(TFR-1) Thermonuclear Fusion Reactor: Theoretical Construction and Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Controlled Nuclear Fusion
Controlled Nuclear Fusion HANNAH SILVER, SPENCER LUKE, PETER TING, ADAM BARRETT, TORY TILTON, GABE KARP, TIMOTHY BERWIND Nuclear Fusion Thermonuclear fusion is the process by which nuclei of low atomic weight such as hydrogen combine to form nuclei of higher atomic weight such as helium. two isotopes of hydrogen, deuterium (composed of a hydrogen nucleus containing one neutrons and one proton) and tritium (a hydrogen nucleus containing two neutrons and one proton), provide the most energetically favorable fusion reactants. in the fusion process, some of the mass of the original nuclei is lost and transformed to energy in the form of high-energy particles. energy from fusion reactions is the most basic form of energy in the universe; our sun and all other stars produce energy through thermonuclear fusion reactions. Nuclear Fusion Overview Two nuclei fuse together to form one larger nucleus Fusion occurs in the sun, supernovae explosion, and right after the big bang Occurs in the stars Initially, research failed Nuclear weapon research renewed interest The Science of Nuclear Fusion Fusion in stars is mostly of hydrogen (H1 & H2) Electrically charged hydrogen atoms repel each other. The heat from stars speeds up hydrogen atoms Nuclei move so fast, they push through the repulsive electric force Reaction creates radiant & thermal energy Controlled Fusion uses two main elements Deuterium is found in sea water and can be extracted using sea water Tritium can be made from lithium When the thermal energy output exceeds input, the equation is self-sustaining and called a thermonuclear reaction 1929 1939 1954 1976 1988 1993 2003 Prediction Quantitativ ZETA JET Project Japanese Princeton ITER using e=mc2, e theory Tokomak Generates that energy explaining 10 from fusion is fusion. -
Can 250+ Fusions Per Muon Be Achieved?
CAN 250+ FUSIONS PER MUON BE ACHIEVED? CONF-870448—1 Steven E. Jones DE87 010472 Brigham Young University Dept. of Physics and Astronomy Provo, UT 84602 U.S.A. INTRODUCTION Nuclear fusion of hydrogen isotopes can be induced by negative muons (u) in reactions such as: y- + d + t + o + n -s- u- (1) t J N This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle (a) and a neutron (n), releasing energy which reaches the earth as light and heat. Life in the universe depends on fusion energy. In the case of reaction (1), the muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon- catalyzed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g. room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the nuon. In analogy to an ordinary hydrogen molecule, the nuon binds together the deuteron and triton in a very small molecule. Since the muonic mass is so large, the dtp molecule is tiny, so small that the deuteron and triton are induced to fuse together in about a picosecond - one millionth of the nuon lifetime. We could speak here of nuonlc confinement, in lieu of the gravitational confinement found in stars, or MASTER DISTRIBUTION OF THIS BBCUMENT IS UNLIMITED magnetic or inertial confinement of hot plasmas favored in earth-bound attempts at imitating stellar fusion. -
Conceptual Design Report on JT-60SA ___1. JT-60SA
Conceptual Design Report on JT-60SA ________ 1. JT-60SA Mission and Program 1.1 Introduction Realization of fusion energy requires long-term research and development. A schematic of fusion energy development is shown in Fig. 1.1-1. Fusion energy development is divided into 3 phases before commercialization. The large Tokamak phase achieved equivalent break-even plasmas in JET and JT-60 and significant DT Power productions in TFTR and JET. A programmatic objective of the ITER phase is demonstration of scientific and technical feasibility of fusion energy. A primary objective of the DEMO phase is to demonstrate power (electricity) production in a manner leading to commercialization of fusion energy. The fast track approach to fusion energy is to shorten its development period for fusion energy utilization by adding appropriate programs (BA program) in parallel with ITER. Program elements are advanced tokamak/simulation studies and fusion technology/material development. Fig. 1.1-1 Schematic of fusion energy development To specify program elements needed in parallel with ITER, we have to identify the concept of DEMO. Typical DEMO concepts of Japan and EU are shown in Fig.1.1-2. Although size spans widely, operation mode is unanimously “steady-state”. Ranges of the normalized beta are pretty close each other, βN=3.5 to 4.3 for JA DEMO and 3.4 to 4.5 for EU DEMO. Fig. 1.1-2 Cross section and parameters of JA-EU DEMO studies ave 2 The neutron wall load of DEMO exceeds that of ITER (Pn =0.57MW/m ) by a factor of 3-6. -
