced Fr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Degeneration of Cells Surrounding Motoneurons Contributes to Amyotrophic Lateral Sclerosis
cells Review How Degeneration of Cells Surrounding Motoneurons Contributes to Amyotrophic Lateral Sclerosis Roxane Crabé 1, Franck Aimond 1, Philippe Gosset 1 , Frédérique Scamps 1 and Cédric Raoul 1,2,* 1 The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; [email protected] (R.C.); [email protected] (F.A.); [email protected] (P.G.); [email protected] (F.S.) 2 Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia * Correspondence: [email protected] Received: 2 October 2020; Accepted: 24 November 2020; Published: 27 November 2020 Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by the progressive degeneration of upper and lower motoneurons. Despite motoneuron death being recognized as the cardinal event of the disease, the loss of glial cells and interneurons in the brain and spinal cord accompanies and even precedes motoneuron elimination. In this review, we provide striking evidence that the degeneration of astrocytes and oligodendrocytes, in addition to inhibitory and modulatory interneurons, disrupt the functionally coherent environment of motoneurons. We discuss the extent to which the degeneration of glial cells and interneurons also contributes to the decline of the motor system. This pathogenic cellular network therefore represents a novel strategic field of therapeutic investigation. Keywords: amyotrophic lateral sclerosis; spinal cord; cortex; motoneuron; astrocytes; interneuron; oligodendrocytes; degeneration 1. Introduction Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the selective and progressive loss of upper and lower motoneurons. ALS begins with focal muscle weakness and wasting that relentlessly spreads to other body parts, leading to death mostly from respiratory failure within three years of onset. -
Neural Control of Movement: Motor Neuron Subtypes, Proprioception and Recurrent Inhibition
List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Enjin A, Rabe N, Nakanishi ST, Vallstedt A, Gezelius H, Mem- ic F, Lind M, Hjalt T, Tourtellotte WG, Bruder C, Eichele G, Whelan PJ, Kullander K (2010) Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as mark- ers for fast motor neurons and partition cells. J Comp Neurol 518:2284-2304. II Wootz H, Enjin A, Wallen-Mackenzie Å, Lindholm D, Kul- lander K (2010) Reduced VGLUT2 expression increases motor neuron viability in Sod1G93A mice. Neurobiol Dis 37:58-66 III Enjin A, Leao KE, Mikulovic S, Le Merre P, Tourtellotte WG, Kullander K. 5-ht1d marks gamma motor neurons and regulates development of sensorimotor connections Manuscript IV Enjin A, Leao KE, Eriksson A, Larhammar M, Gezelius H, Lamotte d’Incamps B, Nagaraja C, Kullander K. Development of spinal motor circuits in the absence of VIAAT-mediated Renshaw cell signaling Manuscript Reprints were made with permission from the respective publishers. Cover illustration Carousel by Sasha Svensson Contents Introduction.....................................................................................................9 Background...................................................................................................11 Neural control of movement.....................................................................11 The motor neuron.....................................................................................12 Organization -
Deconstructing Spinal Interneurons, One Cell Type at a Time Mariano Ignacio Gabitto
Deconstructing spinal interneurons, one cell type at a time Mariano Ignacio Gabitto Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2016 Mariano Ignacio Gabitto All rights reserved ABSTRACT Deconstructing spinal interneurons, one cell type at a time Mariano Ignacio Gabitto Abstract Documenting the extent of cellular diversity is a critical step in defining the functional organization of the nervous system. In this context, we sought to develop statistical methods capable of revealing underlying cellular diversity given incomplete data sampling - a common problem in biological systems, where complete descriptions of cellular characteristics are rarely available. We devised a sparse Bayesian framework that infers cell type diversity from partial or incomplete transcription factor expression data. This framework appropriately handles estimation uncertainty, can incorporate multiple cellular characteristics, and can be used to optimize experimental design. We applied this framework to characterize a cardinal inhibitory population in the spinal cord. Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. By using our Sparse Bayesian approach, we showed that V1 interneurons, a major inhibitory population that controls motor output, fractionate into diverse subsets on the basis of the expression of nineteen transcription factors. Transcriptionally defined subsets exhibit highly structured spatial distributions with mediolateral and dorsoventral positional biases. These distinctions in settling position are largely predictive of patterns of input from sensory and motor neurons, arguing that settling position is a determinant of inhibitory microcircuit organization. -
Delineating the Diversity of Spinal Interneurons in Locomotor Circuits
The Journal of Neuroscience, November 8, 2017 • 37(45):10835–10841 • 10835 Mini-Symposium Delineating the Diversity of Spinal Interneurons in Locomotor Circuits Simon Gosgnach,1 Jay B. Bikoff,2 XKimberly J. Dougherty,3 Abdeljabbar El Manira,4 XGuillermo M. Lanuza,5 and Ying Zhang6 1Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, 2Department of Neuroscience, Columbia University, New York, New York 10032, 3Department of Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania 19129, 4Department of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden, 5Department of Developmental Neurobiology, Fundacion Instituto Leloir, Buenos Aires C1405BWE, Argentina, and 6Department of Medical Neuroscience, Dalhousie University. Halifax, Nova Scotia B3H 4R2, Canada Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demon- strating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided -
Regulation of Spinal Interneuron Development by the Olig-Related Protein Bhlhb5 and Notch Signaling Kaia Skaggs1,2, Donna M
RESEARCH ARTICLE 3199 Development 138, 3199-3211 (2011) doi:10.1242/dev.057281 © 2011. Published by The Company of Biologists Ltd Regulation of spinal interneuron development by the Olig-related protein Bhlhb5 and Notch signaling Kaia Skaggs1,2, Donna M. Martin2,3 and Bennett G. Novitch1,2,4,* SUMMARY The neural circuits that control motor activities depend on the spatially and temporally ordered generation of distinct classes of spinal interneurons. Despite the importance of these interneurons, the mechanisms underlying their genesis are poorly understood. Here, we demonstrate that the Olig-related transcription factor Bhlhb5 (recently renamed Bhlhe22) plays two central roles in this process. Our findings suggest that Bhlhb5 repressor activity acts downstream of retinoid signaling and homeodomain proteins to promote the formation of dI6, V1 and V2 interneuron progenitors and their differentiated progeny. In addition, Bhlhb5 is required to organize the spatially restricted expression of the Notch ligands and Fringe proteins that both elicit the formation of the interneuron populations that arise adjacent to Bhlhb5+ cells and influence the global pattern of neuronal differentiation. Through these actions, Bhlhb5 helps transform the spatial information established by morphogen signaling into local cell-cell interactions associated with Notch signaling that control the progression of neurogenesis and extend neuronal diversity within the developing spinal cord. KEY WORDS: Neurogenesis, Interneurons, Neuronal fate, Notch signaling, Spinal cord, Transcription factors, Mouse, Chick INTRODUCTION V0-V3 interneurons and MNs (Briscoe and Ericson, 2001; Briscoe The control of vertebrate motor behaviors depends on spinal and Novitch, 2008). In the case of MN formation, the patterning interneuron circuits that relay sensory information from the actions of Shh and RA culminate in the expression of the bHLH periphery and modulate motor neuron (MN) activities. -
Interneuron Diversity and Function in the Spinal Motor System