NEWSLETTER Issue No. 7 September 2017
NEWSLETTER September 2017 Issue no. 7 Nuclear Industry Group Newsletter September 2017 Contents Notes from the Chair ................................................................................... 3 IOP Group Officers Forum .......................................................................... 4 NIG Committee Elections ............................................................................ 6 Nuclear Industry Group Career Contribution Prize 2017 .......................... 7 Event – Gen IV Reactors by Richard Stainsby (NNL) ................................ 8 Event – Nuclear Security by Robert Rodger (NNL) and Graham Urwin (RWM) ......................................................................................................... 12 Event – The UK’s Nuclear Future by Dame Sue Ion ................................ 13 Event – Regulatory Challenges for Nuclear New Build by Mike Finnerty. .................................................................................................................... 15 Event – European Nuclear Young Generation Forum ............................. 18 Event – Nuclear Fusion, 60 Years on from ZETA by Chris Warrick (UKAEA), Kate Lancaster (York Plasma Institute), David Kingham (Tokamak Energy) and Ian Chapman (UKAEA) ....................................... 19 IOP Materials and Characterisation Group Meetings .............................. 25 “Brexatom” – the implications of the withdrawal for the UK from the Euratom Treaty. ........................................................................................ -
Thermonuclear AB-Reactors for Aerospace
1 Article Micro Thermonuclear Reactor after Ct 9 18 06 AIAA-2006-8104 Micro -Thermonuclear AB-Reactors for Aerospace* Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], [email protected], http://Bolonkin.narod.ru Abstract About fifty years ago, scientists conducted R&D of a thermonuclear reactor that promises a true revolution in the energy industry and, especially, in aerospace. Using such a reactor, aircraft could undertake flights of very long distance and for extended periods and that, of course, decreases a significant cost of aerial transportation, allowing the saving of ever-more expensive imported oil-based fuels. (As of mid-2006, the USA’s DoD has a program to make aircraft fuel from domestic natural gas sources.) The temperature and pressure required for any particular fuel to fuse is known as the Lawson criterion L. Lawson criterion relates to plasma production temperature, plasma density and time. The thermonuclear reaction is realised when L > 1014. There are two main methods of nuclear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson criterion. The author offers several innovations that he first suggested publicly early in 1983 for the AB multi- reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB- Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. -
A European Success Story the Joint European Torus
EFDA JET JETJETJET LEAD ING DEVICE FOR FUSION STUDIES HOLDER OF THE WORLD RECORD OF FUSION POWER PRODUCTION EXPERIMENTS STRONGLY FOCUSSED ON THE PREPARATION FOR ITER EXPERIMENTAL DEVICE USED UNDER THE EUROPEAN FUSION DEVELOPEMENT AGREEMENT THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY EFDA Fusion: the Energy of the Sun If the temperature of a gas is raised above 10,000 °C virtually all of the atoms become ionised and electrons separate from their nuclei. The result is a complete mix of electrons and ions with the sum of all charges being very close to zero as only small charge imbalance is allowed. Thus, the ionised gas remains almost neutral throughout. This constitutes a fourth state of matter called plasma, with a wide range of unique features. D Deuterium 3He Helium 3 The sun, and similar stars, are sphe- Fusion D T Tritium res of plasma composed mainly of Li Lithium hydrogen. The high temperature, 4He Helium 4 3He Energy U Uranium around 15 million °C, is necessary released for the pressure of the plasma to in Fusion T balance the inward gravitational for- ces. Under these conditions it is pos- Li Fission sible for hydrogen nuclei to fuse together and release energy. Nuclear binding energy In a terrestrial system the aim is to 4He U produce the ‘easiest’ fusion reaction Energy released using deuterium and tritium. Even in fission then the rate of fusion reactions becomes large enough only at high JG97.362/4c Atomic mass particle energy. Therefore, when the Dn required nuclear reactions result from the thermal motions of the nuclei, so-called thermonuclear fusion, it is necessary to achieve u • extremely high temperatures, of at least 100 million °C. -