Available online at www.sciencedirect.com ScienceDirect Interneuron diversity and function in the spinal motor system Jay B Bikoff Neural circuits in the spinal cord are the ultimate arbiters of generating patterned motor output, while integrating movement, serving as the conduit through which the rest of the sensory input and supraspinal information arriving nervous system controls muscle contraction to implement directly or indirectly from cortical, basal ganglia, brain- behavior. Over the last two decades, the genetic identity of stem, and cerebellar systems to enable animals to move in neurons in the spinal cord has come into view, revealing the a manner that meets their behavioral needs [4–6]. Reveal- richness of cellular diversity that underlies motor control. ing the identity, organization, and function of spinal Despite this progress, our understanding of how discrete types interneurons is, therefore, essential to understanding of spinal interneurons contribute to motor output remains the neural control of movement. tenuous. Here, I review the landscape of interneuron diversity in the spinal motor system, and highlight key challenges and Early studies of spinal interneuron organization largely novel approaches to linking the molecular and genetic focused on locomotion, one of the most fundamental taxonomy of spinal interneurons to functional aspects of motor functions in an animal’s behavioral repertoire. Over movement. a century ago, Thomas Graham Brown showed that neurons intrinsic to the spinal cord can generate rhythmic Address patterns of locomotor activity, establishing the concept of Department of Developmental Neurobiology, St. Jude Children’s central pattern generators and setting the stage for dec- Research Hospital, Memphis, TN, 38105, USA ades of work dissecting the components of these networks Corresponding author: Bikoff, Jay B ([email protected]) [7]. -
Gamma Motor Neurons Survive and Exacerbate Alpha Motor Neuron Degeneration In
Gamma motor neurons survive and exacerbate alpha PNAS PLUS motor neuron degeneration in ALS Melanie Lalancette-Heberta,b, Aarti Sharmaa,b, Alexander K. Lyashchenkoa,b, and Neil A. Shneidera,b,1 aCenter for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032; and bDepartment of Neurology, Columbia University, New York, NY 10032 Edited by Rob Brownstone, University College London, London, United Kingdom, and accepted by Editorial Board Member Fred H. Gage October 27, 2016 (received for review April 4, 2016) The molecular and cellular basis of selective motor neuron (MN) the muscle spindle and control the sensitivity of spindle afferent vulnerability in amyotrophic lateral sclerosis (ALS) is not known. In discharge (15); beta (β) skeletofusimotor neurons innervate both genetically distinct mouse models of familial ALS expressing intra- and extrafusal muscle (16). In addition to morphological mutant superoxide dismutase-1 (SOD1), TAR DNA-binding protein differences, distinct muscle targets, and the absence of primary 43 (TDP-43), and fused in sarcoma (FUS), we demonstrate selective afferent (IA)inputsonγ-MNs, these functional MN subtypes also degeneration of alpha MNs (α-MNs) and complete sparing of differ in their trophic requirements, and γ-MNs express high levels gamma MNs (γ-MNs), which selectively innervate muscle spindles. of the glial cell line-derived neurotropic factor (GDNF) receptor Resistant γ-MNs are distinct from vulnerable α-MNs in that they Gfrα1 (17). γ-MNs are also molecularly distinguished by the ex- lack synaptic contacts from primary afferent (IA) fibers. Elimination pression of other selective markers including the transcription α of these synapses protects -MNs in the SOD1 mutant, implicating factor Err3 (18), Wnt7A (19), the serotonin receptor 1d (5-ht1d) this excitatory input in MN degeneration. -
Activity of Spinal Interneurons and Their Effects on Forearm Muscles During Voluntary Wrist Movements in the Monkey
Activity of Spinal Interneurons and Their Effects on Forearm Muscles During Voluntary Wrist Movements in the Monkey STEVE I. PERLMUTTER, MARC A. MAIER, AND EBERHARD E. FETZ Department of Physiology and Biophysics and Regional Primate Research Center, University of Washington, Seattle, Washington 98195 Perlmutter, Steve I., Marc A. Maier, and Eberhard E. Fetz. Dum and Strick 1996; Kuypers 1981; Ralston and Ralston Activity of spinal interneurons and their effects on forearm muscles 1985; Robinson et al. 1987). Spinal interneurons appear during voluntary wrist movements in the monkey. J. Neurophysiol. to integrate convergent supraspinal and peripheral afferent 80: 2475±2494, 1998. We studied the activity of 577 neurons in information and distribute appropriate signals to motoneu- the C6 ±T1 spinal cord of three awake macaque monkeys while they generated visually guided, isometric ¯exion/extension torques rons to activate muscles in