The Economist's Free E-Mail Newsletters Twist and Shout and Alerts
Log in Register My account Subscribe Digital & mobile Newsletters RSS Jobs Help Thursday September 1st 2011 Search World politics Business & finance Economics Science & technology Culture Blogs Debate & discuss Multimedia Print edition Fusion power Be the first to comment Print Next ITERation? E-mail Reprints & permissions Generating electricity by nuclear fusion has long looked like a chimera. A reactor being built in Germany may change that Advertisement Sep 3rd 2011 | from the print edition Like 3 7 Most commented Most recommended 1. China's military power: Modernisation in sheep's clothing 2. Charlemagne: Among the dinosaurs 3. Anti-corruption protests in India: No modern-day AS THE old joke has it, fusion is the power of the future—and always will be. The sales Mahatma pitch is irresistible: the principal fuel, a heavy isotope of hydrogen called deuterium, 4. German business and politics: Goodbye to Berlin can be extracted from water. In effect, therefore, it is in limitless supply. Nor, unlike 5. Libya: The birth of free Libya fusion’s cousin, nuclear fission, does the process produce much in the way of 6. Immigration: Let them come radioactive waste. It does not release carbon dioxide, either. Which all sounds too good 7. Climate science (II): Clouds in a jar to be true. And it is. For there is the little matter of building a reactor that can run for 8. Language learning: No, she's foreign! long enough to turn out a meaningful amount of electricity. Since the first attempt to do 9. Martin Luther King: A blockheaded memorial so, a machine called Zeta that was constructed in Britain in the 1950s, no one has even 10. -
The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, U.S.A. (On loan from Westlnghouse Research and Development Center) G. Grieger, Max Planck Institut fur Plasmaphyslk, Garching bel Mun<:hen, West Germany D. J. Lees, U.K.A.E.A. Culham Laboratory, Abingdon, Oxfordshire, England M. S. Rablnovich, P. N. Lebedev Physics Institute, U.S.3.R. Academy of Sciences, Moscow, U.S.S.R. J. L. Shohet, Torsatron-Stellarator Laboratory, University of Wisconsin, Madison, Wisconsin, U.S.A. and X. Uo, Plasma Physics Laboratory Kyoto University, Gokasho, Uj', Japan Abstract The woHlwide development of stellnrator research is reviewed briefly and informally. I OISCLAIWCH _— . vi'Tli^liW r.'r -?- A stellarator is a closed steady-state toroidal device for cer.flning a hot plasma In a magnetic field where the rotational transform Is produced externally, from torsion or colls outside the plasma. This concept was one of the first approaches proposed for obtaining a controlled thsrtnonuclear device. It was suggested and developed at Princeton in the 1950*s. Worldwide efforts were undertaken in the 1960's. The United States stellarator commitment became very small In the 19/0's, but recent progress, especially at Carchlng ;ind Kyoto, loeethar with «ome new insights for attacking hotii theoretics] Issues and engineering concerns have led to a renewed optimism and interest a:; we enter the lQRO's. The stellarator concept was borr In 1951. Legend has it that Lyman Spiczer, Professor of Astronomy at Princeton, read reports of a successful demonstration of controlled thermonuclear fusion by R. -
Energy Analysis for the Connection of the Nuclear Reactor DEMO to the European Electrical Grid
energies Article Energy Analysis for the Connection of the Nuclear Reactor DEMO to the European Electrical Grid Sergio Ciattaglia 1, Maria Carmen Falvo 2,* , Alessandro Lampasi 3 and Matteo Proietti Cosimi 2 1 EUROfusion Consortium, 85748 Garching, Germany; [email protected] 2 DIAEE—Department of Astronautics, Energy and Electrical Engineering, University of Rome Sapienza, 00184 Rome, Italy; [email protected] 3 ENEA Frascati, 00044 Frascati, Rome, Italy; [email protected] * Correspondence: [email protected] Received: 31 March 2020; Accepted: 22 April 2020; Published: 1 May 2020 Abstract: Towards the middle of the current century, the DEMOnstration power plant, DEMO, will start operating as the first nuclear fusion reactor capable of supplying its own loads and of providing electrical power to the European electrical grid. The presence of such a unique and peculiar facility in the European transmission system involves many issues that have to be faced in the project phase. This work represents the first study linking the operation of the nuclear fusion power plant DEMO to the actual requirements for its correct functioning as a facility connected to the power systems. In order to build this link, the present work reports the analysis of the requirements that this unconventional power-generating facility should fulfill for the proper connection and operation in the European electrical grid. Through this analysis, the study reaches its main objectives, which are the definition of the limitations of the current design choices in terms of power-generating capability and the preliminary evaluation of advantages and disadvantages that the possible configurations for the connection of the facility to the European electrical grid can have. -
NIAC 2011 Phase I Tarditti Aneutronic Fusion Spacecraft Architecture Final Report
NASA-NIAC 2001 PHASE I RESEARCH GRANT on “Aneutronic Fusion Spacecraft Architecture” Final Research Activity Report (SEPTEMBER 2012) P.I.: Alfonso G. Tarditi1 Collaborators: John H. Scott2, George H. Miley3 1Dept. of Physics, University of Houston – Clear Lake, Houston, TX 2NASA Johnson Space Center, Houston, TX 3University of Illinois-Urbana-Champaign, Urbana, IL Executive Summary - Motivation This study was developed because the recognized need of defining of a new spacecraft architecture suitable for aneutronic fusion and featuring game-changing space travel capabilities. The core of this architecture is the definition of a new kind of fusion-based space propulsion system. This research is not about exploring a new fusion energy concept, it actually assumes the availability of an aneutronic fusion energy reactor. The focus is on providing the best (most efficient) utilization of fusion energy for propulsion purposes. The rationale is that without a proper architecture design even the utilization of a fusion reactor as a prime energy source for spacecraft propulsion is not going to provide the required performances for achieving a substantial change of current space travel capabilities. - Highlights of Research Results This NIAC Phase I study provided led to several findings that provide the foundation for further research leading to a higher TRL: first a quantitative analysis of the intrinsic limitations of a propulsion system that utilizes aneutronic fusion products directly as the exhaust jet for achieving propulsion was carried on. Then, as a natural continuation, a new beam conditioning process for the fusion products was devised to produce an exhaust jet with the required characteristics (both thrust and specific impulse) for the optimal propulsion performances (in essence, an energy-to-thrust direct conversion). -
1 Looking Back at Half a Century of Fusion Research Association Euratom-CEA, Centre De
Looking Back at Half a Century of Fusion Research P. STOTT Association Euratom-CEA, Centre de Cadarache, 13108 Saint Paul lez Durance, France. This article gives a short overview of the origins of nuclear fusion and of its development as a potential source of terrestrial energy. 1 Introduction A hundred years ago, at the dawn of the twentieth century, physicists did not understand the source of the Sun‘s energy. Although classical physics had made major advances during the nineteenth century and many people thought that there was little of the physical sciences left to be discovered, they could not explain how the Sun could continue to radiate energy, apparently indefinitely. The law of energy conservation required that there must be an internal energy source equal to that radiated from the Sun‘s surface but the only substantial sources of energy known at that time were wood or coal. The mass of the Sun and the rate at which it radiated energy were known and it was easy to show that if the Sun had started off as a solid lump of coal it would have burnt out in a few thousand years. It was clear that this was much too shortœœthe Sun had to be older than the Earth and, although there was much controversy about the age of the Earth, it was clear that it had to be older than a few thousand years. The realization that the source of energy in the Sun and stars is due to nuclear fusion followed three main steps in the development of science. -
Eindhoven University of Technology BACHELOR the Effect of The
Eindhoven University of Technology BACHELOR The effect of the cathode radius on the neutron production in an IEC fusion device Wijnen, M. Award date: 2014 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Bachelor Thesis The effect of the cathode radius on the neutron production in an IEC fusion device M.Wijnen Eindhoven University of Technology June 2014 Abstract While magnetic confinement fusion is reaching the next level with the develop- ment of ITER, many other methods to achieve fusion are studied in parallel. One of these methods is inertial electrostatic confinement (IEC) which utilizes electrostatic fields to create fusion. The Eindhoven University of Technology operates the TU/e Fusor, modelled after a Hirsch-Farnsworth fusor.