coordinated patterns (Baldissera about the wrist. Spike-triggered averaging of electromyographic et al. 1981; Jankowska 1992). activity (EMG) identi®ed the units' correlational linkages with Although mammalian spinal pathways have been exam- °12 forearm muscles. One hundred interneurons produced changes ined extensively since Sherrington's re¯ex studies in the in the level of average postspike EMG with onset latencies consis- early 1900s (Sherrington 1910), virtually all physiological tent with mono- or oligosynaptic connections to motoneurons; investigations have been performed in anesthetized or re- these were classi®ed as premotor interneurons (PreM-INs). Most duced preparations. Of the few descriptions of interneuron PreM-INs (82%) produced postspike facilitations in forearm mus- properties in awake animals, most concern sensory responses cles. Earlier spike-related features, often beginning before the trig- (Bromberg and Fetz 1977; Cleland and Hoffer 1986; Collins ger spike, were seen in spike-triggered averages from 72 neurons. -
The Spinal Interneurons and Properties of Glutamatergic Synapses in a Primitive Vertebrate Cutaneous Flexion Reflex
9068 • The Journal of Neuroscience, October 8, 2003 • 23(27):9068–9077 Behavioral/Systems/Cognitive The Spinal Interneurons and Properties of Glutamatergic Synapses in a Primitive Vertebrate Cutaneous Flexion Reflex Wen-Chang Li, Stephen R. Soffe, and Alan Roberts School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, United Kingdom Unlike the monosynaptic “stretch” reflex, the exact neuronal pathway for a simple cutaneous reflex has not yet been defined in any vertebrate. In young frog tadpoles, we made whole-cell recordings from pairs of spinal neurons. We found direct, excitatory, glutama- tergic synapses from touch-sensitive skin-sensory neurons to sensory pathway interneurons, and then from these sensory interneurons tomotoneuronsandpremotorinterneuronsontheothersideofthebody.Weconcludethattheminimalpathwayforthisprimitivereflex, in which stroking the skin on one side leads to flexion on the other side, is disynaptic. This detailed circuit information has allowed us to ask whether the properties of glutamatergic synapses during the first day of CNS development are tuned to their function in the tadpole’s responses. Stroking the skin excites a few sensory neurons. These activate primarily AMPA receptors producing short, strong excitation that activates many sensory pathway interneurons but only allows temporal summation of closely synchronous inputs. In contrast, the excitation produced in contralateral neurons by the sensory pathway interneurons is weak and primarily mediated by NMDA receptors. As a result, considerable summation is required for this excitation to lead to postsynaptic neuron firing and a contralateral flexion. We conclude that from their early functioning, synapses from sensory neurons are strong and those from sensory pathway interneurons are weak. The distribution of glutamate receptors at synapses in this developing circuit is tuned so that synapses have properties suited to their roles in the whole animal’s reflex responses. -
Two Opposite Voltage-Dependent Currents Control the Unusual Early
RESEARCH ARTICLE Two opposite voltage-dependent currents control the unusual early development pattern of embryonic Renshaw cell electrical activity Juliette Boeri1†, Claude Meunier2†, Herve´ Le Corronc1,3†, Pascal Branchereau4, Yulia Timofeeva5,6, Franc¸ois-Xavier Lejeune7, Christine Mouffle1, Herve´ Arulkandarajah1, Jean Marie Mangin1, Pascal Legendre1‡*, Antonny Czarnecki1,4‡* 1INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France; 2Centre de Neurosciences Inte´gratives et Cognition, CNRS UMR 8002, Institut Neurosciences et Cognition, Universite´ de Paris, Paris, France; 3Univ Angers, Angers, France; 4Univ. Bordeaux, CNRS, EPHE, INCIA, Bordeaux, France; 5Department of Computer Science and Centre for Complexity Science, University of Warwick, Coventry, United Kingdom; 6Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; 7Institut du Cerveau et de la Moelle Epinie`re, Centre de Recherche CHU Pitie´-Salpe´trie`re, INSERM, U975, CNRS, UMR 7225, Sorbonne Univ, Paris, France *For correspondence: [email protected] (PL); [email protected] (AC) Abstract Renshaw cells (V1R) are excitable as soon as they reach their final location next to the †These authors contributed spinal motoneurons and are functionally heterogeneous. Using multiple experimental approaches, equally to this work in combination with biophysical modeling and dynamical systems theory, we analyzed, for the first ‡ These authors also contributed time, the mechanisms underlying the electrophysiological properties of V1R during early embryonic equally to this work development of the mouse spinal cord locomotor networks (E11.5–E16.5). We found that these Competing interests: The interneurons are subdivided into several functional clusters from E11.5 and then display an authors declare that no unexpected transitory involution process during which they lose their ability to sustain tonic firing. -
Degradation of Mouse Locomotor Pattern in the Absence of Proprioceptive Sensory Feedback
Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback Turgay Akaya,b,1, Warren G. Tourtellottec, Silvia Arberd,e, and Thomas M. Jessella,b,2 aHoward Hughes Medical Institute and bDepartments of Neuroscience, Biochemistry and Molecular Biophysics, Kavli Institute of Brain Science, Columbia University, New York, NY 10032; cDepartment of Pathology and Neurology, Northwestern University, Chicago, IL 60611; dBiozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; and eFriedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland Contributed by Thomas M. Jessell, October 8, 2014 (sent for review August 24, 2014; reviewed by Ansgar Büschges and John Martin) Mammalian locomotor programs are thought to be directed by the functional locomotor patterns in the absence of proprioceptive actions of spinal interneuron circuits collectively referred to as sensory feedback remains uncertain. “central pattern generators.” The contribution of proprioceptive Prior studies in cat have, nevertheless, provided evidence that sensory feedback to the coordination of locomotor activity proprioceptive feedback modifies stance and swing phase tran- remains less clear. We have analyzed changes in mouse locomotor sitions during walking to accommodate changes in task and ter- pattern under conditions in which proprioceptive feedback is at- rain (14–18), but have not resolved the extent to which tenuated genetically and biomechanically. We find that locomotor proprioceptive sensory feedback contributes to core elements of pattern degrades upon elimination of proprioceptive feedback mammalian locomotor pattern. Nor have the individual con- from muscle spindles and Golgi tendon organs. The degradation tributions of the two main functional classes of proprioceptors— of locomotor pattern is manifest as the loss of interjoint coordina- group Ia/II muscle spindle (MS) and group Ib Golgi tendon organ tion and alternation of flexor and extensor muscles. -
Building a Neuron Model of a Rat Spinal Interneuron
46 C h a p t e r 3 BUILDING A NEURON MODEL OF A RAT SPINAL INTERNEURON The previous chapter showed how simulation could be used to obtain a time se- ries of the extracellular voltage, Ve, in a volume conductor model as a function of time for various electrode combinations. This chapter will discuss a computational model for a rat spinal interneuron. In the next chapters, the extracellular voltage from the volume conductor model will be applied to this neuron model to study the effect of epidural stimulation on neurons in the spinal cord. In particular, I will study if particular patterns of extracellular voltage from the epidural stimulation process can cause or facilitate the release of neurotransmitters from the tip of the axon. The simulations of neuron dynamics used in this thesis are performed using NEU- RON version 7.3 (Michael L. Hines and Nicholas T. Carnevale, 1997). NEURON is a compartmental model neuron simulator. It simulates biological neurons by divid- ing each neuron into groups of compartments, called sections, which have similar membrane properties but may differ in diameter. The compartments in each sec- tion are referred to as segments and each may have a different diameter and 3D position. This thesis will not cover the background behind NEURON or compart- mental modeling in detail. Readers unfamiliar with this material are encouraged to read (Michael L. Hines and Nicholas T. Carnevale, 1997). I will only cover the details necessary to reproduce the results reported in this thesis using the NEURON simulator. Section 3.1 covers the neuron electrical properties which are used in the simula- tions.